Meson production in the ISR reactions at BaBar

E.Solodov for the BaBar collaboration

Budker INP SB RAS, Novosibirsk, Russia

MESON2012, Krakow, Poland

Motivation of ISR study at BaBar

- Low energy e⁺e⁻ cross section dominates in hadronic contribution to a_µ = (g-2)/2 of muon (R measurement).
- Direct e⁺e⁻ data in 1.4 2.5 GeV region have (had!) very low statistics
- New inputs for hadron spectroscopy at low masses and charmonium region
- ISR at BaBar gives competitive (even dominates!) statistics
- BaBar has excellent capability for ISR study
- All major hadronic processes are studied (green == published)
 e⁺e⁻ → 2μγ, 2πγ, 2Κγ, 2pγ, 2Λγ, 2Σγ, ΛΣγ, Λ_cΛ_cγ
 e⁺e⁻ → 3πγ

$$e^+e^- \rightarrow 2(\pi^+\pi^-)\gamma, K^+K^-\pi^+\pi^-\gamma, K^+K^-\pi^0\pi^0\gamma, 2(K^+K^-)\gamma$$

$$e^+e^- \rightarrow 2(\pi^+\pi^-)\pi^0\pi^0\gamma, \ 3(\pi^+\pi^-)\gamma, \ K^+K^-2(\pi^+\pi^-)\gamma$$

- $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\gamma$ (preliminary), $\pi^+\pi^-\pi^0\pi^0\pi^0\gamma$, $\pi^+\pi^-\pi^0\eta\gamma$...
- $\mathbf{e^+e^-} \rightarrow K^+K^-\pi^0\gamma, \, K^+K^-\eta\gamma \ (KK^*\gamma, \, \phi\pi^0\gamma, \, \phi\eta\gamma \, ...)$
- $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-\pi^0/\eta\gamma, K^+K^-\pi^+\pi^-\pi^0/\eta\gamma$
- $e^+e^- \rightarrow KK_S\pi\pi^0/\eta\gamma \ , \ K_SK_L \ , K_SK_L\pi^+\pi^-, \ K_SK_S\pi^+\pi^-(K^+K^-)$

Some reactions are being updated to the full BaBar data with ~500 fb⁻¹

BaBar measurements summary

To calculate R in the energy range 1-2 GeV the processes $\pi^{+}\pi^{-}3\pi^{0}$, $\pi^{+}\pi^{-}4\pi^{0}$, $K_{S}K_{L}$, $K_{S}K_{L}\pi\pi$, $K_{S}K^{+}\pi^{-}\pi^{0}$ are under study: $\pi^{+}\pi^{-}2\pi^{0}$ is still preliminary. Work is in progress.

BaBar measured: $e^+e^- \rightarrow \overline{p}p$

Published Phys. Rev. D 88, 072009 (2013)

Non-tagged (Small Angle) ISR study allows to extend proton FF study to 6.5 GeV

increase.

Fit is in agreement with QCD prediction

BES ¢

NU

E835

BABAR (LA ISR)

BABAR (SA ISR)

AC 1993

CLEO

BaBar updated: $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-$

Published PRD 85 112009 (2012)

Based on 454 fb⁻¹ dataset (statistical uncertainties are shown) Our result is more precise than the current world average (<3% systematic error)

BaBar measured: $e^+e^- \rightarrow K^+K^-$

Contribution of missing channels to a_{μ}

SM-to-experiment comparison [in units 10^{-10}]

QED			116 58	84 71.81	\pm 0.02
Leading hadron	ic vacuum po	olarization (V	/P)	690.30	± 5.26
Sub-leading had	lronic vacuur	n polarizatio	n	-10.03	\pm 0.11
Hadronic light-b	oy-light			11.60	\pm 3.90
Weak (incl. 2-lo	oops)			15.32	\pm 0.18
Theory			1165	9179.00	\pm 6.46
Experiment			1165	9208.00	\pm 6.30
Exp-theory				29.00	\pm 9.03
a _µ (√s <1.8 GeV)	K+K-	2(π⁺ π⁻)	3(π⁺ π⁻)	2(π+	π ⁻ π ⁰)
without BABAR with BABAR	21.63 ± 0.70 22.93 ± 0.30	14.20 ± 0.90 13.35 ± 0.45	0.10 ± 0.10 0.11 ± 0.02	1.42 : 0.89	± 0.30 ± 0.09

Missing channels contribute 5.98 \pm 0.42 or 12.46 \pm 0.76 if \sqrt{s} <2.0 GeV

Contribution from KK π , KK 2π , $2\pi 3\pi^0$, $2\pi 4\pi^0$, 7π , 8π ... added using iso-spin relations

 $e^+e^- \rightarrow K_S K_I, K_S K_I \pi^+\pi^-, K_S K_S \pi^+\pi^- (K^+K^-)$

We present (with more details) new results on the study of the processes:

 $\begin{array}{l} e^+e^- \rightarrow \ K_{\rm S}K_{\rm L} \\ e^+e^- \rightarrow \ K_{\rm S}K_{\rm L}\pi^+\pi^- \\ e^+e^- \rightarrow \ K_{\rm S}K_{\rm S}\pi^+\pi^- \\ e^+e^- \rightarrow \ K_{\rm S}K_{\rm S}K^+K^- \end{array}$

Based on 469 fb⁻¹ integrated luminosity.

Recently (May 6) published Phys. Rev. D 89, 092002 (2014)

K_S selection (in $\pi^+\pi^-$ decay)

Loop over all K_S candidates with ISR photon with E γ >3 GeV, and select events with:

- Good quality K_s coming from IP
- No electron ID for either charged track

Dominated by $\phi\gamma \rightarrow K_S K_L \gamma$ process if require NO additional tracks from IP

$e^+e^- \rightarrow \phi \gamma \rightarrow K_S K_L \gamma$ (without K_L detection)

Using energy-momentum conservation and detected K_S we determine K_L mass and direction:

$$m^{2}(K_{L}) = \left(E^{+} + E^{-} - E^{c}_{\gamma} - E_{K_{s}}\right)^{2} - \left(p^{+} + p^{-} - p^{c}_{\gamma} - p_{K_{s}}\right)^{2}$$

Using this events we can study K_L detection.

K_L mass using ϕ mass constraint

How K_L cluster in Calorimeter looks like?

K_L EMC detection probability

Taking coordinates of EMC cluster we perform 3C kinematic fit (K_L momentum is float) and for events, selected by χ^2 <15 we calculate m(K_L)

After 814 background events subtraction we obtain 27925 ± 176 events for data and 164179 ± 405 events for MC. By comparing with numbers without K_L detection:

Data/MC = $0.9394 \pm 0.0052 (0.6\%)$ (includes also χ^2 cut efficiency) Used in all other analyses.

ϕ signal in e⁺e⁻ $\rightarrow K_S K_L$ reaction

Use events with χ^2 <15 and reconstructed parameters of K_S and K_L to calculate m(K_SK_L)

Fit to ϕ parameters

$e^+e^- \rightarrow K_S K_L cross section for m(K_S K_L) > 1.06 GeV$

Is it $\phi(1680)$? Fit with single BW

$$\begin{split} \sigma(s) &= \frac{P(s)}{s^{5/2}} \left| \frac{A_{\phi(1020)}}{\sqrt{P(m_{\phi})}} + \frac{A_{X}}{\sqrt{P(m_{X})}} \cdot e^{i\varphi} + A_{bkg} \right|^{2} \\ P(s) &= \left(\left(s/2 \right)^{2} - m_{K^{0}}^{2} \right)^{3/2} \\ A(s) &= \frac{\Gamma(m^{2}) \cdot m^{3} \sqrt{\sigma_{0} \cdot m}}{s - m^{2} + i \sqrt{s} \Gamma(s)} \\ \Gamma(s) &= \Gamma \cdot \sum_{f} B_{f} \cdot \frac{P_{f}(s)}{P_{f}(m_{f}^{2})} \\ A_{\phi(1020)} &= A_{\phi} + A_{\omega} - A_{\rho}, \quad f = K^{*} K, \phi \eta, \phi \pi \pi, K_{S} K_{L} \\ \sigma_{0} &= 0.46 \pm 0.10 \pm 0.04 \text{ nb} \\ m &= 1674 \pm 12 \pm 6 \text{ MeV/c}^{2} \\ \Gamma_{0} &= 165 \pm 38 \pm 70 \text{ MeV} \\ \varphi &= 3.01 \pm 0.38 - \text{fixed to } \pi \\ \sigma_{bkg} &= 0.36 \pm 0.18 \text{ nb} \\ \Gamma_{ee} \cdot B_{KSKL} &= 14.3 \pm 2.4 \pm 1.5 \pm 6.0 \text{ eV} \end{split}$$

Simultaneous $K_S K_L$ and $K^+ K^-$ (and $\pi\pi$) fit is needed to separate I=0,1 states and ω (1420, 1650), ρ (1450,1700) contribution

What we know about $\phi(1680)$

Energy dependence significantly increase width.

BaBar has measured $\phi(1680)$ parameters in major decay modes:

φ(1680) → K_SKπ, KKπ⁰ (K*K), φη, φππ, K_SK_L - still no info in PDG

$K_S K_L \pi^+ \pi^- \gamma$ event selection

- Select (best) K_S
- Select ISR photon with E > 3 GeV
- Two additional tracks from IP (no kaon ID)
- Cycle over remaining clusters with $E > 0.2 \text{ GeV} K_L$ candidates
- Best χ^2 for 3C fit (K_L momentum float)
- $\chi^2 > 100$ and Im_{yyL}-0.135I>0.03 for the K_SK $\pi\pi^0\gamma$ hypothesis

1580 events after background subtraction

No other measurements exist

Some mass distributions Ev./0.04 GeV/c 250 500 500 500 $m(K_L\pi^-, K_L\pi^+)$ (Ge) Ev./0.04 GeV/c 600 (b)(a) 400 200 1.5 2 $m(K_{s}\pi^{+-}) (GeV/c^{2})$ $m(K_{I}\pi^{+}) (GeV/c^{2})$ Very clear K*(892)[±] signals with 1322 ± 70 for $K^{*\pm}(K_S\pi)$ and 1362 ± 78 for $K^{*\pm}(K_I\pi)$ 0.5 Plus 183 ± 48 events for $K_2(1430)^{\pm}$ 300 Ev./0.04 GeV/c^2 How large is K*(892)⁺K*(892)⁻ ? Fit slice in m(K₁ π^{+-}) for number of K_S π^{-+} 200 Very clear signal with 913 ± 37 events (70%) of K*(892)⁺K*(892)⁻ correlated production! And 90 ± 16 for $K^{*}(892)^{+}K_{2}^{*}(1430)^{+}$. 100

We have negligible contribution from K*(892)⁰K*(892)⁰ from our K⁺K⁻ $\pi^+\pi^-$ analysis! And relatively large for K*(892)⁺K*(892)⁻ from our K⁺K⁻ $\pi^0\pi^0$ analysis.

$\phi(1020)\pi^+\pi^-$ contribution

$K_S K_S (2\pi, 2K)$ in ISR study

About 3000 ISR events with 2 good K_s

$K_S K_S \pi^+ \pi^- (K^+ K^-) \gamma$ event selection

- Select 2 (best) K_S
- Select ISR photon with E > 3 GeV
- Two additional tracks from IP with pion or kaon ID
- Best χ^2 for 4C fit assuming K_SK_Sπ⁺π⁻(K⁺K⁻)γ hypotheses

Six tracks with ISR photon - very low background!

$K_S K_S \pi^+ \pi^- (K^+ K^-)$ mass distribution

(shaded: $\phi(1020)K_sK_s$)

Detection efficiency from MC is about 4%

$e^+e^- \rightarrow K_S K_S \pi^+ \pi^- (K^+ K^-)$ cross sections

No other measurements exist

Some mass distributions (1)

Some mass distributions (2)

If we exclude $K^*(892)^+K^*(892)^-$ by $|m(K_S\pi) - m(K^*)| < 0.15 \text{ GeV/c}^2$ in both combinations:

Plus some number of $K^*(892)K_S\pi$ events

Some mass distributions (3)

For the K_SK_SK⁺K⁻ channel: $m(K^+K^-)$ (GeV/c²) Events/0.025 GeV/c² 0 Events/0.0167 GeV/c² φ 1.5 10 0 $m(K_{S}K_{S}) (GeV/c^{2})$ 1.5 1.5 1 $m(K_S K_S) (GeV/c^2)$ $m(K^+K^-) (GeV/c^2)$ Events/0.0167 GeV/c² 10 N (K⁺K⁻ f_2) = 29 ± 7 events 7.5 $m(K_SK_S) = 1.526 \pm 0.007 \text{ GeV/c}^2$ $\Gamma = 0.037 \pm 0.013 \text{ GeV}$ PDG: 2.5 $m(f_2') = 1.525 \pm 0.005 \text{ GeV/c}^2$ $\Gamma = 0.073 \pm 0.006 \text{ GeV}$ 0 - 1.2 1.8 1.4 1.6 $m(K_{S}K_{S}) (GeV/c^{2})$

$K_S K_L \pi^+ \pi^-$, $K_S K_S \pi^+ \pi^-$ signal decomposition

The cross section comparison – BaBar data

we'd expect: $N(K_SK_S\pi^+\pi^-) =$ $1/2 N(K_SK_L \pi^+\pi^-)$

Iso-spin relations for $K^+K^-\pi^+\pi^+ vs. K^+K^-\pi^0\pi^0 vs. K_S K_L \pi^+\pi^- vs. K_S K_S \pi^+\pi^-$

Only K*(892)⁺K*(892)⁻ contribution can be compared using iso-spin relations, and we expect:

$$N(K^{+}K^{-}\pi^{0}\pi^{0}) = \frac{1}{4} N(K^{0}\underline{K}^{0}\pi^{+}\pi^{-})$$

$$N(K_{S}K_{L}\pi^{+}\pi^{-}) = \frac{1}{2} N(K^{0}\underline{K}^{0}\pi^{+}\pi^{-})$$

$$N(K_{S}K_{S}\pi^{+}\pi^{-}) = N(K_{L}K_{L}\pi^{+}\pi^{-}) = \frac{1}{4} N(K^{0}\underline{K}^{0}\pi^{+}\pi^{-})$$

We detected correlated pairs:

 $N(K^+K^-\pi^0\pi^0) = 1750 \pm 60$ eff= 8%

 $N(K_S K_L \pi^+ \pi^-) = 2098 \pm 209$ eff= 5%

 $N(K_S K_S \pi^+ \pi^-) = 742 \pm 104$ eff= 4.5%

Should be equal numbers after efficiency normalized to 5% and iso-spin correction:

2188 \pm 76 ~ 2098 \pm 209 ~ 1648 \pm 232 Some tension (~2 sigma) 30% 63% 50% of all events – how the rest are related? to g-2 relation?

J/ψ region

J/ψ intermediate states

J/ψ decay results (Preliminary)

Measured Quantity	Measured value (eV)	This work Br (10 ⁻³) $\Gamma_{\rm ee}$ = 5.55 ± 0.14 keV	PDG 2012
$\Gamma_{ee} \bullet Br(J/\psi \rightarrow K_S K_L)$	1.13±0.34±0.11	$0.20 \pm 0.06 \pm 0.02$	0.146 ± 0.026 <mark>S=2.7</mark>
Γ _{ee} •Br(J/ψ -> K _S K _L π⁺π⁻)	20.9±2.7±2.1	$3.7 \pm 0.6 \pm 0.4$	no entry
Γ _{ee} • Br(J/ψ -> K _S K _S π⁺π⁻)	9.3±0.9±0.5	$1.68 \pm 0.16 \pm 0.08$	no entry
Γ _{ee} • Br(J/ψ -> K _S K _S K⁺K⁻)	2.3±0.4±0.1	$0.42 \pm 0.08 \pm 0.02$	no entry
$\Gamma_{ee} \bullet Br(J/\psi \rightarrow K_S K_S \phi) \bullet Br(\phi \rightarrow K^+ K^-)$	1.6±0.4±0.1	0.58 ± 0.14 ± 0.03	no entry
$ \Gamma_{ee} \bullet Br(J/\psi \rightarrow f_2'\phi) \bullet Br(\phi \rightarrow K^+K^-) $ •B(f_2' \rightarrow K_SK_S)	0.88±0.34±0.04	0.45±0.17 ± 0.02	0.8 ± 0.4 <mark>S=2.7</mark>

 $\begin{array}{l} \mathsf{B}(\mathsf{J}/\psi \ \ \text{->} \ \varphi \ f_2^{\ \ \text{\prime}}) = (0.48 \pm 0.18) \bullet 10^{-3} \ (\mathsf{MarkII}) \\ \mathsf{B}(\mathsf{J}/\psi \ \ \text{->} \ \varphi \ f_2^{\ \ \text{\prime}}) = (1.23 \pm 0.026 \pm 0.20) \bullet 10^{-3} \ (\mathsf{DM2}) \end{array}$

Summary

- BaBar continues analysis of collected data and ISR studies in particular
- Recently published results for $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-$, K^+K^- reactions have the best to date accuracy.
- New analysis of $K_S K_L$, $K_S K_L \pi^+ \pi^-$, $K_S K_S \pi^+ \pi^-$, $K_S K_S K^+ K^-$ has been performed
- The $e^+e^- \rightarrow K_S K_L \pi^+\pi^-$, $K_S K_S \pi^+\pi^-$, $K_S K_S K^+ K^-$ cross sections were never studied before
- Using these cross sections we can reduce uncertainty in the muon g-2 calculation.
- J/ ψ decays to $K_{S}K_{L}\pi^{+}\pi^{-}$, $K_{S}K_{S}\pi^{+}\pi^{-}$, $K_{S}K_{S}K^{+}K^{-}$ have been measured for the first time.
- Results for the $\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}\pi^0\pi^0$ and $K_SK\,\pi\,\pi^0$ should come out soon

Decomposition of $K^+K^-\pi^+\pi^-$ mass spectrum

$K_S K_L \pi^+ \pi^- \gamma$ selection – K_L is cluster in EMC

Huge background from events with π^0 . Cut E_{γ} max<0.5 GeV does not help much. Known background does not explain what we see – use observed side band for the background estimate.

 $K_S K_S \pi^+ \pi^- (K^+ K^-) \gamma$ selection

charmonium branching ratios

PRELIMINARY

 \rightarrow agrees with recent CLEO result (PRD 78, 011102 (2008))

J/ ψ region for $K^+K^-\pi^+\pi^-$, $K^+K^-\pi^0\pi^0$, $K^+K^-K^+K^-$

ري ر							
GeV,	(a) -	TABLE XIII: Summary of the J/ψ and $\psi(2S)$ branching fraction values obtained in this analysis.					
L900 [.] 000	-	Measured Quantity	Measured Value (eV)	J/ψ or $\psi(2S)$ Branch This work	hing Fraction (10 ⁻³ PDG2010		
nts/		$\frac{\Gamma_{ee}^{J/\psi} \cdot \mathcal{B}_{I/\psi}}{\Gamma_{ee}^{J/\psi} \cdot \mathcal{B}_{I/\psi} \cdot \mathcal{B}_{I/\psi} \cdot \mathcal{B}_{I/\psi}}$	37.94±0.81±1.10	$6.84 \pm 0.15 \pm 0.27$	6.6 ±0.5		
Eve		$\Gamma_{ee}^{J/\psi} \cdot \mathcal{B}_{I/\psi} \cdot \mathcal{K}^{+K-\pi^{+}\pi^{-}}$	$11.75 \pm 0.81 \pm 0.90$	$2.12 \pm 0.15 \pm 0.18$	2.45 ± 0.31		
500	3.6 3.8	$\Gamma_{ee}^{J/\psi} \cdot \mathcal{B}_{J/\psi \to K+K-K+K-}$	$4.00 {\pm} 0.33 {\pm} 0.29$	$0.72{\pm}0.06{\pm}0.05$	0.76 ± 0.09		
		$\Gamma_{ee}^{J/\psi} \cdot \mathcal{B}_{J/\psi \to K^{*0} \overline{K}_2^{*0}} \cdot \mathcal{B}_{K^{*0} \to K^+ \pi^-} \cdot \mathcal{B}_{\overline{K}_2^{*0} \to K^- \pi^+}$	$8.59 {\pm} 0.36 {\pm} 0.27$	$6.98 {\pm} 0.29 {\pm} 0.21$	6.0 ± 0.6		
	And the second	$\Gamma_{ee}^{J/\psi} \cdot \mathcal{B}_{J/\psi \to K^{*0} \overline{K}^{*0}} \cdot \mathcal{B}_{K^{*0} \to K^+ \pi^-} \cdot \mathcal{B}_{\overline{K}^{*0} \to K^- \pi^+}$	$0.57{\pm}0.15{\pm}0.03$	$0.23 {\pm} 0.06 {\pm} 0.01$	0.23 ± 0.07		
0		$\Gamma_{ee}^{J/\psi} \cdot \mathcal{B}_{J/\psi \to \phi\pi^+\pi^-} \cdot \mathcal{B}_{\phi \to K^+K^-}$	$2.19{\pm}0.23{\pm}0.07$	$0.81 {\pm} 0.08 {\pm} 0.03$	0.94 ± 0.09		
	$m(K^{+}K^{-}\pi^{+}\pi^{-}) (GeV/c^{2})$	$\Gamma^{J/\psi}_{ee} \cdot \mathcal{B}_{J/\psi ightarrow \phi \pi^0 \pi^0} \cdot \mathcal{B}_{\phi ightarrow K^+ K^-}$	$1.36 {\pm} 0.27 {\pm} 0.07$	$0.50 {\pm} 0.10 {\pm} 0.03$	0.56 ± 0.16		
د»		$\Gamma^{J/\psi}_{ee} \cdot \mathcal{B}_{J/\psi ightarrow \phi K^+ K^-} \cdot \mathcal{B}_{\phi ightarrow K^+ K^-}$	$2.26 \pm 0.26 \pm 0.16$	$1.66 {\pm} 0.19 {\pm} 0.12$	$1.83 \ \pm 0.24 \ ^{a}$		
No 150		$\Gamma_{ee}^{J/\psi} \cdot \mathcal{B}_{J/\psi \to \phi f_0} \cdot \mathcal{B}_{\phi \to K^+ K^-} \cdot \mathcal{B}_{f_0 \to \pi^+ \pi^-}$	$0.69 {\pm} 0.11 {\pm} 0.05$	$0.25 {\pm} 0.04 {\pm} 0.02$	$0.18\ \pm 0.04\ ^{b}$		
1 G	(b)	$\Gamma_{ee}^{J/\psi} \cdot \mathcal{B}_{J/\psi \to \phi f_0} \cdot \mathcal{B}_{\phi \to K^+ K^-} \cdot \mathcal{B}_{f_0 \to \pi^0 \pi^0}$	$0.48 {\pm} 0.12 {\pm} 0.05$	$0.18 {\pm} 0.04 {\pm} 0.02$	$0.17~\pm0.07~^c$		
tts/0.0		$\Gamma^{J/\psi}_{ee} \cdot \mathcal{B}_{J/\psi \to \phi f_x} \cdot \mathcal{B}_{\phi \to K^+ K^-} \cdot \mathcal{B}_{f_x \to \pi^+ \pi^-}$	$0.74{\pm}0.12{\pm}0.05$	$0.27 {\pm} 0.04 {\pm} 0.02$	$0.72 \ \pm 0.13^{\ d}$		
Even Even		$\Gamma_{ee}^{\psi(2S)} \cdot \mathcal{B}_{\psi(2S) \to K^+ K^- \pi^+ \pi^-}$	$1.92{\pm}0.30{\pm}0.06$	$0.81{\pm}0.13{\pm}0.03$	0.75 ± 0.09		
		$\Gamma^{\psi(2S)}_{ee} \cdot \mathcal{B}_{\psi(2S) \to K^+ K^- \pi^0 \pi^0}$	$0.60{\pm}0.31{\pm}0.03$	$0.25 \pm 0.13 \pm 0.02$	no entry		
	3.5 3.75	$\Gamma_{ee}^{\psi(2S)} \cdot \mathcal{B}_{\psi(2S) \to K^+ K^- K^+ K^-}$	$0.22{\pm}0.10{\pm}0.02$	$0.09 {\pm} 0.04 {\pm} 0.01$	$0.060 {\pm} 0.014$		
50		$\Gamma_{ee}^{\psi(2S)} \cdot \mathcal{B}_{\psi(2S) \to \phi\pi^+\pi^-} \cdot \mathcal{B}_{\phi \to K^+K^-}$	$0.27 {\pm} 0.09 {\pm} 0.02$	$0.23 {\pm} 0.08 {\pm} 0.01$	$0.117 {\pm} 0.029$		
		$\Gamma_{ee}^{\psi(2S)} \cdot \mathcal{B}_{\psi(2S) \to \phi f_0} \cdot \mathcal{B}_{\phi \to K^+ K^-} \cdot \mathcal{B}_{f_0 \to \pi^+ \pi^-}$	$0.17 {\pm} 0.06 {\pm} 0.02$	$0.15 {\pm} 0.05 {\pm} 0.01$	0.068 ± 0.024 ^e		
0	$\frac{1}{3} \qquad 3.25 \qquad 3.5 \qquad 3.75$	${}^a\mathcal{B}_{J/\psi\to\phi\overline{K}K}$ obtained as $2\cdot\mathcal{B}_{J/\psi\to\phi K^+K^-}.$					
	$m(K^{+}K^{-}\pi^{0}\pi^{0}) (GeV/c^{2})$	^b Not corrected for the $f_0 \to \pi^0 \pi^0$ mode.					
C.2		^d We compare our $\phi f_r, f_r \to \pi^+\pi^-$ mode with $\phi f_2(127)$	70).				
2150		${}^e\mathcal{B}_{\psi(2S) ightarrow\phi f_0}, f_0 ightarrow\pi^+\pi^-$,				
57 G	(c)						
000.0	[]						
ents/C							
Εv	T[*]¹ J J J J J J J J J J J J J J J J J J J	Small systematic errors allow BaBar to improve BF for major decay modes					
	36 38						
50		major decay modes.					
	1 1						
Δ	Reachester Ring and a charge barrent barrenter						

φ(1020) mass

In MC we know all inputs and can create a "test" $m(K_L)$ distribution and compare with data. And the only free parameter is $\phi(1020)$ mass. By varying f mass we calculate χ^2 value by fitting data-MC difference with "ARGUS" function. We obtain:

 m_{ϕ} = 1019.483 ± 0.040 ± 0.036 MeV/C² : 24 keV – K⁰ mass uncertainty, 20 keV – K_s momentum, 18 keV – DCH-EMC mis-alignment.

How other distributions look like

Clean events with small systematic errors - 1% from KS, 0.5% ISR photon, 0.5% background, 0.6% from overlap effect.

PEP-II e+e- collider, Babar detector

