Single pion production in proton-proton collisions at 1.25 GeV measured with HADES and the Bonn-Gatchina PWA description

Friday, 30 May 2014 15:40 (0:20)

Collaboration

HADES

Abstract content

HADES is a versatile magnetic spectrometer installed at GSI Darmstadt at SIS18 [1]. Thanks to its high acceptance, powerful particle $(p/K/\pi/e)$ identification and very good mass resolution (2-3%) for dielectrons in the light vector meson mass range) it allows to study both hadron and rare dilepton production in N + N, p + A, A + A collisions at a few AGeV beam energy range. In collisions $p + p @ 1.25 \ GeV$, the intermediate $\Delta(1232)$ resonance is expected to play a dominant role in the pion production, but it is known to be not sufficient to describe fully the data. The resonance cross section was determined from exclusive $pp\pi^0$ and $np\pi^+$ channels [2] in the framework of a OPE model with accuracy of 20 - 30%. Investigation of these reaction channels by means of the PWA (Partial Wave Analysis) was also done [3] by the Bonn-Gatchina group at a smaller beam energy [4]. It revealed a dominant contribution of $\Delta(1232)p$ intermediate state but also sizeable non-resonant terms and interference effects. In this work we report on the PWA of the single-pion production in proton-proton collisions (as in [2]) measured with HADES. The pp is a pure isospin I = 1 state and, at this beam energy the following initial pp-states contribute: $(J=0) {}^{1}S_{0}$, ${}^{3}P_{0}$, $(J=1) {}^{3}P_{1}$, $(J=2) {}^{1}D_{2}$, ${}^{3}P_{2}$, ${}^{3}F_{2}$, (J=3) ${}^{3}F_{3}$ and (J=4) ${}^{1}G_{4}$, ${}^{3}H_{4}$. Unlike in proton-proton collisions at lower energies, higher partial waves are necessary for a proper data description. The final states are limited to S-, P-, D-, F-, G- and H- wave states with the two possible intermediate resonance states $P_{33}(1232)$ and $P_{11}(1440)$. The data samples (for both channels, $pp\pi^0$ and $pn\pi^+$) were analysed with the event-by-event background estimation (Q factors). The analysis was preformed together with other available data (see [5], 11 measurements for $pp\pi^0$ and only two for $pn\pi^+$ channel) covering mostly lower beam energies. The stability of solutions was investigated based on a few parametrisations of the transition amplitude A_{tr} (with total energy dependence) and various descriptions of resonance states (Δ and N^*). The obtained solutions generally describe the HADES data very well in various projection observables (CM angular distributions, invariant masses, angular distributions in the helicity and the Gottfried-Jackson frames). The analysis shows the dominant $P_{33}(1232)$ contribution in $np\pi^+$ at the level of 95% and in $pp\pi^0$ (80%) which is an important message for the dilepton analysis, where the branching of Δ Dalitz decays can be identified (in the pe^+e^- channel). [1] G. Agakishiev et al., Eur. Phys. J. A41 (2009) 243 [2] G. Agakishiev et al., Eur. Phys. J. A48 (2012) 74 [3] A. V. Anisovich et al., Eur Phys. J. A34 (2007) 129 [4] K. N. Ermakov et al., Eur. Phys. J. A47 (2011) 159 [5] Data Base on page http://pwa.hiskp.uni-bonn.de/

Primary author(s) : PRZYGODA, Witold (Jagiellonian University); SARANTSEV, Andrey V. (University of Bonn)

Presenter(s) : PRZYGODA, Witold (Jagiellonian University)

Session Classification : Parallel Session A1