MESON 2014 29 May - 3 June 2014, Kraków, Poland

Single pion production in proton-proton collisions at 1.25 GeV measured with HADES and the Bonn-Gatchina PWA description

> Witold Przygoda, Jagiellonian University for the HADES Collaboration
> 30 May 2014, Parallel Session A1, 15:40

p+p @ 1.25 GeV - plan

p + p elementary reactions at E_{kin} = 1.25 GeV below pp η production threshold are well suited to investigate Δ (1232) Dalitz decay

 I. NORMALIZATION (pp elastic)
 II. HADRON ANALYSIS (npπ⁺, ppπ⁰)
 III. PWA 1-pion analysis

Resonance model

Production: OPEM

Form factor at vertices:

$$F(q^{2}) = \frac{\Lambda_{\pi}^{2} - m_{\pi}^{2}}{\Lambda_{\pi}^{2} - q^{2}}$$

 $Λ_{\pi}$ fitted in accordance with the data ($Λ_{\pi}$ = 0.75) G. Agakishiev *et al.* Eur. Phys. J. A**48** (2012) 74

Δ production (n p π^+)

OPEM ($\Lambda_{\pi} = 0.75$ modified) **\Delta resonance** + FSI + N(1440) small

Δ production (**n p** π^+) - acceptance corrected

blue curve: modified OPEM (total cross section 19.2 mb)

cross section: 16.5 ± 2.0 mb

Δ production (p p π^0)

in acceptance

da/dM_{prr}⁶ [mb/(GeV/c²)] 0.01 0.002 Identifying **2 protons** strongly reduces acceptance favors large 4-mom transfer 0.004 parameterization deduced 0.002 from the $np\pi^+$ channel 1.2 1.3 -0.5 0 0.5 1.1 1.4 1.5 black – total M_{pπ⁰} [GeV/c²]) cos₀^{CM} [qu] _{gud}esoop/op $-P_{33}(1232)$ red 0.01 [m] dd^d0.008 pop 0.006 $-P_{11}(1440)$ blue Η H 0.2 مە/مD [mb/sr] 0.15 0.2 0.01 0.004 0.005 0.002 0.1 -0.5 0 0.5 -0.5 0.5 0 $cos\theta_{\pi^0}^{p_7}$ $cos\theta_{a}^{pp}$ dơ/dcosθ_r^{pn0} [mb] ... dα/dcosθ^{pp}_p [mb] 100 grey - phase space 0.05 GJ G. 0.01 0 -0.5 0 0.5 -1 0.005 $\cos\theta^{CM}_{_{D}\pi^{0}}$ 0.005 0.5 -0.5 -0.5 0 0 0.5 5 Witold Przygoda (MESON 2014) $\cos\theta_{-0}^{p\pi^{i}}$ cosepp

Δ production (p p π^0) - acceptance corrected

ACCEPTANCE corrected

"fiducial volume" in angular distribution -0.6 < cos θ < +0.6 sufficient for the dilepton analysis

cross section: $3.4 \text{ mb} \pm 0.8 \text{ mb}$

Witold Przygoda (MESON 2014)

Partial Wave Analysis

proton+proton (isospin I = 1)

2S+1 L S – spin L – orbital momentum J – total spin

INITIAL PP STATES

 $(-1)^{S+L+I} = -1$

for S=0: L even... L=0 (J=0) or L=2 (J=2)... for S=1: L odd... L=1(J=0,1,2) or L=3 (J=2,3,4)...

FINAL STATES

S-, P-, D-waves in pp or pn-state $P_{33}(1232)$ and $P_{11}(1440)$ in πN state

FORMALISM:

A. V. Anisovich *et al*. Eur. Phys. J. A**34** (2007) 129

JI = 10
$${}^{1}S_{0}, {}^{3}P_{0}$$
1 ${}^{3}P_{1}$ 2 ${}^{1}D_{2}, {}^{3}P_{2}, {}^{3}F_{2}$ 3 ${}^{3}F_{3}$ 4 ${}^{3}F_{4}, {}^{1}G_{4}, {}^{3}H_{4}$

Bonn-Gatchina PWA: Andrey V. Sarantsev

cross section and amplitudes

Maximum likelihood method: event-by-event

$$d\sigma = \frac{(2\pi)^4 |A|^2}{4|\vec{k}|\sqrt{s}} d\Phi_3(P, q_1, q_2, q_3) ,$$

$$A = \sum_{\alpha} A^{\alpha}_{tr}(s) Q^{in}_{\mu_1 \dots \mu_J}(SLJ) A_{2b}(i, S_2 L_2 J_2)(s_i) Q^{fin}_{\mu_1 \dots \mu_J}(i, S_2 L_2 J_2 S' L' J) .$$

Angular-spin momentum operators $Q_{\mu_1...\mu_J}(SLJ)$ are given in

A. V. Anisovich et. al Eur. Phys. J. A34 (2007) 129.

$$A_{tr}^{\alpha}(s) = \frac{a_1^{\alpha} + a_3^{\alpha}\sqrt{s}}{s - a_4^{\alpha}} e^{ia_2^{\alpha}}$$

transition pw amplitudes between initial and final states

S L J – initial NN system
S₂ L₂ J₂ – system of two final particles
S' L' J' = J – two-final particle system and spectator

final state amplitudes

Energy dependence (π N system) resonances $\Delta(1232)^{\frac{3}{2}^+}$ and $N(1440)^{\frac{1}{2}^+}$

$$\begin{split} A_{2body}^{S_2,L_2,J_2}(s_{12}) &= \frac{k_{12}^{L_2}}{\sqrt{F(k_{12}^2,L_2,r_{12})}} \frac{1}{M_R^2 - s_{12} - M_R \Gamma} \\ \Gamma &= \Gamma_R \frac{M_R \, k_{12}^{2L_2 + 1} \, F(k_R^2,L_2,r_{12})}{\sqrt{s_{12}} \, k_R^{2L_2 + 1} \, F(k_{12}^2,L_2,r_{12})} \end{split}$$
Roper parameterized using couplings:
A. V. Sarantsev *et al.*
Phys. Lett. B659 (2008) 94

Final NN interaction

9

$$A_{2body}^{S_{2},L_{2},J_{2}}(s_{23}) = \frac{\sqrt{s_{23}}}{1 - \frac{1}{2}r_{23}^{\beta}k_{23}^{2}a^{\beta} + ik_{23}a^{\beta}\frac{k_{23}^{2L_{2}}}{F(k_{23},r_{23}^{\beta},L_{2})}$$

NN effective range NN scattering length (fixed for S-waves)

Input for PWA – other data used

Experimental data samples

$\pi^0 p p$

Bonn-Gatchina group

http://pwa.hiskp.uni-bonn.de/data.htm

Proton Momentum	Total cross section	Data (events)	Proton Momentum	Total cross section	Data (events)
950 MeV/c 1217 MeV/c	100 ± 30 μb 2070 ± 90 μb	154972 542	1581 MeV/c 1628 MeV/c	1780 ± 40 μb 1760 ± 60 μb	4276 2912
1279 MeV/c	2850 ± 130 μb	615	e ⁶ E		
1341 MeV/c	3310 ±190 μb	882	±		4
1389 MeV/C	3700 ± 140 μb 3730 + 150 μb	993 91 <i>4</i>	υ 4 	4 ¢	¢ ¢ Ŷ Ŷ
1485 MeV/c	3960 ± 150 μb	996	3	8 8	
1536 MeV/c	4200 ± 150 μb	1315	2	· · · · · · · · · · · · · · · · · · ·	
1581 MeV/c	4190 ± 170 μb	903			
1628 MeV/c	4480 ± 200 μb	688	0.9 1 1.1	1.2 1.3 1.4	1.5 1.6
1683 MeV/c	4500 ± 170 μb	1086		P (GeV/c)	
			PW contribution	ons (smooth energy o	dependence)

Minimization of log-likelihood value by a simultaneous fit of many data!

PWA (n p π^+) – in acceptance

PWA (n p π^+) – in acceptance

PWA (p p π^0) – in acceptance

Witold Przygoda (MESON 2014)

PWA solutions (n $p \pi^+$)

input partial waves		nρπ⁺[%]		resonan	ces [%]
beam momentum experiment	1581 MeV/c PNPI	1628 MeV/c PNPI	1977 MeV/c HADES	Δ(1232)	N*(1440)
¹ S ₀	5.1	5.6	2.9	-	1.6
³ P ₀	8	8.5	1.4	1.4	0.9
³ P ₁	35	33	22	9.0	10.3
³ P ₂	38	38	36.5	34	1
¹ D ₂	7.5	7.5	10.1	7.4	-
³ F ₂	4.2	5.5	9.2	7.4	-
³ F ₃	-	-	0.6	0.6	-
³ F ₄	-	-	10.7	10.7	-
${}^{1}G_{4}$	-	-	5.6	5.6	-
${}^{3}H_{4}$	-	-	3.7	0.9	-
K.N. Ermakov <i>et al</i> .		K.N. Ermakov <i>et al</i>		Witold Przygoda (MESON 2014)	

Eur. Phys. J. A**47** (2011) 159

Eur. Phys. J. A (2014) TBA

PWA solutions ($p p \pi^0$)

input partial waves	<mark>ρρπ⁰</mark> [%]	<mark>reson</mark> و إ	ances %]	F	Partial wave contributions pp-pp
beam momentum experiment	1977 MeV/c HADES	Δ(1232)	N(1440)	·	³ P ₂
${}^{1}S_{0}$	1.4	-	1.4	ŀ	3 _D
³ P ₀	4.7	2.6	1.9		
³ P ₁	27.6	9.8	12.9		
³ P ₂	67.8	59.2	1.5		³ F ₂
${}^{1}D_{2}$	8.9	8.1	-) b	
³ F ₂	18	12.2	-	-	3 F4
³ F ₃	1	1	-	·	¹ D ₂
³ F ₄	20	20	-	-1	4 3 _D
${}^{1}G_{4}$	9.1	9.1	-		
³ H ₄	10.7	10.7	-	ļ.	

witoid Przygoda (IVIESUN 2014)

PWA solutions

cross section [mb] ("OPE" corr)	<mark>n p π⁺</mark> (16.5 ± 2 mb)	<mark>ρρπ⁰</mark> (3.4 ± 0.8 mb)
cross section [mb] (PWA)	16.4	4.2
P ₃₃ (1232) in 4π	79%	71%
P ₃₃ (1232) in acceptance	81%	68%
P ₁₁ (1440) in 4π	11%	18%
P ₁₁ (1440) in acceptance	12%	15%

- n p π^+ **dominant** contribution of **\Delta resonance**
- $p p \pi^0$ also **dominant** contribution of Δ resonance (but lower and higher Roper contribution)

Comparison (4 π) PWA / OPE (n p π^+)

Legend:

(red curve) OPE modified (Λ_{π} = 0.75) (blue curve) PWA – resonance P₃₃(1232)

(dashed black) PWA total

```
(dashed blue) – resonance P<sub>11</sub>(1440)
```

PWA Δ (1232) in 4π 79% of total (blue curve)

PWA absolute normalization

see the dashed black curve

Comparison (4 π) PWA - OPE (n p π^+)

^{2.5} ^{1.5} ^{1.5}

Legend:

(red line) OPE modified (Λ_{π} = 0.75) (blue line) PWA – resonance P₃₃(1232) (dashed black) PWA total

(dashed blue) – resonance P₁₁(1440)

PWA N(1440) in 4π 11% of total (dashed blue)

PWA absolute normalization

see the dashed black curve

Comparison (4 π) PWA - OPE (p p π^0)

SUMMARY remarks

- combined analysis of exclusive channels (1π) π⁺pn: 3 data samples, π⁰pp: 11 data samples
- smooth partial wave energy dependence
- higher energy → higher pw come into play → forward/backward angular distribution enhancement
- dominant P₃₃(1232) contribution but increasing P₁₁(1440)
- P₁₁(1440) destructive interferences with non resonant P-wave
- precise resonance contribution important for dilepton analysis (π^0 Dalitz decay, Δ Dalitz decay)
- ambiguities (errors) can be reduced with higher energy data included (pp @ 3.5 GeV)
 G. Agakishiev et al.

Eur. Phys. J. A**50** (2014) 82

CREDITS

The HADES Collaboration

Special thanks to Andrey V. Sarantsev (for PWA)