Partial Wave Analysis of $\pi^-\pi^0$ system in VES experiment

Mikhail Mikhasenko

Institute for High Energy Physics, VES group, Protvino, Russia

May 30, 2014

Mikhail Mikhasenko (Institute for High Energ $^{
m Partial}$ Wave Analysis of $\pi^-\pi^0$ system in VE

May 30, 2014 1 / 35

Contents

Mikhail Mikhasenko (Institute for High Energ $^{
m Partial}$ Wave Analysis of $\pi^{-}\pi^{0}$ system in VE

▶ ▲ ≣ ▶ ≣ ∽ ९ ୯ May 30, 2014 2 / 35

< 口 > < 同 >

The experimental facility

- U70 beam proton
 50...70 GeV
- VES beam (27 GeV) secondary particles
- 98% pions and and 2% kaons, 0.2% antiprotons

VES experiment

- Beam (π^- , 28 GeV)
- Target(Be $10\%\lambda_I$) ۲

beam

- Detectors \rightarrow
- Trigger $S1 \cdot S2 \cdot S3 \cdot \overline{K1} \cdot \overline{K2} \cdot \overline{A10} \cdot \overline{A11} \cdot \overline{G}$

- Three beam Cerenkov counters
- Wire chambers
- Spectrometer 1 T
- Large Cerenkov counter
- Three station of drift tubes
- EM Calorimeter _____

interaction Mikhail Mikhasenko (Institute for High EnergPartial Wave Analysis of $\pi^-\pi^0$ system in VE

!halo

!veto

- May 30, 2014 4 / 35

The motivation

- High statistics. ($> 10^6$)
- $I = 1, G = +1 \rightarrow A$ few resonances (Odd wave only). $\pi^+\pi^-: S, P, D, F, G, H$ $\pi^-\pi^0: \dots, P, \dots, F, \dots, H$
- High mass (> $2 \text{ GeV}/c^2$) region has never been studied.
- Low mass ([0.5 1.2] GeV/c²): ρ-meson shape, production mechanism were studied at low energy only (till 5 GeV/c²)

The data

Mikhail Mikhasenko (Institute for High EnergPartial Wave Analysis of $\pi^-\pi^0$ system in VE

3 May 30, 2014 6 / 35

-

A D > A B > A B > A

$\pi^-\pi^0$ system

Data-sample

- The topology (1n + 0p + 2z).
- The gamma's energy more then 0.5 GeV
- $\gamma\gamma$ mass cut ($m_{\pi}\pm 15\,{
 m MeV}$)
- "Exclusivity" cut $25 30 \text{ GeV}/c^2$.

- Vertex Z cut 16 cm, while target length is 4 cm
- The $\pi_{beam} \pi^-$ angle more 0.003 rad to suppress $\pi^-_{beam}(\gamma\gamma)_{noise}$ events.
- Fiducial cuts for all detectors.

Mikhail Mikhasenko (Institute for High EnergPartial Wave Analysis of $\pi^-\pi^0$ system in VE

Data-sample

Mass spectrum and t' distributions in details:

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Data-sample

The intervals where studies were performed: inv.mass from 0.3 GeV to 1.2 GeV, the mass bin is 50 MeV; t' in 10 intervals.

< ロト < 同ト < ヨト < ヨト

The background

Mikhail Mikhasenko (Institute for High Energ $^{
m Partial}$ Wave Analysis of $\pi^{-}\pi^{0}$ system in VE

A D > A B > A B > A

The experimental setup

- The experimental setup is not hermetic.
- 186 404 mrad is the hole for neutral particles.
- It is critical if there is reaction with additional neutrals(γ) and large cross section.

The VES setup: top view.

Main background: Reaction $\pi^- N \rightarrow \pi^- 2\pi^0 N'$

 $\pi^- 2\pi^0$: 1 track + 4 gammas \rightarrow 1 track + 2 gammas : $\pi^- \pi^0$

$$rac{\sigma(\pi^- N o \pi^- 2\pi^0 N')}{\sigma(\pi^- N o \pi^- \pi^0 N')} \sim 20...50, \quad ext{for our energy}$$

The leakage study:

- The $\pi^{-}2\pi^{0}$ PWA result is used as physical generator.
- Geant4 (or factMC) for event simulation.

The $\pi^{-}2\pi^{0}$ PWA model: (see report from VES at Hadron-2013)

- The isobar model
- m- and t- independent analysis

The selected background spectra

- The same cuts (like for the data) are applied.
- The leakage is about 5 % of original $\pi^{-}2\pi^{0}$ data sample.
- The invariant mass also has ρ -meson peak.
- The "exclusivity" is good, because soft gammas were lost.

The estimation of the background fraction

The background contribution is evaluated by the fit of mass distribution. The Signal is Breit-Wigner shape with dynamical width

$$\mathbf{BW}(\mathbf{m}) = \frac{M\Gamma(m)}{(m^2 - M^2)^2 + (M\Gamma(m))^2}, \quad \Gamma(m) = \Gamma_0(\frac{p}{p_0})^3 \frac{M}{m}$$
$$\mathbf{p} = \frac{1}{2}\sqrt{m^2 - (m_{\pi 0} + m_{\pi -})^2}, \quad p_0 = \frac{1}{2}\sqrt{m_0^2 - (m_{\pi 0} + m_{\pi -})^2}$$

Fit inv.mass for (t prime>0.103)*(t prime<1.0)

The analysis of angular distributions

Mikhail Mikhasenko (Institute for High Energ $^{
m Partial}$ Wave Analysis of $\pi^{-}\pi^{0}$ system in VE

May 30, 2014 15 / 35

Data distribution over angles

We want to know how ρ -meson is produced, and what angular distribution the final particles have (I_{prod}).

The **observed** distribution over $\cos \theta_{GJ} \times \phi_{TY}$

To unfold I_{prod} , the acceptance should be known.

PWA scheme.

 $I_{prod}(\Omega|a_i)$ is density function for **produced** data $(N_{prod} = \int I_{prod} d\Omega)$. $I_{obs}(\Omega|a_i)$ is density function for **observed** data $(N_{obs} = \int I_{obs} d\Omega)$.

$$I_{obs}(\Omega|a_i) = A \circ I_{prod} \approx A_0(\Omega) I_{prod}(\Omega|a_i),$$

 $\{data\} = \{\Omega_i\}$ is **observed** data sample.

$$\mathbb{L}_{0} = \prod_{data} \frac{I_{obs}(\Omega_{i})}{\int I_{obs} \, d\Omega} \quad \text{is Likelihood function.} \quad \int I_{obs}(\Omega|a_{i}) \, d\Omega = \mu(a_{i})$$

 $\mathbb{L}_{ext} = \text{Pois}(N_{data} | \mu) \cdot \mathbb{L}_0 \text{ is extended Likelihood function. } \mathbb{P}_0 \equiv -\log \mathbb{L}_{ext}.$

$$\mathbb{P}_{0} = -\log\left(\frac{\mu^{N}}{N!}e^{-\mu}\prod_{data}\frac{A_{0}I_{prod}}{\mu}\right), \text{ where } \mu = \int A \circ I_{prod}d\Omega$$
$$\mathbb{P}_{0} \simeq -\sum_{data}\log\left(A_{0}I_{prod}\right) + \int A \circ I_{prod}d\Omega, \text{ is minimized.}$$

Mikhail Mikhasenko (Institute for High EnergPartial Wave Analysis of $\pi^-\pi^0$ system in VE

May 30, 2014 17 / 35

The waves-representation

The intensity is the sum of two non-interfering blocks.

$$I_{prod}(\Omega) = \left| {}^{(+)}Y_{1,1}P_{+} \right|^{2} + \left| {}^{(-)}Y_{1,0}P_{0} + {}^{(-)}Y_{1,1}P_{-}e^{i\phi_{P}} + {}^{(-)}Y_{0,0}S_{0}e^{i\phi_{S}} \right|^{2}$$

 ${}^{\varepsilon}Y_{l,m}(\cos\theta)$ are spherical functions in the real basis ("naturality basis"):

"Natural" exchange $(+) Y_{1,1} = -\sqrt{\frac{3}{4\pi}} \sin \theta \sin \phi$ $(-) Y_{1,0} = \sqrt{\frac{3}{4\pi}} \cos \theta$ $(-) Y_{1,1} = \sqrt{\frac{3}{4\pi}} \sin \theta \cos \phi$ $(-) Y_{0,0} = \sqrt{\frac{1}{4\pi}}$

A minimum \mathbb{P} gives consistent and efficient estimation for p:

$$\mathbb{P} = -\sum_{data} \log I_{prod}(\Omega_i | p) + \int A \circ I_{prod}(\Omega' | p) \, d\Omega, \quad p = (a_i, \phi_P, \phi_S)$$

Mikhail Mikhasenko (Institute for High Energ $^{
m Partial}$ Wave Analysis of $\pi^-\pi^0$ system in VE

May 30, 2014 18 / 35

The moments representation

$$I(\theta, \phi) = \sum_{l=0}^{l
= $\tilde{H}_{0,0} + \tilde{H}_{1,0} \cos \theta + \tilde{H}_{1,1} \sin \theta \cos \phi +$
+ $\tilde{H}_{2,0}(3\cos^2 \theta - 1) + \tilde{H}_{2,1} \sin \theta \cos \theta \cos \phi + \tilde{H}_{2,2} \sin^2 \theta \cos(2\phi)$$$

The relationships between moments and waves

$$\begin{aligned} \mathcal{H}_{0,0} &= \sqrt{\frac{1}{4\pi}} (S_0^2 + P_0^2 + P_-^2 + P_+^2), \quad \mathcal{H}_{1,0} = \sqrt{\frac{1}{\pi}} S_0 P_0 \cos \phi_S, \\ \mathcal{H}_{1,1} &= \sqrt{\frac{1}{\pi}} S_0 P_- \cos(\phi_S - \phi_P), \quad \mathcal{H}_{2,0} = \sqrt{\frac{1}{60\pi}} (2P_0^2 - P_-^2 - P_+^2) \\ \mathcal{H}_{2,1} &= \sqrt{\frac{3}{5\pi}} P_0 P_- \cos \phi_P, \quad \mathcal{H}_{2,2} = \sqrt{\frac{3}{20\pi}} (P_-^2 - P_+^2) \end{aligned}$$

Mikhail Mikhasenko (Institute for High Energ $^{
m Partial}$ Wave Analysis of $\pi^{-}\pi^{0}$ system in VE

The produced moments

The blue points are moments for the data. The red ones are moments for the background (scaled according to evaluated contribution).

Mikhail Mikhasenko (Institute for High Energ ${\sf Partial}$ Wave Analysis of $\pi^-\pi^0$ system in VE

May 30, 2014 20 / 35

From the moments to waves

Moments to Waves

The "function space" of moments is wider then one of waves expantion. χ^2 -like fit is used to find waves (for each bin).

$$\chi^2 = (ar{M}_i - M_i(w)) E_{ij}^{-1} (ar{M}_j - M_j(w))$$

The contribution extraction

For significant waves (P_0, P_+) the amount of event is extracted by the BW shape fit.

t' dependancies

The analysis was performed at 10 t' intervals.

Mikhail Mikhasenko (Institute for High EnergPartial Wave Analysis of $\pi^-\pi^0$ system in VE

■ ◆ ■ ▶ ■ つへで May 30, 2014 22 / 35

→ ∃ →

Conclusion

- The data for the reaction $\pi^- N \rightarrow \pi^- \pi^0 N'$ were collected at the VES experiment with tree order higher statistics then in previous studies.
- The significant background $(\pi^{-}2\pi^{0} \text{ leakage})$ is irremovable. The background contribution was evaluated ($\sim 45 55\%$) and taken into accont using the subtruction procedure.
- The $\pi^{-}\pi^{0}$ system from ρ -meson decay is observed in P_{0} , P_{+} waves, presumably with dominance of π and ω exchanges respectively.
- The t' dependencies for waves intensities were extracted with no interpetation. We will welcome any help from theoretics.

The angular analysis

The end

Thank you.

Mikhail Mikhasenko (Institute for High Energ $^{
m Partial}$ Wave Analysis of $\pi^{-}\pi^{0}$ system in VE

▲ ▲ 볼 ▶ 볼 ∽ ९ ୯ May 30, 2014 24 / 35

The fraction of the P_0 and P_+ waves

0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.5 0.6 t' GeV²/c² 0.2 0.3 0.4 0.1 Fri May 30 02:57:52 2014

the fraction of P0, P+ waves

May 30, 2014 25 / 35

3

Image: A matrix

I = ►

The predictions

Mikhail Mikhasenko (Institute for High Energ $^{
m Partial}$ Wave Analysis of $\pi^{-}\pi^{0}$ system in VE

May 30, 2014 26 / 35

э

PWA solution

Mikhail Mikhasenko (Institute for High Energ $^{
m Partial}$ Wave Analysis of $\pi^{-}\pi^{0}$ system in VE

▲ ▲ 볼 ▶ 볼 ∽ ९ ୯ May 30, 2014 27 / 35

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

BackSlide, the acceptance for gammas

Mikhail Mikhasenko (Institute for High EnergPartial Wave Analysis of $\pi^-\pi^0$ system in VE

-

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

PWA technical details

Need to construct:

$$I_{prod}(\Omega) = \left|\mathbf{a}_{\mathbf{P}_{+}}F_{P+}(\Omega)\right|^{2} + \left|\mathbf{a}_{\mathbf{P}_{0}}F_{P0}(\Omega) + \mathbf{a}_{\mathbf{P}_{-}}e^{i\phi_{P}}F_{P-}(\Omega) + \mathbf{a}_{\mathbf{S}}e^{i\phi_{S}}F_{S0}(\Omega)\right|^{2}$$

where $\Omega = (\cos \theta, \phi) - \text{variables}$. Easier to use Re- and Im- part as independent parameters.

$$W(\Omega|a) = \left| \mathbf{a}_{\{\mathbf{Y}1\mathbf{N}1\}} F_{P+} \right|^2 + \left| \mathbf{a}_{\{\mathbf{Y}1\mathbf{U}0\}} F_{P0} + \mathbf{a}_{\{\mathbf{Y}1\mathbf{U}1\}} F_{P-} + \mathbf{a}_{\{\mathbf{Y}0\mathbf{U}0\}} F_{S} \right|^2$$

 $I_{prod}(\Omega) = W(\Omega|a_{RE}) + W(\Omega|a_{IM}), \quad \Rightarrow \{a_i\}_{i=1..8}\text{-} \text{ real parameters}.$

A "minimum" of NLL is degenerated and allows continuous transformation in this case (solution is to fix two parameters.)

May 30, 2014 29 / 35

ロト (母) (目) (日) (日) (の)

The background subtraction

The list of background subtraction methods, we tried:

- The PWA_{Ln(ɛS+B)}: parametrized **BG**-density and parametrised efficiency.
- **2** The PWA_{Ln(S+B/ ε)}: parametrized restored **BG-produced** density.
- **③** The PWA_{LnS-LnB}: rescaling likelihood function.
- The PMA and moments subtaction.

All methods base on good knowledge of the acceptance and background. Most of methods required the background fraction to be known.

(ロト 4月) 4日 + 4日 - 日 - のへの

I. The PWA: $\log(\varepsilon S + B)$

The classical scheme:

$$egin{aligned} &I_{obs}(\Omega) = A \circ I_{prod} pprox A_0(\Omega) \ I_{prod}(\Omega), \ &\mathbb{P}_0 \simeq -\sum_{data} \log{(A_0 \ I_{prod})} + \int A \circ I_{prod} d\Omega \end{aligned}$$

It is possible to take into account the background:

$$I_{obs}(\Omega) pprox A_0 I_{prod} + I_{back} = A_0(\Omega) I_{prod}(\Omega) + N_b P_{back}(\Omega)$$

It can be included to extNLL scheme:

$$\mathbb{P}_{s+b} = -\sum_{data} \log \left(A_0 \ I_{prod} + N_b \ P_{back}
ight) + \int A \circ I_{prod} d\Omega + N_b$$

Mikhail Mikhasenko (Institute for High Energ $^{
m Partial}$ Wave Analysis of $\pi^{-}\pi^{0}$ system in VE

■ ◆ ■ ▶ ■ ∽ ۹ C May 30, 2014 31 / 35

I. The PWA: $\log(\varepsilon S + B)$

- The background contribution can be evaluated.
- Result depents on parametrization quality strongly.

Mikhail Mikhasenko (Institute for High Energ $^{
m Partial}$ Wave Analysis of $\pi^{-}\pi^{0}$ system in VE

May 30, 2014 32 / 35

II. Rescaling likelihood function log DATA – log BG

The classical scheme:

$$\mathbb{L}_0 = \prod_{\textit{data}}
ho_{\textit{obs}}(\Omega_i), \qquad \mathbb{P}_0 \simeq -\sum_{\textit{data}} \log \left(A_0 \ \textit{I}_{\textit{prod}}
ight) + \int A \circ \textit{I}_{\textit{prod}} d\Omega$$

Take into account the background event by event:

$$\mathbb{L}_{s} = \prod_{data} \rho_{obs}(\Omega_{i}) / \prod_{bg} \rho_{obs}(\Omega_{i}),$$
$$\mathbb{P}_{0} \simeq -\sum_{data} \log (A_{0} I_{prod}) + \sum_{bg} \log (A_{0} I_{prod}) + \int A \circ I_{prod} d\Omega$$

Realistic (MC-limited) functional:

$$\mathbb{P}_{0} \simeq -\sum_{data} \log \left(A_{0} I_{prod}\right) + \frac{N_{b}}{N_{MC}} \sum_{bg} \log \left(A_{0} I_{prod}\right) + \int A \circ I_{prod} d\Omega$$

Mikhail Mikhasenko (Institute for High Energ $^{
m Partial}$ Wave Analysis of $\pi^{-}\pi^{0}$ system in VE

May 30, 2014 33 / 35

II. Rescaling likelihood function $\log DATA - \log BG$

Advantages

Event by event accounting of **BG**. The right normalized result.

$$\int A \circ I_{prod} d\Omega = N_{data} - N_{bg}$$

Disadvantages

It works if a background contribution is small.

The ρ -meson waves

The S, P-waves are plotted in the diffrent t' ranges.

Mikhail Mikhasenko (Institute for High Energ $^{
m Partial}$ Wave Analysis of $\pi^{-}\pi^{0}$ system in VE

May 30, 2014 35 / 35