

Exotic meson studies at LHCb

M. Kreps on behalf of the LHCb Collaboration

Physics Department

www2.warwick.ac.uk

Introduction

Volume 8, number 3 PHYSICS LETTERS

1 February 1964

A SCHEMATIC MODEL OF BARYONS AND MESONS * M.GELL-MANN California Institute of Technology, Pasadena, California

Received 4 January 1964

We then refer to the members $u^{\frac{2}{3}}$, $d^{-\frac{1}{3}}$, and $s^{-\frac{1}{3}}$ of the triplet as ''quarks'' 6) q and the members of the anti-triplet as anti-quarks \bar{q} . Baryons can now be constructed from quarks by using the combinations (qqq), (qqqq \bar{q}), etc., while mesons are made out of (q \bar{q}), (qq $\bar{q}\bar{q}$), etc. It is assuming that the lowest

- We think of hadrons as $q\overline{q}$ or qqq
- But there is nothing preventing other combinations
- Can we find
 - molecule
 - tetraquark
 - your other favourite choice

$\mathbf{X}(\mathbf{3872})$ enigma

THE UNIVERSITY OF WARWICK

 $M(\pi^{+}\pi^{-}I^{+}I^{-}) - M(I^{+}I^{-})$ (GeV)

- Huge number of results available
- Quantum numbers $J^{PC} = 1^{++}$
- Nature of X(3872) still unclear
- Today radiative decays

 $\mathbf{X}(\mathbf{3872}) \rightarrow \psi \gamma$

 $X(3872) \rightarrow \psi(2S)\gamma$

THE UNIVERSITY OF WARWICK

We measure

$$R = \frac{\mathcal{B}(X(3872) \to \psi(2S)\gamma)}{\mathcal{B}(X(3872) \to J/\psi\gamma)} = 2.46 \pm 0.64 \pm 0.29$$

Compare to theory for different interpretations

- Clear inconsistency with pure molecule
- Pure $c\overline{c}$ or mixture of molecule with $c\overline{c}$ possible

 $Z(4430)^+$ history

THE UNIVERSITY OF

PRD 79, 112001

- Seen by Belle, but not Babar
- Data consistent
- Charged state
- $\rightarrow\,{\rm Cannot}\,\,{\rm be}\,\,c\overline{c}$
 - Latest Belle result uses 4D analysis
 - Is it real and if yes, is it resonance?

$\mathbf{Z}(\mathbf{4430})^+$ history

THE UNIVERSITY OF

- Seen by Belle, but not Babar
- Data consistent
- Charged state
- $\rightarrow\,{\rm Cannot}$ be $c\overline{c}$
 - Latest Belle result uses 4D analysis
 - Is it real and if yes, is it resonance?

Data sample

- Use $B^0 \to \psi(2S) K \pi$ decays
- Large statistics (> 25k), about 10 times what B-factories had
- \blacksquare Very clean signal, background $4\,\%$ of events (about 8% at B-factories)
- Perform both model-independent analysis (BABAR) and amplitude fit (Belle)

THE UNIVERSITY OF

WARW

Model independent method

arXiv:1404.1903 $m_{\psi^{i}\pi^{-}}^{2}$ [GeV² 10^{2} 22 21 20 10 19 18 17 16 LHCb 15 0.5 1.5 $\stackrel{\scriptscriptstyle {\scriptscriptstyle L}}{m}{}^2_{K^{^+}\!\pi^{^-}}\,[GeV^2]$ 2

- Test whether contributions in $K\pi$ system can describe data
- Do not impose specific model for resonances
- \rightarrow Model independent test

8

• Look to $\cos(\theta_K)$ in bins of $K\pi$ mass

THE UNIVERSITY OF

 Allows to find out which spins contribute

$$\sum_{i} \frac{1}{\epsilon_i} P_l(\cos \theta_{Ki})$$

Take only moments corresponding to $J \leq 2$

Construct Dalitz plot and project on $\psi(2S)\pi$ axis

Model independent result

Clearly, pure kaon resonances cannot explain M(\u03c6(2S)\u03c0) spectrum
Understanding details difficult

- Resonances in $\psi(2S)\pi$ will contribute to $K\pi$ and its moments
- Any fit to $\psi(2S)\pi$ on top of reflections neglects interference between two axes

Amplitude analysis

- Mass described by relativistic Breit-Wigner
- Angular part using helicity formalism
- Imposes model how invariant mass distribution should look like

Only $K^{\ast}\xspace$ resonances

Candidates / (0.2 GeV ²) 0 0 0 0 0 0 0 0 0 0 0 0 0	LH	Cb 18	20 22 m ² ψ'π ⁻ [Ge	$\begin{array}{c} 002 \text{ GeV}^{2} \\ 001 \text{ GeV}^{2} \\ 01 \text{ GeV}^{2}$	LHCb -1.0 < $m_{K^+\pi^-}^2$ < 1.8 G	$\vec{b}eV^2 + \vec{b}eV^2 $	$m_{\psi'\pi^-}^2 [\text{GeV}^2]$	arXiv:1404.1903
Resonar	nce J^P	Likely n ^{2S+1} LJ	Mass (MeV)	Width (MeV)	$\mathcal{B}(K^{*0} \rightarrow K^+\pi^-)$	•	- data	
K*(800 K*(892	$(\kappa) 0^{\circ} (0^{\circ})^{0} = 1^{-1}$		682 ± 29 895 94 + 0 26	547 ± 24 48 7 + 0 7	$\sim 100\%$ $\sim 100\%$		total fit	
$K_0^*(143)$	$(30)^0 0^+$	$1^{3}P_{0}$	1425 ± 50	270 ± 80	$(93 \pm 10)\%$			
$K_1^{*}(141)$	10^{0} 1 ⁻	$2^{3}S_{1}$	1414 ± 15	232 ± 21	$(6.6 \pm 1.3)\%$		- K (092)	
$K_{2}^{*}(143)$	$30)^0 2^+$	1 ³ P ₂	1432.4 ± 1.3	109 ± 5	(49.9 \pm 1.2)%		🔶 K [*] S-wav	e
$B^0 \rightarrow \psi(2S)K^+\pi^-$ phase space limit 1593							* (1 100)	•
$K_1^*(168)$	$30)^0$ 1 ⁻	$1^{3}D_{1}$	1717 ± 27	322 ± 110	$(38.7 \pm 2.5)\%$		— К ₂ (1430)	
$K_3^*(178)$	30) ^o 3 [−]	$1^{3}D_{3}$	1776 ± 7	159 ± 21	$(18.8 \pm 1.0)\%$		🗕 backarou	und
$K_0^{+}(195)$	50) ⁵ 0 ⁺	$2^{\circ}P_{0}$	1945 ± 22	201 ± 78	$(52 \pm 14)\%$		*	
$\frac{\kappa_4^{\pi}}{D^0}$	45)° 4⊤	1° F ₄	2045 ± 9	198 ± 30	$(9.9 \pm 1.2)\%$		— К (1680)	
$\frac{B_{s} \rightarrow J}{B_{s} \rightarrow J}$	$\psi \mathbf{K} \cdot \pi$	phase space limit	2183	170 00			κ [*] (1410)	
K_{5} (238	SU) 5	1° G5	2382 ± 9	178 ± 32	$(6.1 \pm 1.2)\%$		(01+10)	

Only K^{\ast} resonances

 $\textbf{Adding} \ \mathbf{Z}^+$

Dalitz plot slices

Results

- Data are described well with 1⁺ Z(4430)⁺ contribution (χ^2 p-value 12%)
- Parameters extracted consistent with Belle
- Large interference effects seen
- Adding additional K^* resonances to model does not alter conclusion

- As we use full kinematic information, we have sensitivity to quantum numbers
- Test spins 0,1 and 2 with both parities
- Based on likelihood ratio
- Quote exclusion based on asymptotic formula (lower bound)
- Verified by simulation
- All rejections relative to 1^+
- $Z(4430)^+$ is 1^+ state without any doubts

Is $Z(4430)^+$ resonance?

THE UNIVERSITY OF

- Data are consistent with BW for $Z(4430)^+$
- But will they follow if BW is not imposed?
- Change BW in $Z(4430)^+$ amplitude to 6 complex numbers in 6 $M(\psi(2S)\pi)$ bins
- Plot resulting amplitude on Argand plot

Is $Z(4430)^+$ resonance?

THE UNIVERSITY OF

- Data are consistent with BW for $Z(4430)^+$
- But will they follow if BW is not imposed?
- Change BW in $Z(4430)^+$ amplitude to 6 complex numbers in 6 $M(\psi(2S)\pi)$ bins
- Plot resulting amplitude on Argand plot
- ⇒ It shows resonance behaviour without imposing it

Second Z^+ state THE UNIVERSITY OF WAI Candidates / (0.2 GeV²) $4239 \pm 18^{+45}_{-10} \text{ MeV}$ arXiv:1404.1903 $M(Z_0)$ LHCb $200 \left[-1.0 < m_{K^+\pi^-}^2 < 1.8 \text{ GeV}^2 \right]$ $220 \pm 47^{+108}_{-74} \text{ MeV}$ $\Gamma(Z_0)$ $1.6 \pm 0.5^{+1.9}_{-0.4}$ % f_{Z_0} $2.4 \pm 1.1^{+1.7}_{-0.2}$ % $f_{Z_0}^I$ Significance 6σ $m_{\psi,\pi^{-}}^{22}$ [GeV²] 18 20 16

- \bullet Data can be described even better by adding second $\psi(2S)\pi$ state
- On its own, it is siginificant
- Prefered 0^- (but 660 ± 150 MeV wide 1^+ option cannot be ruled out)
- Argand diagram is inconclusive
- No evidence in model-independent approach
- Will need more data to clarify situation

Conclusions

THE UNIVERSITY OF

- Decay $X(3872) \rightarrow \psi(2S)\gamma$ seen with significance $4.4\,\sigma$
- **a** Radiative X(3872) decays inconsistent with pure molecule
- $Z(4430)^+$ from Belle confirmed and $J^P = 1^+$ without any doubts
- From Argand plot, resonance character of $Z(4430)^+$ is demonstrated
- Charge and quantum numbers rule out conventional explanations
- $Z(4430)^+$ most likely tetraquark state
- Really interesting era is ahead of us

Backup

LHCb detector

