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One	
  may	
  address	
  this	
  problem	
  through	
  the	
  modern	
  perspec3ve	
  of	
  
	
  Chiral	
  Perturba3on	
  Theory	
  (χPT):	
  effec3ve	
  theory	
  with	
  hadron	
  
degrees	
  of	
  freedom	
  which	
  respects	
  the	
  symmetries	
  of	
  QCD,	
  in	
  
par3cular	
  the	
  (spontaneously	
  broken)	
  chiral	
  symmetry.	
  
In	
  ordinary	
  χPT:	
  
à 	
  convergence	
  restricted	
  to	
  low	
  energy	
  physics	
  
à 	
  not	
  adequate	
  close	
  to	
  bound-­‐states	
  (pole	
  in	
  the	
  T-­‐matrix)	
  

With	
  these	
  non-­‐perturba3ve	
  methods	
  several	
  known	
  resonances	
  have	
  
been	
  generated	
  as	
  poles	
  in	
  the	
  scaXering	
  amplitude	
  (quasi-­‐bound	
  states)	
  
and	
  many	
  hadron	
  reac3on	
  cross	
  sec3ons	
  have	
  been	
  nicely	
  reproduced.	
  
➔	
  e.g.	
  the Λ(1405)!	
  

Unitarized	
  non-­‐perturba3ve	
  schemes	
  (UχPT	
  )	
  allow	
  to	
  
extend	
  the	
  predic3ve	
  power	
  of	
  the	
  chiral	
  theories.	
  

Describing	
  the	
  dynamics	
  of	
  hadrons	
  at	
  low	
  energies	
  
from	
  the	
  QCD	
  Lagrangian	
  (quark	
  and	
  gluon	
  d.o.f.)	
  is	
  a	
  
highly	
  non-­‐perturba3ve	
  problem	
  



(a	
  nice	
  example	
  of	
  the	
  success	
  of	
  non-­‐perturba3ve	
  chiral	
  approaches)	
  

	
  Kbar-­‐N	
  scaXering	
  in	
  the	
  isospin	
  	
  I=0	
  channel	
  is	
  dominated	
  by	
  the	
  presence	
  of	
  the	
  
Λ(1405),	
  	
  located	
  only	
  27	
  MeV	
  below	
  the	
  Kbar-­‐N	
  threshold	



The Λ(1405)	
  

It	
  emerges	
  as	
  	
  a	
  quasi-­‐bound	
  state	
  (below	
  the	
  Kbar-­‐N	
  threshold	
  and	
  embedded	
  in	
  
the	
  πΣ con3nuum)	
  of	
  the	
  unitarized	
  pseudoscalar-­‐baryon	
  scaXering	
  amplitude	
  
employing	
  the	
  chiral	
  Lagrangian	
  to	
  obtain	
  the	
  kernel	
  poten3al	
  

Tij	
  	
  	
  	
  	
  	
  =	
  	
  	
  	
  	
  	
  	
  	
  	
  Vij	
  	
  	
  	
  	
  	
  +	
  	
  	
  	
  	
  Vil	
  	
  	
  	
  Gl	
  	
  	
  Tlj	
  

=	
   +	
  

Coupled	
  channels:	
  	
  



Vector	
  Mesons.	
  Why?	
  

§  Many	
  new	
  data	
  on	
  meson	
  produc3on	
  reac3ons	
  around	
  W	
  ~2	
  GeV	
  and	
  beyond.	
  	
  

§  Measurements	
  with	
  vector-­‐mesons	
  in	
  the	
  final	
  state	
  are	
  currently	
  available	
  
	
  γN	
  à	
  ρ(ππ)N,	
  ωN,	
  	
  φN,	
  K*Y,	
  …	
  	
  	
  	
  	
  	
  ELSA,	
  J-­‐LAB,	
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à Theore3cal	
  models	
  need	
  to	
  include	
  vector	
  meson	
  –	
  baryon	
  channels	
  .	
  
	
  
The	
  introduc3on	
  of	
  vector	
  mesons	
  as	
  building	
  blocks	
  brings	
  a	
  new	
  perspec3ve	
  	
  
into	
  the	
  nature	
  of	
  higher	
  mass	
  mesons	
  and	
  baryons.	
  



Hidden	
  gauge	
  formalism	
  for	
  vector	
  mesons,	
  pseudoscalars	
  and	
  photons	
  

The	
  hidden-­‐gauge	
  formalism	
  to	
  deal	
  with	
  vector	
  mesons	
  is	
  	
  a	
  useful	
  and	
  internally	
  
consistent	
  scheme	
  which:	
  
	
  
•  Deals	
  simultaneously	
  with	
  vector	
  and	
  pseudoscalar	
  mesons	
  
•  Implements	
  chiral	
  symmetry	
  naturally	
  
•  Leads	
  to	
  the	
  same	
  lowest	
  order	
  Lagrangian	
  for	
  pseudoscalar	
  mesons	
  
•  Reproduces	
  all	
  the	
  empirically	
  successful	
  low-­‐energy	
  rela3ons	
  of	
  the	
  ρ	
  meson	
  

(universal	
  coupling,	
  KSFR	
  rela3on,	
  vector	
  meson	
  dominance,…)	
  

Here,	
  we	
  focus	
  on	
  the	
  interac3on	
  of	
  vector	
  mesons	
  

with	
  baryons	
  

Bando	
  et	
  al.	
  Phys.	
  Rev.	
  Le\.	
  	
  54,	
  1215	
  (85);	
  	
  	
  Phys.	
  Rep.	
  164,	
  217	
  (88)	
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FIG. 1: Diagrams depicting the vertices needed in the evaluation of the omega meson self-energy, the
anomalous V V P term, the V V P term and the V BtoV ′B′ amplitude mediated by t-channel vector-meson
exchange.

and the 〈〉 symbol represents the trace in SU(3) space. The coupling constant of the V V P La-

grangian is G =
3g′2

4π2f
, where g′ = −

GVMV√
2f2

[53], with f = fπ = 93 MeV and MV an appropriate

vector meson mass, which can be taken MV = mρ. The value of GV can be adjusted to ρππ
decay (GV = 69 MeV), to the pion charged radius (GV = 55 MeV) or can be fixed invoking con-
sistency with QCD asymptotic behavior (GV = f/

√
2) [54, 55]. In the latter case one obtains

G =
3mρ2

16π2f3
= 14 GeV−1.

The formalism of the hidden gauge interaction for vector mesons, which we take from [5, 6] (see
also [56] for a practical set of Feynman rules), provides the interaction of vector mesons amongst
themselves

LIII = −
1

4
〈VµνV µν〉 , (4)

where Vµν is given by

Vµν = ∂µVν − ∂νVµ − ig[Vµ, Vν ] , (5)

with the coupling of the theory given by g =MV /2f . This Lagrangian gives rise to a three vector
vertex

L(3V )
III = ig〈(∂µVν − ∂νVµ)V µV ν〉 = ig〈(V µ∂νVµ − ∂νVµV µ)V ν〉 , (6)

needed for the evaluation of the V B → V ′B′ interacting terms mediated by t-channel vector
meson exchange, as seen in Fig. 1(c), which will describe the elastic ωN → ωN interaction and the
inelastic transitions to the related coupled channels. The Lagrangian describing the other BBV
vertex involved in these V B → V ′B′ amplitudes, coupling vector mesons to the baryon octet is
given by [31, 57]

LBBV = g
(

〈B̄γµ[V µ, B]〉+ 〈B̄γµB〉〈V µ〉
)

, (7)

4

V V

V ′′

V ′

P ′

PP
B′

V ′V

B

(a) (b) (c)

FIG. 1: Diagrams depicting the vertices needed in the evaluation of the omega meson self-energy, the
anomalous V V P term, the V V P term and the V BtoV ′B′ amplitude mediated by t-channel vector-meson
exchange.

and the 〈〉 symbol represents the trace in SU(3) space. The coupling constant of the V V P La-

grangian is G =
3g′2

4π2f
, where g′ = −

GVMV√
2f2

[53], with f = fπ = 93 MeV and MV an appropriate

vector meson mass, which can be taken MV = mρ. The value of GV can be adjusted to ρππ
decay (GV = 69 MeV), to the pion charged radius (GV = 55 MeV) or can be fixed invoking con-
sistency with QCD asymptotic behavior (GV = f/

√
2) [54, 55]. In the latter case one obtains

G =
3mρ2

16π2f3
= 14 GeV−1.

The formalism of the hidden gauge interaction for vector mesons, which we take from [5, 6] (see
also [56] for a practical set of Feynman rules), provides the interaction of vector mesons amongst
themselves

LIII = −
1

4
〈VµνV µν〉 , (4)

where Vµν is given by

Vµν = ∂µVν − ∂νVµ − ig[Vµ, Vν ] , (5)

with the coupling of the theory given by g =MV /2f . This Lagrangian gives rise to a three vector
vertex

L(3V )
III = ig〈(∂µVν − ∂νVµ)V µV ν〉 = ig〈(V µ∂νVµ − ∂νVµV µ)V ν〉 , (6)

needed for the evaluation of the V B → V ′B′ interacting terms mediated by t-channel vector
meson exchange, as seen in Fig. 1(c), which will describe the elastic ωN → ωN interaction and the
inelastic transitions to the related coupled channels. The Lagrangian describing the other BBV
vertex involved in these V B → V ′B′ amplitudes, coupling vector mesons to the baryon octet is
given by [31, 57]

LBBV = g
(

〈B̄γµ[V µ, B]〉+ 〈B̄γµB〉〈V µ〉
)

, (7)

4

How	
  to	
  build	
  a	
  vector-­‐baryon	
  scaXering	
  amplitude	
  

1.	
  Kernel:	
  
E.	
  Oset,	
  A.	
  Ramos,	
  Eur.Phys.J.	
  A44	
  (2010)	
  445-­‐454.	
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Fig. 2. Diagram of the V B → V B interaction mediated by a pseudoscalar meson-baryon loop.

the peak the T -matrix will be as

Tij =
gigj√

s − MR + iΓ/2
, (20)

where MR is the position of the maximum and Γ the width
at half-maximum. The couplings gi and gj are related to
the channels which couple to this resonance. Then one can
take the diagonal channel where the coupling is largest and
obtain

|gi|2 =
Γ

2
√

|Tii|2, (21)

where the coupling gi has an arbitrary phase. With one
coupling determined, we can obtain the other ones from
the Tij matrices using eq. (20), given by

gj = gi
Tij(

√
(s) = MR)

Tii(
√

(s) = MR)
. (22)

This procedure has been used to calculate all the couplings
of all the states of the vector-baryon interaction in ref. [23],
so this method that we will use in order to calculate our
results in the present work.

Using this formalism, nine resonances are found in
ref. [23], which are associated to known states of the
PDG [28], through the isospin and strangeness and the
pole position. However the widths obtained with this ap-
proach are smaller than the experimental ones. This result
leads us to think that there should be some other mecha-
nisms which contribute to the vector meson - baryon inter-
action potential. Since vector mesons and baryons couple
to pseudoscalar mesons, there can be diagrams where the
interaction is mediated by pseudoscalar mesons. The next
section is devoted to study such mechanisms.

3 The box diagram

In addition to the driving term in the V B → V B potential
of eq. (12) there are other terms involving the exchange
of pseudoscalar mesons that also contribute to this inter-
action. The idea is that an external vector meson decays
into two pseudoscalar mesons, through the Lagrangian of
eq. (3), and one of the pseudoscalar mesons is exchanged
and absorbed by the baryon. Then a pseudoscalar-baryon
state propagates in the intermediate state and the inverse
procedure occurs in a second vertex, giving rise to a V B
again. The mechanism is depicted in fig. 2 in terms of
a Feynman diagram, which gives a contribution to the
V B → V B potential given by

−itBox =
∫

d4q

(2π)4
igCV1(#pV1 − #q − #q ) · #ε1igCV2

×(#pV1 − #q − #pB1 − #q + #pB2) · #ε2

× i

q2 − m2
1 + iε

i

(pV1 − q)2 − m2
2 + iε

× i

(pB1 +q − pB2)2−m2
3+iε

i

(pB1 +q)0−EB(#pB1 +#q )+iε

×#σ · #q #σ · (− #pB1 − #q + #pB2){α1(D + F ) + β1(D − F )}

× 1
2f

{α2(D + F ) + β2(D − F )} 1
2f

(23)

where q is the loop four-momentum, #pVi and #pBi are the
momenta of the external vector mesons and baryons and
mi are the masses of the three pseudoscalar mesons of
the loop. The coefficients of the VPP vertex CVi are ob-
tained from eq. (3) and the coefficients for the couplings
of the pseudoscalars to the baryons, αi and βi are shown
in table 6 of appendix C.

In other to calculate this integral, we perform analyt-
ically the integration over the q0 component of the four-
momentum of the loop. This leads to a residue, which is

E.J.	
  Garzon,	
  E.	
  Oset,	
  Eur.Phys.J.	
  A48	
  (2012)	
  5.	
  
Including	
  also	
  Pseudoscalars:	
  

TV BæV ÕBÕ

1

In	
  the	
  limit	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  we	
  obtain	
  for	
  the	
  VBàVB	
  amplitude:	
  

vector	
  meson	
  energies	
  

à 	
  the	
  same	
  S-­‐wave	
  vector-­‐baryon	
  amplitude	
  as	
  in	
  the	
  pseudoscalar-­‐baryon	
  case!	
  
	
  	
  	
  	
  	
  (spin	
  independent:	
  degenerate	
  1/2-­‐	
  and	
  3/2-­‐	
  baryons)	
  

(degeneracy	
  removed)	
  



	
  2.	
  UnitarizaZon:	
  	
  We	
  solve	
  the	
  Bethe-­‐Salpeter	
  equa3on	
  in	
  coupled	
  channels	
  (s-­‐wave)	
  
	
   	
  	
  
	
   	
   	
  T	
  =	
  V	
  +	
  V	
  G	
  T	
  

[	
  the	
  G	
  func3on	
  takes	
  into	
  account	
  the	
  mass	
  
distribu3on	
  (width)	
  of	
  the	
  vectors ρ and	
  K*]	
  

Coupled	
  channels	
  in	
  the	
  N*	
  	
  (I=1/2,S=0)	
  sector:	
  

ρN(1710)	
  	
  	
  	
  	
  	
  ωN(1721)	
  	
  	
  	
  	
  	
  	
  	
  φN(1958)	
  	
  	
  	
  	
  K*Λ(2010)	
  	
  	
  	
  K*Σ(2087)	
  

3.	
  RegularizaZon	
  of	
  loop	
  funcZon:	
  

“natural	
  size	
  (µ~700	
  MeV)	
  

J.A.	
  Oller	
  and	
  U.G.	
  Meissner,	
  Phys.	
  Le\.	
  B500	
  (2001)	
  263	
  



N*	
  	
  	
  	
  	
  	
  	
  	
  	
  JP	
  =	
  1/2-­‐,	
  3/2-­‐	
  (degenerate)	
  

	
  
	
  
	
  

We	
  obtain	
  a	
  N*	
  resonance	
  at	
  	
  
1700	
  MeV	
  coupling	
  mostly	
  to	
  ρN	
  	
  
and	
  another	
  at	
  	
  
1977	
  MeV	
  coupling	
  mostly	
  to	
  K*Σ	
  and	
  K*Λ	
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Fig. 6. |T |2 for the S = 0, I = 1/2 states. Dashed lines correspond to tree level only and solid lines are calculated including
the box diagram potential. Vertical dashed lines indicate the channel threshold.

breaking of the degeneracy is most welcome since this al-
lows us to associate the 1/2− peak found at 1650MeV with
the N∗(1650)(1/2−) while the peak for 3/2− at 1700MeV
can be naturally associated to the N∗(1700)(3/2−). We
shall discuss the other peak in the next section.

Figure 7 shows the results for S = −1, with I = 0.
The left column corresponds to JP = 1/2− and the right
column to JP = 3/2−. We can find three peaks for these
quantum numbers. The first one around 1780MeV ap-
pears in the channels K̄∗N , ωΛ, ρΣ and φΛ, but not
for the channel K∗Ξ. The second peak appears only in
the ρΣ channel around 1900MeV. The third peak is near
2150MeV, an is only visible in the K∗Ξ channel. Once
again we see the different effects of the PB-VB mixing
in JP = 1/2− and 3/2−. The effects are again small in
JP = 3/2− but they are sizable for JP = 1/2−. In-
deed, the peak around 1780MeV is shifted to lower en-
ergies and becomes considerably broader. This fact is also

most welcome since it provides an explanation on why the
width of the 1/2− state is bigger than the correspond-
ing state with 3/2−, which is supported by experiment,
although the masses of the particles in this high energy
region are not well determined. We will come to this issue
in the next section. We also observe that the second peak
around 1900MeV is shifted to lower energies and widened
for JP = 1/2−. The third peak is also widened for 1/2−
but there is not much change in its position.

Figure 8 contains the results of |T |2 for the quan-
tum numbers S = −1, I = 1. The first peak appears in
1830MeV for the channels K̄∗N , ρΛ, ρΣ, ωΣ, φΣ, but not
for K∗Ξ. With the only consideration of the vector-baryon
channel there was a smooth peak around 2000MeV, visi-
ble in the ρΣ and K∗Ξ channels. What we observe here is
that the introduction of the pseudoscalar-baryon channels
removes the peak in the ρΣ channel and shifts it to a larger
energies around 2180MeV in the K∗Ξ one. Once again we

The	
  inclusion	
  of	
  	
  
pseudoscalar-­‐baryon	
  channels	
  	
  
in	
  s-­‐wave	
  does	
  not	
  change	
  the	
  
picture	
  appreciably,	
  but…	
  

JP	
  =	
  1/2-­‐	
   JP	
  =	
  3/2-­‐	
  N*	
   E.J.	
  Garzon,	
  E.	
  Oset,	
  Eur.Phys.J.	
  A48	
  (2012)	
  5	
  

…	
  coupling	
  to	
  pseudoscalars	
  in	
  	
  
d-­‐wave	
  and	
  including	
  
decuplet	
  baryons,	
  e.g.	
  
ρN(s),	
  πN(d),	
  πΔ(s),	
  πΔ(d)	
  	
  
leads	
  to	
  new	
  resonances	
  	
  
➔	
  N*(1520)	
  coupling	
  to	
  ρN	
  

	
  E.J.	
  Garzon,	
  J.J.	
  Xie,	
  E.	
  Oset,	
  Phys.Rev.	
  C87	
  (2013)	
  055204	
  

N∗(1520)D13 N∗(1700)D13

Pole 1467+i83 1665+i78

Channel gi |gi| gi |gi|
ρN(s) 6.18-1.63i 6.39 1.49+0.42i 1.55

π∆(s) 0.88+0.76i 1.14 -0.39+0.12i 0.41

π∆(d) -0.75-0.14i 0.77 0.50-0.50i 0.70

πN(d) -1.51-0.51i 1.60 -0.09-0.94i 0.94

TABLE II: Couplings of the resonances for each channel.

N∗(1520)D13

Briet-Wigner Branching ratio (Γi/Γ(%))

Pole Mass(MeV) Γ(MeV) ρN(s) π∆(s) π∆(d) πN(d)

This work (1467,83) 5.09 18.37 8.25 65.38

PDG [1] (1510,55) 1515-1525 100-125 15-25 10-20 10-15 55-65

Manley92 [2] 1524±4 124±8 21±4 5±3 15±4 59±3

Manley12 [24] (1501,56) 1512.6±0.5 117±1 20.9±0.7 9.3±0.7 6.3±0.5 62.7±0.5

Cutkosky79 [23] (1510,57) 1525±15 125±25 58±3

Vrana00 [25] (1504,56) 1518±3 125±4 9±1 15±2 11±2 63±2

Toma08 [11] (1509,57) 1520±10 125±15 13±5 12±4 14±5 58±8

Anisovich12 [4] (1507,56) 1517±3 114±4 19±4 9±2 62±3

Ardnt06 [5] (1515,57) 1514.5±0.2 103.6±0.4 63.2±0.1

TABLE III: Results of the partial decay widths for the N∗(1520) resonance.

results of the PDG [1] as well. As the PDG average has big uncertainties, we consider appropriate
to include also some single results of the experiments and analysis [2, 11, 23, 25].

As we can see in Table II, the N∗(1520) couples mostly to the channel ρN , which is closed for
the nominal mass of the ρ, but although the mass of the resonance is under the ρN threshold, using
Eq. (24) we can generate a momentum giving a small partial decay width. In comparison with the
experiments, the decay width of ρN to N∗(1520) is smaller but of the same order of magnitude.
Note that in experimental analyses one evaluates this rate subtracting the other ones from the
total width. In either method the uncertainties for this closed channel are necessarily large. In the

N∗(1700)D13

Briet-Wigner Branching ratio (Γi/Γ(%))

Pole Mass(MeV) Γ(MeV) ρN(s) π∆(s) π∆(d) πN(d)

This work (1665,78) 8.02 4.51 13.36 28.54

PDG [1] (1700,75) 1650-1750 100-250 <35 10-90 <20 12±5

Manley92 [2] 1737±44 249±218 13±17 5±10 80±19 1±2

Manley12 [24] (1662,55) 1665±3 56±8 38±6 31±9 3±2 2.8±0.5

Cutkosky79 [23] (1660,38) 1670±25 80±40 11±5

Vrana00 [25] (1704,78) 1736±33 175±133 7±1 11±1 79±56 4±1

Toma08 [11] (1710,78) 1740±20 180±30 20±15 10±5 20±11 8+8
−4

Anisovich12 [4] (1770,210) 1790±40 390±140 72±23 ≤10 12±5

TABLE IV: Results of the partial decay widths for the N∗(1700) resonance.
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Fig. 6. Total cross section for K 0Σ+ photoproduction as a function of the centre-
of-mass energy from the present experiment (full squares) in comparison to the
previous Crystal Barrel (open squares) [20] data. The vertical lines indicate the K ∗Λ
and K ∗Σ+ thresholds at W = 2007.4 and 2085.5 MeV, respectively. The SAID pa-
rameterisation [26] is represented by the short dashed–dotted curve. A K-MAID
calculation with standard parameters yields the dashed curve. The long dashed–
dotted curve is obtained from K-MAID with the modifications described in the text,
and standard K ∗-exchange included. The solid curve has the same modifications,
but K ∗-exchange excluded. Above the K ∗ threshold the grey circles represent the
sum of the K 0Σ+ cross section of the present experiment and the K ∗0Σ+ cross
section of the work of Nanova et al. [29]. The vertical bars on the abscissa again in-
dicate the systematic error of the present experiment, the errors plotted with the
data symbols are purely statistical.

curves in Fig. 6, respectively.8 Below the K ∗ threshold this can be
drastically improved by adjusting the couplings of the S31(1900)
state to G1 = 0.3 and G2 = 0.3 [25] and reduction of the Born-
couplings from 1 to 0.7. Using these modifications we plot two
versions of K-MAID in Fig. 6: With standard K ∗-exchange (long
dashed–dotted curve) and without K ∗-exchange (solid curve). As
other models [27,28], which were discussed in Ref. [20], neither
version is able to reproduce the total cross section in the vicinity
of the K ∗ threshold. The most forward direction (Fig. 7) remains
particularly problematic. In general, however, the inclusion of K ∗-
exchange improves the description of the data below K ∗ threshold
while, in contrast, omission of K ∗-exchange renders K-MAID closer
to the data above the threshold. At the K ∗ threshold the K-MAID
variants with and without K ∗-exchange exhibit a difference of the
order of the observed drop, both in the total and the forward dif-
ferential cross sections.

This leads us to the following speculation. In diagram (e) of
Fig. 1 the role of K and K ∗ may also be interchanged. Of course,
no real K ∗0 or K ∗+ is then produced below K ∗ threshold. However,
in the vicinity of the K ∗ threshold a K ∗0,+ would be produced al-
most on mass shell. It then strongly couples to a K 0 and a charged
or neutral pion. In this way a rescattering diagram of the type 1(f)
may in addition contribute to the K 0 channel. Such a contribu-
tion will vanish from the K 0 channel once the K ∗ is produced as a
free particle above its reaction threshold, then contributing to the
K ∗0Σ+ channel. The strength, which at the dip of the cross sec-
tion is vanishing from the K 0 channel, should then show up in
K ∗0Σ+ . In order to test this idea, the measured total cross sec-
tion of the reaction γ p → K ∗0Σ+ [29] was added to the observed
K 0Σ+ cross section above the K ∗ threshold. The result is shown
in Fig. 6 as grey circles. Using the sum of the two cross sections,
indeed a smooth transition is obtained from below to above the
K ∗ thresholds and the dip structure vanishes.9

8 The obvious agreement between SAID and K-MAID seems due to the use of K-
MAID multipoles in SAID, cf. [26].

9 This seems somewhat similar to the so-called η-cusp in π+n photoproduction
at the η-threshold, above which the total strength is shared with the ηp channel.

Fig. 7. Cross section for K 0Σ+ photoproduction as a function of the centre-of-mass
energy from the present (full squares) and a previous (open squares) [20] Crystal
Barrel experiment in the most forward angular bin of Fig. 5. Plotted errors and
curves represent the same as in Fig. 6, the vertical lines as well.

The loop in Fig. 1(f) could be regarded as a dynamically gen-
erated (K ∗Σ)+ or (K ∗Λ)+ state in the vicinity of the K ∗ thresh-
old. Such states are expected in chiral unitary approaches through
the interaction of the nonet of vector mesons with the octet of
baryons. In Ref. [30] a non-strange isospin 1/2 doublet is indeed
predicted at a mass of 1972 MeV, i.e. close to the K ∗ threshold.

Possible interferences make the role diagram 1(f) non-trivial.
Whether it really is able to account for the observed effect can
only be decided by detailed calculations which are beyond the
scope of this Letter.

Experimentally, the reaction mechanism will be further con-
strained through polarisation observables. In contrast to a t-
channel dominated mechanism, an s-channel intermediate state
will provide a genuine spin filter. It is hence expected that, in
addition to recoil polarisation and photon asymmetry, in particu-
lar the beam–target as well as the beam–recoil asymmetries will
shed further light on the mechanism of K 0 photoproduction in the
vicinity of the observed dip structure.

The reported structure in the cross section is also close to the
η′ p threshold. In Ref. [31] a significant coupling of vector meson–
baryon to pseudoscalar–baryon channels with the same quantum
numbers is expected. Consequently, one may speculate that possi-
ble K ∗–hyperon states may affect the η′ p cross sections at thresh-
old as well, and thus help to solve the puzzle of η′N interactions
in both, hadronic and photoinduced reactions [31].

5. Summary and outlook

Using the Crystal-Barrel/TAPS detector setup at the electron ac-
celerator facility ELSA of Bonn University, the reaction γ + p →
K 0 + Σ+ was investigated from threshold to Eγ = 2250 MeV. We
find an unexpected structure in the differential cross section be-
tween the K ∗0Λ and K ∗0Σ thresholds: The angular distribution
exhibits a sudden transition from forward peaked to flat with in-
creasing photon energy. In forward directions the cross section
drops by a factor of four, generating a pronounced structure even
in the total cross section. Detailed calculations will be required to
show whether this can be associated with the formation of a K ∗–
hyperon quasi-bound state. To experimentally shed more light on
the threshold structure it will be mandatory to exploit polarisa-
tion observables. In particular, the photon beam asymmetry should
be sensitive to the parity character of the t-channel contributions,
while recoil polarisation and beam–target asymmetry will strongly
constrain the quantum numbers of an intermediate s-channel res-
onance.
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Fig. 1. The reaction γ N → ηN on the free nucleon. Solid (dotted) line: present result
for γ p → ηp (γ n → ηn). The data are from JLab [2] (squares), Bonn [4] (circles),
and LNS [5] (diamonds). Also, the KΛ and KΣ thresholds are indicated by the
vertical lines.

in the model. These meson and baryon pole terms (cf. Fig. 4) are
fixed from the transversality of these amplitudes (see Eqs. (10)–
(19) in Ref. [33]). The implementation of the photon interaction
follows Refs. [42,43,14]. See also Refs. [44,45] for a formulation
where most of the approximations made in [33] are avoided. Bare
photon couplings to the genuine states are also included in the
present model.

For the results of Section 2 on the quasi-free p and n in the
deuteron, we use the impulse approximation, i.e. higher order ef-
fects such as (hadronic) double scattering [46] are neglected. In
order to account for the Fermi motion of the nucleon inside the
deuteron, we follow the prescription of Ref. [15] and fold the cross
section for the free nucleon case with the momentum distribu-
tion of the nucleon inside the deuteron, where the participating
nucleon is set on-the-mass-shell once the energy conservation al-
lows the reaction to take place [47]. The deuteron wave function is
generated based on the Bonn potential [48].

2. Results

The model of Ref. [33] has been applied to the reactions γ N →
π N and π N → π N . In this study, we include the corresponding
E0+ multipoles and S wave amplitudes in the fit, but additionally
take into account the reactions γ p → ηp, γn → ηn, π N → ηN ,
γ N → K Y , and π N → K Y where Y = Λ, Σ . The free parame-
ters of the model of Ref. [33] have been refitted using the ad-
ditional data. The resulting parameters are quite similar to those
of Ref. [33]. In this work, we focus on the issue of the structure
observed in the quasi-free γn → ηn reaction as discussed in the
Introduction. In Section 3 we comment on the results for other re-
actions relevant to the present discussion.

In Fig. 1 the result for the γ p → ηp and γn → ηn cross sec-
tions on free nucleons is shown. The data for the proton case are
well reproduced except for a slight under-prediction around the
N∗(1535) position. For the present study, a good data description
above Eγ = 900 MeV is essential, and this is indeed achieved. For
the production on the free neutron, the cross section exhibits a
minimum around Eγ = 930 MeV, which is close to the KΛ thresh-
old, and a maximum at the KΣ threshold. This dip-bump structure
is absent for the proton case.

In Fig. 2, the present model is compared to the recent cross
section data on the quasi-free neutron and proton in the deuteron
from Ref. [19]. The data are well reproduced.

Fig. 2. Present result (Fermi folded) for the photoproduction on the quasi-free pro-
ton (solid line) and neutron (dotted line). The data are from Ref. [19] for the pho-
toproduction on the quasi-free proton (solid circles) and neutron (crosses). The data
for the free proton are also shown (open symbols, same as in Fig. 1). The vertical
lines indicate the threshold energy of

√
s = mη + MN for the free process and the

nominal position of the N∗(1535).

Fig. 3. The cross section ratio σ (γ n → ηn)/σ (γ p → ηp) on the quasi-free nucle-
ons in the deuteron. The data are from Ref. [19]. The full result is shown as the
solid line; it includes the Fermi motion in the deuteron. The corresponding ratio
in the case of free nucleons is shown as the dashed line. The dotted line shows
the result after removing the γ coupling to the K +Λ loop. Dash-dotted line: same
as the dashed line but replacing the full final state interaction with the Weinberg–
Tomozawa term. This curve is multiplied by an arbitrary factor of 20 to show the
energy dependence of the ratio. Inset (free nucleon case): full result (solid line),
w/o γ coupling to KΛ, KΣ (dashed line), only coupling to π N intermediate state
(dash-dotted line).

In Fig. 3, the ratio of cross sections of photoproduction on the
quasi-free neutron over that on the quasi-free proton is shown
(solid line). The data are from Ref. [19]. Earlier measurements [49–
51] cover only the lower energy region but are in agreement with
the new data of Ref. [19]. The dashed line in Fig. 3 indicates the
ratio of cross sections on free nucleons, i.e., those shown in Fig. 1.
The sharp structure in σn/σp becomes Fermi smeared and the re-
sult for the quasi-free case (solid line) shows a broader peak in
good agreement with the data.

The appearance of the sharp peak in σn/σp is obviously due to
the intermediate strangeness states in the model as indicated in
Fig. 1. The difference in the cross sections on p and n arises from
the isospin breaking of the photon couplings in the final state in-
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lows the reaction to take place [47]. The deuteron wave function is
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N∗(1535) position. For the present study, a good data description
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the production on the free neutron, the cross section exhibits a
minimum around Eγ = 930 MeV, which is close to the KΛ thresh-
old, and a maximum at the KΣ threshold. This dip-bump structure
is absent for the proton case.
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In Fig. 3, the ratio of cross sections of photoproduction on the
quasi-free neutron over that on the quasi-free proton is shown
(solid line). The data are from Ref. [19]. Earlier measurements [49–
51] cover only the lower energy region but are in agreement with
the new data of Ref. [19]. The dashed line in Fig. 3 indicates the
ratio of cross sections on free nucleons, i.e., those shown in Fig. 1.
The sharp structure in σn/σp becomes Fermi smeared and the re-
sult for the quasi-free case (solid line) shows a broader peak in
good agreement with the data.

The appearance of the sharp peak in σn/σp is obviously due to
the intermediate strangeness states in the model as indicated in
Fig. 1. The difference in the cross sections on p and n arises from
the isospin breaking of the photon couplings in the final state in-
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1. Introduction

The photo- and electroproduction of η meson on the free pro-
ton has attracted extensive experimental effort in the last years
[1–9]. The prominent feature in these processes is the dominance
of the S wave contribution from threshold to energies beyond the
N∗(1650) region as revealed by various analyses [10–15].

Recently, the reaction γn → ηn has become accessible in pho-
toproduction experiments on the deuteron or nuclei [16–19,15].
These measurements have been complemented by experimental
studies of the beam asymmetry [20,21]. At energies around

√
s ∼

1.67 GeV, an excess of η production on the neutron compared to
the proton case has been reported [16]; the result has been con-
firmed by other experiments [17,19]. This could be interpreted as
a narrow nuclear resonance, but the interpretation is not unique
[15] and it is currently under an intense debate. Narrow nuclear
resonances may also be accommodated in elastic π N scattering at
1.68 and 1.73 GeV [22,23].

On the theoretical side, the structure observed in the quasi-free
γn → ηn reaction has been interpreted as a potential signal for a
non-strange member of an anti-decuplet of pentaquarks [24,25,13]
(see also Refs. [26,27], where a narrow baryon resonance has been
suggested near 1.68 GeV).

Within the framework of the Giessen model [28,29], in Ref. [30]
the structure has been interpreted as an interference effect from
the S11(1650) and P11(1710). In Ref. [31], a subtle interference

* Corresponding author at: Institut für Kernphysik and Jülich Center for Hadron
Physics, Forschungszentrum Jülich, D-52425 Jülich, Germany.

E-mail addresses: m.doering@fz-juelich.de (M. Döring), nakayama@uga.edu
(K. Nakayama).

from various partial waves is made responsible for the observed
structure for the ηn final state. In Ref. [32], an effective Lagrangian
approach including an explicit narrow state was employed to de-
scribe the data of Ref. [16]. In the η-MAID [11] analysis, the peak
in σn/σp is assigned to the D15(1675). This leads, however, to
problems with too large an ηN decay width, and in Ref. [13]
an additional narrow P11(1670) is considered. In the analysis of
Ref. [15], an interference within the S11 partial wave alone has
been found to give the most natural explanation. Also in Ref. [17],
the S11 assignment gives a much better fit to the data than that
of P11.

The findings described above have motivated us to study the η
photoproduction on proton and neutron within the S wave model
of Ref. [33]. This model, developed for the simultaneous descrip-
tion of γ N → π N and π N → π N , can be easily extended to study
ηN , KΛ and KΣ final states which are included as coupled chan-
nels in the formalism. For details of the model we refer to Ref. [33].
There, the formulation of the model is kept general enough to ac-
commodate the different final states included here. The hadronic
interaction is mediated by the Weinberg–Tomozawa interaction in
the lowest order chiral Lagrangian. The attraction in the S11 partial
wave leads, through the unitarization of the on-shell factorized po-
tential in a Bethe–Salpeter equation, to the formation of a dynami-
cally generated pole that can be identified with the N∗(1535). This
picture of the N∗(1535) [34–39] is quite different from the quark
model picture [40,41]. The model also contains explicit resonance
states which account for the N∗(1650) and a phenomenological al-
most energy independent background.

The hadronic part of the present model [33] has been devel-
oped following the lines of Ref. [37]. For the electromagnetic inter-
action, the photon couples to the meson and baryon components
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Fig. 4. Meson pole term (a) [t channel] and (subleading) baryon pole term (b)
[u channel] in photoproduction. The hatched circles represent the unitary M B →
ηN amplitude. The contribution from the Kroll–Ruderman γ N → M B term arises
automatically [33].

teraction loop contributions as illustrated schematically in Fig. 4.
For the meson pole loop (a), intermediate π N and KΣ states are
possible in γn → ηn, while in γ p → ηp, in addition, the K +Λ
state is possible.1 Thus, there is a cancellation between the con-
tribution from the intermediate K +Λ photon loop and from the
other contributions (π+n + K +Σ0 photon loops and terms with
bare γ N N∗ couplings) in the γ p → ηp reaction around Eγ ∼
1.05 GeV, while this cancellation is absent in the γn → ηn re-
action.

For the ratio σn/σp , the above discussed effect manifests it-
self in the observed peak structure in Fig. 3. Indeed, removing the
photon coupling to the K +Λ state in the γ p → ηp reaction, one
obtains the ratio given by the dotted line in Fig. 3; the peak has
disappeared.

In the following we discuss some further details of the under-
lying dynamics as well as the model dependence of the present
results. The inset in Fig. 3 shows again the free nucleon case (solid
line). If, apart from the photon coupling to K +Λ, we also remove
the couplings to K +Σ− (neutron case) and K +Σ0 (proton case),
the dashed curve is obtained. If we remove additionally the bare
photon couplings to the genuine states (γ N → N∗), the only re-
maining photon coupling is to the π+n (proton case) and π− p
(neutron case) intermediate state. This is shown as the dash-dotted
line in the inset. The ratio in this case is 1 over the entire energy
range, up to tiny isospin breaking effects from the use of physical
masses.

To check for the model dependence of the present results, we
have replaced the hadronic final state interaction (FSI) with the
Weinberg–Tomozawa (WT) term. For both reactions γ p → ηp and
γn → ηn, the mechanism is then given by the loop graph (a) of
Fig. 4 with the unitary M B → ηN transition (hatched circle) re-
placed by the WT term (This loop is sometimes referred to as
“triangle diagram” in the literature). This parameter-free triangle
graph is at order 1/ f 3

π in the coupling and contributes at next-
to-leading order (NLO) in the chiral expansion of the amplitude,
as discussed in Section 3.2 of Ref. [33] (cf. also Ref. [52]). The re-
sulting ratio σn/σp , shown as the dash-dotted line in Fig. 3, is, of
course, very different in magnitude from the full result (dashed
line) — replacing the strong, non-perturbative FSI by the tree-level
WT term is certainly an oversimplification. Note in particular that,
since the WT term does not provide direct π N → ηN transitions,
the otherwise large contribution from the π N photon loop is ab-
sent in this case. However, apart from the overall magnitude of the
σn/σp ratio, its energy dependence shows the same feature as the
full result shown in Fig. 3: in particular the slow fall-off around
Eγ ∼ 800 MeV is present, followed by the very steep rise when
approaching the KΣ threshold and the weak slope above the KΣ
threshold.

1 The subleading contribution from the baryon pole term [33] (cf. Fig. 4(b)) is not
included in the results, but discussed in Section 3.

Fig. 5. Cross section ratio σ (γ n → ηn)/σ (γ p → ηp) for the quasi-free processes.
Solid line: full result, same as in Fig. 3. Dotted line: Removing all contributions
from genuine N∗ resonances. Dash-dotted line: including the ππ N channel in the
result. Dashed line: including the ππ N channel plus the baryon pole term (b) from
Fig. 4.

Thus, on one hand a strong hadronic FSI interaction is needed
to quantitatively explain the σn and σp cross sections in this
non-perturbative energy region. On the other hand, the pro-
nounced resonance-like enhancement of σn compared to σp , at
Eγ ∼ 1.05 GeV, is already present when considering the triangle
diagram at NLO in the chiral expansion. Note that this very trian-
gle diagram (with π+n intermediate state) is also quantitatively
responsible for the pronounced energy dependence of the cusp
structure in near-threshold π0 p photoproduction [33].2

3. Tests of η photoproduction

As discussed in the previous section, the final state interac-
tion (FSI) from the unitarized M B → ηN transition is needed for
a quantitative description of the results. This FSI is strong and
non-linear and thus it is difficult to fully disentangle the individual
contributions. In particular, thresholds are present not only in the
photon loops but also in the M B → ηN amplitude, and for spe-
cific reaction channels, those thresholds may or may not appear
pronounced. Still, the sensitivity of the results to changes of the
model can be tested, which is done in the following.

To start with, apart from the photon couplings to intermedi-
ate states discussed in the previous section, the current model [33]
contains explicit isospin breaking from the different bare couplings
γ p → N∗(+) and γn → N∗(0) . To make sure these free param-
eters do not mock up the different cross sections in η photo-
production on p and n, we have removed all contributions from
the two genuine resonances, i.e. the bare photon and strong cou-
plings γ N → N∗ and M B → N∗ have been set to zero. The result
is shown as the dotted line in Fig. 5. The energy dependence of
σn/σp is barely changed but its magnitude is shifted downwards.
This is not unexpected, because one of the genuine resonances has
its pole far in the complex plane and provides an almost energy
independent background [33]. Thus, removing this contribution re-
sults in the observed, almost energy independent shift of σn/σp

2 There are, however, higher order terms not considered that induce a small, en-
ergy independent discrepancy for Re E0+(π0 p) [33].
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(t-­‐channel	
  mechanism)	
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  charge!)	
  

➔	
  the	
  coupled-­‐channel	
  loop	
  
acquires	
  a	
  dominant	
  role!	
  	
  

A	
  tree-­‐level	
  term	
  of	
  the	
  type	
  γKK*	
  (anomalous)	
  also	
  contributes	
  
(unitariza3on	
  of	
  this	
  contribu3on	
  is	
  negligible)	
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The γ	
  p	
  à	
  K*0	
  Σ+	
  reac3on	
  from	
  VB	
  dynamics	
  
A.	
  Ramos,	
  E.	
  Oset,	
  in	
  preparaZon	
  

	
  ➔	
  smooth	
  background	
  contribu3on	
  free	
  from	
  coupled-­‐channel	
  interference	
  effects	
  



Missing	
  mechanism	
  in	
  previous	
  works!	
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Results	
  for	
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  à	
  K*0	
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•  The	
  combina3on	
  of	
  Chiral	
  dynamics	
  with	
  non-­‐perturba3ve	
  unitary	
  techniques	
  	
  has	
  
revealed	
  as	
  a	
  powerful	
  method	
  to	
  inves3gate	
  the	
  nature	
  of	
  hadrons.	
  	
  

à 	
  Poles	
  in	
  the	
  amplitudes	
  correspond	
  to	
  dynamically	
  generated	
  resonances.	
  	
  
	
  	
  	
  	
  	
  (many	
  of	
  the	
  known	
  baryon	
  resonances	
  can	
  be	
  interpreted	
  this	
  way)	
  
	
  
•  Vector	
  mesons	
  should	
  enter	
  the	
  scheme	
  in	
  order	
  to	
  interpret	
  the	
  resonances	
  and	
  

reac3ons	
  for	
  W	
  ≥	
  2	
  GeV.	
  
	
  
•  The	
  reac3on	
  γ p	
  à	
  K0	
  Σ+	
  around	
  2	
  GeV	
  is	
  a	
  nice	
  example	
  that	
  demonstrate	
  the	
  	
  important	
  

role	
  of	
  vector	
  mesons	
  in	
  coupled	
  channels.	
  
à  Our	
  model	
  for	
  the	
  VB	
  interac3on	
  reproduces	
  the	
  rapid	
  downfall	
  of	
  the	
  
	
  	
  	
  	
  	
  	
  	
  γ p	
  à	
  K0	
  Σ+	
  	
  reac3on,	
  from	
  an	
  interference	
  between	
  amplitudes	
  containing	
  
	
  	
  	
  	
  	
  	
  	
  intermediate	
  K*Σ	
  and	
  K*Λ	
  
à  A	
  fit	
  to	
  the	
  CBELSA/TAPS	
  data	
  allows	
  to	
  predict	
  the	
  posi3on	
  of	
  a	
  resonance	
  at	
  2030	
  MeV	
  
à  Predic3ons	
  are	
  given	
  for	
  γ n	
  à	
  K0	
  Σ0	
  	
  
	
  
•  The	
  coupled-­‐channel	
  vector-­‐baryon	
  interac3on	
  has	
  also	
  revealed	
  important	
  in	
  the	
  study	
  

of	
  the	
  reac3on	
  γ p	
  à	
  K*0	
  Σ+	
  	
  	
  

à  More	
  work	
  is	
  needed…	
  

Conclusions	
  


