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One	  may	  address	  this	  problem	  through	  the	  modern	  perspec3ve	  of	  
	  Chiral	  Perturba3on	  Theory	  (χPT):	  effec3ve	  theory	  with	  hadron	  
degrees	  of	  freedom	  which	  respects	  the	  symmetries	  of	  QCD,	  in	  
par3cular	  the	  (spontaneously	  broken)	  chiral	  symmetry.	  
In	  ordinary	  χPT:	  
à 	  convergence	  restricted	  to	  low	  energy	  physics	  
à 	  not	  adequate	  close	  to	  bound-‐states	  (pole	  in	  the	  T-‐matrix)	  

With	  these	  non-‐perturba3ve	  methods	  several	  known	  resonances	  have	  
been	  generated	  as	  poles	  in	  the	  scaXering	  amplitude	  (quasi-‐bound	  states)	  
and	  many	  hadron	  reac3on	  cross	  sec3ons	  have	  been	  nicely	  reproduced.	  
➔	  e.g.	  the Λ(1405)!	  

Unitarized	  non-‐perturba3ve	  schemes	  (UχPT	  )	  allow	  to	  
extend	  the	  predic3ve	  power	  of	  the	  chiral	  theories.	  

Describing	  the	  dynamics	  of	  hadrons	  at	  low	  energies	  
from	  the	  QCD	  Lagrangian	  (quark	  and	  gluon	  d.o.f.)	  is	  a	  
highly	  non-‐perturba3ve	  problem	  



(a	  nice	  example	  of	  the	  success	  of	  non-‐perturba3ve	  chiral	  approaches)	  

	  Kbar-‐N	  scaXering	  in	  the	  isospin	  	  I=0	  channel	  is	  dominated	  by	  the	  presence	  of	  the	  
Λ(1405),	  	  located	  only	  27	  MeV	  below	  the	  Kbar-‐N	  threshold	


The Λ(1405)	  

It	  emerges	  as	  	  a	  quasi-‐bound	  state	  (below	  the	  Kbar-‐N	  threshold	  and	  embedded	  in	  
the	  πΣ con3nuum)	  of	  the	  unitarized	  pseudoscalar-‐baryon	  scaXering	  amplitude	  
employing	  the	  chiral	  Lagrangian	  to	  obtain	  the	  kernel	  poten3al	  

Tij	  	  	  	  	  	  =	  	  	  	  	  	  	  	  	  Vij	  	  	  	  	  	  +	  	  	  	  	  Vil	  	  	  	  Gl	  	  	  Tlj	  

=	   +	  

Coupled	  channels:	  	  



Vector	  Mesons.	  Why?	  

§  Many	  new	  data	  on	  meson	  produc3on	  reac3ons	  around	  W	  ~2	  GeV	  and	  beyond.	  	  

§  Measurements	  with	  vector-‐mesons	  in	  the	  final	  state	  are	  currently	  available	  
	  γN	  à	  ρ(ππ)N,	  ωN,	  	  φN,	  K*Y,	  …	  	  	  	  	  	  ELSA,	  J-‐LAB,	  

SU(6):	  
	  
C.	  Garcia-‐Recio,	  J.	  Nieves,	  L.L.	  Salcedo,	  Phys.Rev.	  D74	  (2006)	  034025	  	  
D.	  Gamermann,	  C.	  Garcia-‐Recio,	  J.	  Nieves,	  L.L.	  Salcedo,	  Phys.Rev.	  D84	  (2011)	  056017.	  
	  
	  
Hidden	  gauge	  formalism:	  
	  
S.	  Sarkar,	  B.X.	  Sun,	  E.	  Oset,	  M.J.	  Vicente	  Vacas,	  Eur.Phys.J.	  A44	  (2010)	  431.	  
E.	  Oset,	  A.	  Ramos,	  Eur.Phys.J.	  A44	  (2010)	  445.	  
E.J.	  Garzon,	  E.	  Oset,	  Eur.Phys.J.	  A48	  (2012)	  5.	  
E.J.	  Garzon,	  J.J.	  Xie,	  E.	  Oset,	  arXiv:1302.1295	  [hep-‐ph].	  
K.P.	  Khemchandani,	  H.	  Kaneko,	  H.	  Nagahiro,	  A.	  Hosaka,	  Phys.Rev.	  D83	  (2011)	  114041.	  
K.P.	  Khemchandani,	  A.	  MarZnez	  Torres,	  H.	  Kaneko,	  H.	  Nagahiro,	  A.	  Hosaka,	  Phys.	  Rev.	  D84	  (2011)	  094018.	  

à Theore3cal	  models	  need	  to	  include	  vector	  meson	  –	  baryon	  channels	  .	  
	  
The	  introduc3on	  of	  vector	  mesons	  as	  building	  blocks	  brings	  a	  new	  perspec3ve	  	  
into	  the	  nature	  of	  higher	  mass	  mesons	  and	  baryons.	  



Hidden	  gauge	  formalism	  for	  vector	  mesons,	  pseudoscalars	  and	  photons	  

The	  hidden-‐gauge	  formalism	  to	  deal	  with	  vector	  mesons	  is	  	  a	  useful	  and	  internally	  
consistent	  scheme	  which:	  
	  
•  Deals	  simultaneously	  with	  vector	  and	  pseudoscalar	  mesons	  
•  Implements	  chiral	  symmetry	  naturally	  
•  Leads	  to	  the	  same	  lowest	  order	  Lagrangian	  for	  pseudoscalar	  mesons	  
•  Reproduces	  all	  the	  empirically	  successful	  low-‐energy	  rela3ons	  of	  the	  ρ	  meson	  

(universal	  coupling,	  KSFR	  rela3on,	  vector	  meson	  dominance,…)	  

Here,	  we	  focus	  on	  the	  interac3on	  of	  vector	  mesons	  

with	  baryons	  

Bando	  et	  al.	  Phys.	  Rev.	  Le\.	  	  54,	  1215	  (85);	  	  	  Phys.	  Rep.	  164,	  217	  (88)	  
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FIG. 1: Diagrams depicting the vertices needed in the evaluation of the omega meson self-energy, the
anomalous V V P term, the V V P term and the V BtoV ′B′ amplitude mediated by t-channel vector-meson
exchange.

and the 〈〉 symbol represents the trace in SU(3) space. The coupling constant of the V V P La-

grangian is G =
3g′2

4π2f
, where g′ = −

GVMV√
2f2

[53], with f = fπ = 93 MeV and MV an appropriate

vector meson mass, which can be taken MV = mρ. The value of GV can be adjusted to ρππ
decay (GV = 69 MeV), to the pion charged radius (GV = 55 MeV) or can be fixed invoking con-
sistency with QCD asymptotic behavior (GV = f/

√
2) [54, 55]. In the latter case one obtains

G =
3mρ2

16π2f3
= 14 GeV−1.

The formalism of the hidden gauge interaction for vector mesons, which we take from [5, 6] (see
also [56] for a practical set of Feynman rules), provides the interaction of vector mesons amongst
themselves

LIII = −
1

4
〈VµνV µν〉 , (4)

where Vµν is given by

Vµν = ∂µVν − ∂νVµ − ig[Vµ, Vν ] , (5)

with the coupling of the theory given by g =MV /2f . This Lagrangian gives rise to a three vector
vertex

L(3V )
III = ig〈(∂µVν − ∂νVµ)V µV ν〉 = ig〈(V µ∂νVµ − ∂νVµV µ)V ν〉 , (6)

needed for the evaluation of the V B → V ′B′ interacting terms mediated by t-channel vector
meson exchange, as seen in Fig. 1(c), which will describe the elastic ωN → ωN interaction and the
inelastic transitions to the related coupled channels. The Lagrangian describing the other BBV
vertex involved in these V B → V ′B′ amplitudes, coupling vector mesons to the baryon octet is
given by [31, 57]

LBBV = g
(

〈B̄γµ[V µ, B]〉+ 〈B̄γµB〉〈V µ〉
)

, (7)
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4

How	  to	  build	  a	  vector-‐baryon	  scaXering	  amplitude	  

1.	  Kernel:	  
E.	  Oset,	  A.	  Ramos,	  Eur.Phys.J.	  A44	  (2010)	  445-‐454.	  
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Fig. 2. Diagram of the V B → V B interaction mediated by a pseudoscalar meson-baryon loop.

the peak the T -matrix will be as

Tij =
gigj√

s − MR + iΓ/2
, (20)

where MR is the position of the maximum and Γ the width
at half-maximum. The couplings gi and gj are related to
the channels which couple to this resonance. Then one can
take the diagonal channel where the coupling is largest and
obtain

|gi|2 =
Γ

2
√

|Tii|2, (21)

where the coupling gi has an arbitrary phase. With one
coupling determined, we can obtain the other ones from
the Tij matrices using eq. (20), given by

gj = gi
Tij(

√
(s) = MR)

Tii(
√

(s) = MR)
. (22)

This procedure has been used to calculate all the couplings
of all the states of the vector-baryon interaction in ref. [23],
so this method that we will use in order to calculate our
results in the present work.

Using this formalism, nine resonances are found in
ref. [23], which are associated to known states of the
PDG [28], through the isospin and strangeness and the
pole position. However the widths obtained with this ap-
proach are smaller than the experimental ones. This result
leads us to think that there should be some other mecha-
nisms which contribute to the vector meson - baryon inter-
action potential. Since vector mesons and baryons couple
to pseudoscalar mesons, there can be diagrams where the
interaction is mediated by pseudoscalar mesons. The next
section is devoted to study such mechanisms.

3 The box diagram

In addition to the driving term in the V B → V B potential
of eq. (12) there are other terms involving the exchange
of pseudoscalar mesons that also contribute to this inter-
action. The idea is that an external vector meson decays
into two pseudoscalar mesons, through the Lagrangian of
eq. (3), and one of the pseudoscalar mesons is exchanged
and absorbed by the baryon. Then a pseudoscalar-baryon
state propagates in the intermediate state and the inverse
procedure occurs in a second vertex, giving rise to a V B
again. The mechanism is depicted in fig. 2 in terms of
a Feynman diagram, which gives a contribution to the
V B → V B potential given by

−itBox =
∫

d4q

(2π)4
igCV1(#pV1 − #q − #q ) · #ε1igCV2

×(#pV1 − #q − #pB1 − #q + #pB2) · #ε2

× i

q2 − m2
1 + iε

i

(pV1 − q)2 − m2
2 + iε

× i

(pB1 +q − pB2)2−m2
3+iε

i

(pB1 +q)0−EB(#pB1 +#q )+iε

×#σ · #q #σ · (− #pB1 − #q + #pB2){α1(D + F ) + β1(D − F )}

× 1
2f

{α2(D + F ) + β2(D − F )} 1
2f

(23)

where q is the loop four-momentum, #pVi and #pBi are the
momenta of the external vector mesons and baryons and
mi are the masses of the three pseudoscalar mesons of
the loop. The coefficients of the VPP vertex CVi are ob-
tained from eq. (3) and the coefficients for the couplings
of the pseudoscalars to the baryons, αi and βi are shown
in table 6 of appendix C.

In other to calculate this integral, we perform analyt-
ically the integration over the q0 component of the four-
momentum of the loop. This leads to a residue, which is

E.J.	  Garzon,	  E.	  Oset,	  Eur.Phys.J.	  A48	  (2012)	  5.	  
Including	  also	  Pseudoscalars:	  

TV BæV ÕBÕ

1

In	  the	  limit	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  we	  obtain	  for	  the	  VBàVB	  amplitude:	  

vector	  meson	  energies	  

à 	  the	  same	  S-‐wave	  vector-‐baryon	  amplitude	  as	  in	  the	  pseudoscalar-‐baryon	  case!	  
	  	  	  	  	  (spin	  independent:	  degenerate	  1/2-‐	  and	  3/2-‐	  baryons)	  

(degeneracy	  removed)	  



	  2.	  UnitarizaZon:	  	  We	  solve	  the	  Bethe-‐Salpeter	  equa3on	  in	  coupled	  channels	  (s-‐wave)	  
	   	  	  
	   	   	  T	  =	  V	  +	  V	  G	  T	  

[	  the	  G	  func3on	  takes	  into	  account	  the	  mass	  
distribu3on	  (width)	  of	  the	  vectors ρ and	  K*]	  

Coupled	  channels	  in	  the	  N*	  	  (I=1/2,S=0)	  sector:	  

ρN(1710)	  	  	  	  	  	  ωN(1721)	  	  	  	  	  	  	  	  φN(1958)	  	  	  	  	  K*Λ(2010)	  	  	  	  K*Σ(2087)	  

3.	  RegularizaZon	  of	  loop	  funcZon:	  

“natural	  size	  (µ~700	  MeV)	  

J.A.	  Oller	  and	  U.G.	  Meissner,	  Phys.	  Le\.	  B500	  (2001)	  263	  



N*	  	  	  	  	  	  	  	  	  JP	  =	  1/2-‐,	  3/2-‐	  (degenerate)	  

	  
	  
	  

We	  obtain	  a	  N*	  resonance	  at	  	  
1700	  MeV	  coupling	  mostly	  to	  ρN	  	  
and	  another	  at	  	  
1977	  MeV	  coupling	  mostly	  to	  K*Σ	  and	  K*Λ	  



Page 8 of 20 Eur. Phys. J. A (2012) 48: 5

Fig. 6. |T |2 for the S = 0, I = 1/2 states. Dashed lines correspond to tree level only and solid lines are calculated including
the box diagram potential. Vertical dashed lines indicate the channel threshold.

breaking of the degeneracy is most welcome since this al-
lows us to associate the 1/2− peak found at 1650MeV with
the N∗(1650)(1/2−) while the peak for 3/2− at 1700MeV
can be naturally associated to the N∗(1700)(3/2−). We
shall discuss the other peak in the next section.

Figure 7 shows the results for S = −1, with I = 0.
The left column corresponds to JP = 1/2− and the right
column to JP = 3/2−. We can find three peaks for these
quantum numbers. The first one around 1780MeV ap-
pears in the channels K̄∗N , ωΛ, ρΣ and φΛ, but not
for the channel K∗Ξ. The second peak appears only in
the ρΣ channel around 1900MeV. The third peak is near
2150MeV, an is only visible in the K∗Ξ channel. Once
again we see the different effects of the PB-VB mixing
in JP = 1/2− and 3/2−. The effects are again small in
JP = 3/2− but they are sizable for JP = 1/2−. In-
deed, the peak around 1780MeV is shifted to lower en-
ergies and becomes considerably broader. This fact is also

most welcome since it provides an explanation on why the
width of the 1/2− state is bigger than the correspond-
ing state with 3/2−, which is supported by experiment,
although the masses of the particles in this high energy
region are not well determined. We will come to this issue
in the next section. We also observe that the second peak
around 1900MeV is shifted to lower energies and widened
for JP = 1/2−. The third peak is also widened for 1/2−
but there is not much change in its position.

Figure 8 contains the results of |T |2 for the quan-
tum numbers S = −1, I = 1. The first peak appears in
1830MeV for the channels K̄∗N , ρΛ, ρΣ, ωΣ, φΣ, but not
for K∗Ξ. With the only consideration of the vector-baryon
channel there was a smooth peak around 2000MeV, visi-
ble in the ρΣ and K∗Ξ channels. What we observe here is
that the introduction of the pseudoscalar-baryon channels
removes the peak in the ρΣ channel and shifts it to a larger
energies around 2180MeV in the K∗Ξ one. Once again we

The	  inclusion	  of	  	  
pseudoscalar-‐baryon	  channels	  	  
in	  s-‐wave	  does	  not	  change	  the	  
picture	  appreciably,	  but…	  

JP	  =	  1/2-‐	   JP	  =	  3/2-‐	  N*	   E.J.	  Garzon,	  E.	  Oset,	  Eur.Phys.J.	  A48	  (2012)	  5	  

…	  coupling	  to	  pseudoscalars	  in	  	  
d-‐wave	  and	  including	  
decuplet	  baryons,	  e.g.	  
ρN(s),	  πN(d),	  πΔ(s),	  πΔ(d)	  	  
leads	  to	  new	  resonances	  	  
➔	  N*(1520)	  coupling	  to	  ρN	  

	  E.J.	  Garzon,	  J.J.	  Xie,	  E.	  Oset,	  Phys.Rev.	  C87	  (2013)	  055204	  

N∗(1520)D13 N∗(1700)D13

Pole 1467+i83 1665+i78

Channel gi |gi| gi |gi|
ρN(s) 6.18-1.63i 6.39 1.49+0.42i 1.55

π∆(s) 0.88+0.76i 1.14 -0.39+0.12i 0.41

π∆(d) -0.75-0.14i 0.77 0.50-0.50i 0.70

πN(d) -1.51-0.51i 1.60 -0.09-0.94i 0.94

TABLE II: Couplings of the resonances for each channel.

N∗(1520)D13

Briet-Wigner Branching ratio (Γi/Γ(%))

Pole Mass(MeV) Γ(MeV) ρN(s) π∆(s) π∆(d) πN(d)

This work (1467,83) 5.09 18.37 8.25 65.38

PDG [1] (1510,55) 1515-1525 100-125 15-25 10-20 10-15 55-65

Manley92 [2] 1524±4 124±8 21±4 5±3 15±4 59±3

Manley12 [24] (1501,56) 1512.6±0.5 117±1 20.9±0.7 9.3±0.7 6.3±0.5 62.7±0.5

Cutkosky79 [23] (1510,57) 1525±15 125±25 58±3

Vrana00 [25] (1504,56) 1518±3 125±4 9±1 15±2 11±2 63±2

Toma08 [11] (1509,57) 1520±10 125±15 13±5 12±4 14±5 58±8

Anisovich12 [4] (1507,56) 1517±3 114±4 19±4 9±2 62±3

Ardnt06 [5] (1515,57) 1514.5±0.2 103.6±0.4 63.2±0.1

TABLE III: Results of the partial decay widths for the N∗(1520) resonance.

results of the PDG [1] as well. As the PDG average has big uncertainties, we consider appropriate
to include also some single results of the experiments and analysis [2, 11, 23, 25].

As we can see in Table II, the N∗(1520) couples mostly to the channel ρN , which is closed for
the nominal mass of the ρ, but although the mass of the resonance is under the ρN threshold, using
Eq. (24) we can generate a momentum giving a small partial decay width. In comparison with the
experiments, the decay width of ρN to N∗(1520) is smaller but of the same order of magnitude.
Note that in experimental analyses one evaluates this rate subtracting the other ones from the
total width. In either method the uncertainties for this closed channel are necessarily large. In the

N∗(1700)D13

Briet-Wigner Branching ratio (Γi/Γ(%))

Pole Mass(MeV) Γ(MeV) ρN(s) π∆(s) π∆(d) πN(d)

This work (1665,78) 8.02 4.51 13.36 28.54

PDG [1] (1700,75) 1650-1750 100-250 <35 10-90 <20 12±5

Manley92 [2] 1737±44 249±218 13±17 5±10 80±19 1±2

Manley12 [24] (1662,55) 1665±3 56±8 38±6 31±9 3±2 2.8±0.5

Cutkosky79 [23] (1660,38) 1670±25 80±40 11±5

Vrana00 [25] (1704,78) 1736±33 175±133 7±1 11±1 79±56 4±1

Toma08 [11] (1710,78) 1740±20 180±30 20±15 10±5 20±11 8+8
−4

Anisovich12 [4] (1770,210) 1790±40 390±140 72±23 ≤10 12±5

TABLE IV: Results of the partial decay widths for the N∗(1700) resonance.
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Fig. 6. Total cross section for K 0Σ+ photoproduction as a function of the centre-
of-mass energy from the present experiment (full squares) in comparison to the
previous Crystal Barrel (open squares) [20] data. The vertical lines indicate the K ∗Λ
and K ∗Σ+ thresholds at W = 2007.4 and 2085.5 MeV, respectively. The SAID pa-
rameterisation [26] is represented by the short dashed–dotted curve. A K-MAID
calculation with standard parameters yields the dashed curve. The long dashed–
dotted curve is obtained from K-MAID with the modifications described in the text,
and standard K ∗-exchange included. The solid curve has the same modifications,
but K ∗-exchange excluded. Above the K ∗ threshold the grey circles represent the
sum of the K 0Σ+ cross section of the present experiment and the K ∗0Σ+ cross
section of the work of Nanova et al. [29]. The vertical bars on the abscissa again in-
dicate the systematic error of the present experiment, the errors plotted with the
data symbols are purely statistical.

curves in Fig. 6, respectively.8 Below the K ∗ threshold this can be
drastically improved by adjusting the couplings of the S31(1900)
state to G1 = 0.3 and G2 = 0.3 [25] and reduction of the Born-
couplings from 1 to 0.7. Using these modifications we plot two
versions of K-MAID in Fig. 6: With standard K ∗-exchange (long
dashed–dotted curve) and without K ∗-exchange (solid curve). As
other models [27,28], which were discussed in Ref. [20], neither
version is able to reproduce the total cross section in the vicinity
of the K ∗ threshold. The most forward direction (Fig. 7) remains
particularly problematic. In general, however, the inclusion of K ∗-
exchange improves the description of the data below K ∗ threshold
while, in contrast, omission of K ∗-exchange renders K-MAID closer
to the data above the threshold. At the K ∗ threshold the K-MAID
variants with and without K ∗-exchange exhibit a difference of the
order of the observed drop, both in the total and the forward dif-
ferential cross sections.

This leads us to the following speculation. In diagram (e) of
Fig. 1 the role of K and K ∗ may also be interchanged. Of course,
no real K ∗0 or K ∗+ is then produced below K ∗ threshold. However,
in the vicinity of the K ∗ threshold a K ∗0,+ would be produced al-
most on mass shell. It then strongly couples to a K 0 and a charged
or neutral pion. In this way a rescattering diagram of the type 1(f)
may in addition contribute to the K 0 channel. Such a contribu-
tion will vanish from the K 0 channel once the K ∗ is produced as a
free particle above its reaction threshold, then contributing to the
K ∗0Σ+ channel. The strength, which at the dip of the cross sec-
tion is vanishing from the K 0 channel, should then show up in
K ∗0Σ+ . In order to test this idea, the measured total cross sec-
tion of the reaction γ p → K ∗0Σ+ [29] was added to the observed
K 0Σ+ cross section above the K ∗ threshold. The result is shown
in Fig. 6 as grey circles. Using the sum of the two cross sections,
indeed a smooth transition is obtained from below to above the
K ∗ thresholds and the dip structure vanishes.9

8 The obvious agreement between SAID and K-MAID seems due to the use of K-
MAID multipoles in SAID, cf. [26].

9 This seems somewhat similar to the so-called η-cusp in π+n photoproduction
at the η-threshold, above which the total strength is shared with the ηp channel.

Fig. 7. Cross section for K 0Σ+ photoproduction as a function of the centre-of-mass
energy from the present (full squares) and a previous (open squares) [20] Crystal
Barrel experiment in the most forward angular bin of Fig. 5. Plotted errors and
curves represent the same as in Fig. 6, the vertical lines as well.

The loop in Fig. 1(f) could be regarded as a dynamically gen-
erated (K ∗Σ)+ or (K ∗Λ)+ state in the vicinity of the K ∗ thresh-
old. Such states are expected in chiral unitary approaches through
the interaction of the nonet of vector mesons with the octet of
baryons. In Ref. [30] a non-strange isospin 1/2 doublet is indeed
predicted at a mass of 1972 MeV, i.e. close to the K ∗ threshold.

Possible interferences make the role diagram 1(f) non-trivial.
Whether it really is able to account for the observed effect can
only be decided by detailed calculations which are beyond the
scope of this Letter.

Experimentally, the reaction mechanism will be further con-
strained through polarisation observables. In contrast to a t-
channel dominated mechanism, an s-channel intermediate state
will provide a genuine spin filter. It is hence expected that, in
addition to recoil polarisation and photon asymmetry, in particu-
lar the beam–target as well as the beam–recoil asymmetries will
shed further light on the mechanism of K 0 photoproduction in the
vicinity of the observed dip structure.

The reported structure in the cross section is also close to the
η′ p threshold. In Ref. [31] a significant coupling of vector meson–
baryon to pseudoscalar–baryon channels with the same quantum
numbers is expected. Consequently, one may speculate that possi-
ble K ∗–hyperon states may affect the η′ p cross sections at thresh-
old as well, and thus help to solve the puzzle of η′N interactions
in both, hadronic and photoinduced reactions [31].

5. Summary and outlook

Using the Crystal-Barrel/TAPS detector setup at the electron ac-
celerator facility ELSA of Bonn University, the reaction γ + p →
K 0 + Σ+ was investigated from threshold to Eγ = 2250 MeV. We
find an unexpected structure in the differential cross section be-
tween the K ∗0Λ and K ∗0Σ thresholds: The angular distribution
exhibits a sudden transition from forward peaked to flat with in-
creasing photon energy. In forward directions the cross section
drops by a factor of four, generating a pronounced structure even
in the total cross section. Detailed calculations will be required to
show whether this can be associated with the formation of a K ∗–
hyperon quasi-bound state. To experimentally shed more light on
the threshold structure it will be mandatory to exploit polarisa-
tion observables. In particular, the photon beam asymmetry should
be sensitive to the parity character of the t-channel contributions,
while recoil polarisation and beam–target asymmetry will strongly
constrain the quantum numbers of an intermediate s-channel res-
onance.

γp	  à	  K0	  Σ+	  

A	  sharp	  downfall	  occurs	  in	  between	  
the	  K*Λ	  and	  K*Σ	  thresholds	  

Par3al	  wave	  analyses	  and	  models	  
(including	  πN,	  ηN,	  ρ(ππ)N,	  KΛ,	  KΣ,	  ωN	  
but	  not	  K*Λ	  and	  K*Σ)	  	  do	  not	  reproduce	  
the	  observed	  behavior.	  

à This	  process	  enhances	  the	  relevance	  of	  loops.	  The	  considera3on	  of	  coupled	  
K*Λ	  and	  K*Σ channels	  in	  these	  loops	  may	  provide	  an	  explana3on!	  

Neutral	  meson	  K0	  is	  measured	  à	  tree	  level	  diagrams	  either	  zero	  or	  not	  too	  important	  	  

s-‐channel	  	  	   u-‐channel	   t-‐channel	  KR-‐term	  
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Fig. 1. The reaction γ N → ηN on the free nucleon. Solid (dotted) line: present result
for γ p → ηp (γ n → ηn). The data are from JLab [2] (squares), Bonn [4] (circles),
and LNS [5] (diamonds). Also, the KΛ and KΣ thresholds are indicated by the
vertical lines.

in the model. These meson and baryon pole terms (cf. Fig. 4) are
fixed from the transversality of these amplitudes (see Eqs. (10)–
(19) in Ref. [33]). The implementation of the photon interaction
follows Refs. [42,43,14]. See also Refs. [44,45] for a formulation
where most of the approximations made in [33] are avoided. Bare
photon couplings to the genuine states are also included in the
present model.

For the results of Section 2 on the quasi-free p and n in the
deuteron, we use the impulse approximation, i.e. higher order ef-
fects such as (hadronic) double scattering [46] are neglected. In
order to account for the Fermi motion of the nucleon inside the
deuteron, we follow the prescription of Ref. [15] and fold the cross
section for the free nucleon case with the momentum distribu-
tion of the nucleon inside the deuteron, where the participating
nucleon is set on-the-mass-shell once the energy conservation al-
lows the reaction to take place [47]. The deuteron wave function is
generated based on the Bonn potential [48].

2. Results

The model of Ref. [33] has been applied to the reactions γ N →
π N and π N → π N . In this study, we include the corresponding
E0+ multipoles and S wave amplitudes in the fit, but additionally
take into account the reactions γ p → ηp, γn → ηn, π N → ηN ,
γ N → K Y , and π N → K Y where Y = Λ, Σ . The free parame-
ters of the model of Ref. [33] have been refitted using the ad-
ditional data. The resulting parameters are quite similar to those
of Ref. [33]. In this work, we focus on the issue of the structure
observed in the quasi-free γn → ηn reaction as discussed in the
Introduction. In Section 3 we comment on the results for other re-
actions relevant to the present discussion.

In Fig. 1 the result for the γ p → ηp and γn → ηn cross sec-
tions on free nucleons is shown. The data for the proton case are
well reproduced except for a slight under-prediction around the
N∗(1535) position. For the present study, a good data description
above Eγ = 900 MeV is essential, and this is indeed achieved. For
the production on the free neutron, the cross section exhibits a
minimum around Eγ = 930 MeV, which is close to the KΛ thresh-
old, and a maximum at the KΣ threshold. This dip-bump structure
is absent for the proton case.

In Fig. 2, the present model is compared to the recent cross
section data on the quasi-free neutron and proton in the deuteron
from Ref. [19]. The data are well reproduced.

Fig. 2. Present result (Fermi folded) for the photoproduction on the quasi-free pro-
ton (solid line) and neutron (dotted line). The data are from Ref. [19] for the pho-
toproduction on the quasi-free proton (solid circles) and neutron (crosses). The data
for the free proton are also shown (open symbols, same as in Fig. 1). The vertical
lines indicate the threshold energy of

√
s = mη + MN for the free process and the

nominal position of the N∗(1535).

Fig. 3. The cross section ratio σ (γ n → ηn)/σ (γ p → ηp) on the quasi-free nucle-
ons in the deuteron. The data are from Ref. [19]. The full result is shown as the
solid line; it includes the Fermi motion in the deuteron. The corresponding ratio
in the case of free nucleons is shown as the dashed line. The dotted line shows
the result after removing the γ coupling to the K +Λ loop. Dash-dotted line: same
as the dashed line but replacing the full final state interaction with the Weinberg–
Tomozawa term. This curve is multiplied by an arbitrary factor of 20 to show the
energy dependence of the ratio. Inset (free nucleon case): full result (solid line),
w/o γ coupling to KΛ, KΣ (dashed line), only coupling to π N intermediate state
(dash-dotted line).

In Fig. 3, the ratio of cross sections of photoproduction on the
quasi-free neutron over that on the quasi-free proton is shown
(solid line). The data are from Ref. [19]. Earlier measurements [49–
51] cover only the lower energy region but are in agreement with
the new data of Ref. [19]. The dashed line in Fig. 3 indicates the
ratio of cross sections on free nucleons, i.e., those shown in Fig. 1.
The sharp structure in σn/σp becomes Fermi smeared and the re-
sult for the quasi-free case (solid line) shows a broader peak in
good agreement with the data.

The appearance of the sharp peak in σn/σp is obviously due to
the intermediate strangeness states in the model as indicated in
Fig. 1. The difference in the cross sections on p and n arises from
the isospin breaking of the photon couplings in the final state in-
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deuteron, we follow the prescription of Ref. [15] and fold the cross
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nucleon is set on-the-mass-shell once the energy conservation al-
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well reproduced except for a slight under-prediction around the
N∗(1535) position. For the present study, a good data description
above Eγ = 900 MeV is essential, and this is indeed achieved. For
the production on the free neutron, the cross section exhibits a
minimum around Eγ = 930 MeV, which is close to the KΛ thresh-
old, and a maximum at the KΣ threshold. This dip-bump structure
is absent for the proton case.
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In Fig. 3, the ratio of cross sections of photoproduction on the
quasi-free neutron over that on the quasi-free proton is shown
(solid line). The data are from Ref. [19]. Earlier measurements [49–
51] cover only the lower energy region but are in agreement with
the new data of Ref. [19]. The dashed line in Fig. 3 indicates the
ratio of cross sections on free nucleons, i.e., those shown in Fig. 1.
The sharp structure in σn/σp becomes Fermi smeared and the re-
sult for the quasi-free case (solid line) shows a broader peak in
good agreement with the data.

The appearance of the sharp peak in σn/σp is obviously due to
the intermediate strangeness states in the model as indicated in
Fig. 1. The difference in the cross sections on p and n arises from
the isospin breaking of the photon couplings in the final state in-
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s ∼ 1.67 GeV is addressed within a SU(3) coupled channel model. The quasi-free cross sections on
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peak in σn/σp is a coupled channel effect in S wave that explains the dip-bump structure in γ n → ηn. In
particular, the photon coupling to the intermediate meson–baryon states is important. The stability of the
result is extensively tested and consistency with several pion- and photon-induced reactions is ensured.
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1. Introduction

The photo- and electroproduction of η meson on the free pro-
ton has attracted extensive experimental effort in the last years
[1–9]. The prominent feature in these processes is the dominance
of the S wave contribution from threshold to energies beyond the
N∗(1650) region as revealed by various analyses [10–15].

Recently, the reaction γn → ηn has become accessible in pho-
toproduction experiments on the deuteron or nuclei [16–19,15].
These measurements have been complemented by experimental
studies of the beam asymmetry [20,21]. At energies around

√
s ∼

1.67 GeV, an excess of η production on the neutron compared to
the proton case has been reported [16]; the result has been con-
firmed by other experiments [17,19]. This could be interpreted as
a narrow nuclear resonance, but the interpretation is not unique
[15] and it is currently under an intense debate. Narrow nuclear
resonances may also be accommodated in elastic π N scattering at
1.68 and 1.73 GeV [22,23].

On the theoretical side, the structure observed in the quasi-free
γn → ηn reaction has been interpreted as a potential signal for a
non-strange member of an anti-decuplet of pentaquarks [24,25,13]
(see also Refs. [26,27], where a narrow baryon resonance has been
suggested near 1.68 GeV).

Within the framework of the Giessen model [28,29], in Ref. [30]
the structure has been interpreted as an interference effect from
the S11(1650) and P11(1710). In Ref. [31], a subtle interference

* Corresponding author at: Institut für Kernphysik and Jülich Center for Hadron
Physics, Forschungszentrum Jülich, D-52425 Jülich, Germany.

E-mail addresses: m.doering@fz-juelich.de (M. Döring), nakayama@uga.edu
(K. Nakayama).

from various partial waves is made responsible for the observed
structure for the ηn final state. In Ref. [32], an effective Lagrangian
approach including an explicit narrow state was employed to de-
scribe the data of Ref. [16]. In the η-MAID [11] analysis, the peak
in σn/σp is assigned to the D15(1675). This leads, however, to
problems with too large an ηN decay width, and in Ref. [13]
an additional narrow P11(1670) is considered. In the analysis of
Ref. [15], an interference within the S11 partial wave alone has
been found to give the most natural explanation. Also in Ref. [17],
the S11 assignment gives a much better fit to the data than that
of P11.

The findings described above have motivated us to study the η
photoproduction on proton and neutron within the S wave model
of Ref. [33]. This model, developed for the simultaneous descrip-
tion of γ N → π N and π N → π N , can be easily extended to study
ηN , KΛ and KΣ final states which are included as coupled chan-
nels in the formalism. For details of the model we refer to Ref. [33].
There, the formulation of the model is kept general enough to ac-
commodate the different final states included here. The hadronic
interaction is mediated by the Weinberg–Tomozawa interaction in
the lowest order chiral Lagrangian. The attraction in the S11 partial
wave leads, through the unitarization of the on-shell factorized po-
tential in a Bethe–Salpeter equation, to the formation of a dynami-
cally generated pole that can be identified with the N∗(1535). This
picture of the N∗(1535) [34–39] is quite different from the quark
model picture [40,41]. The model also contains explicit resonance
states which account for the N∗(1650) and a phenomenological al-
most energy independent background.

The hadronic part of the present model [33] has been devel-
oped following the lines of Ref. [37]. For the electromagnetic inter-
action, the photon couples to the meson and baryon components
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Fig. 4. Meson pole term (a) [t channel] and (subleading) baryon pole term (b)
[u channel] in photoproduction. The hatched circles represent the unitary M B →
ηN amplitude. The contribution from the Kroll–Ruderman γ N → M B term arises
automatically [33].

teraction loop contributions as illustrated schematically in Fig. 4.
For the meson pole loop (a), intermediate π N and KΣ states are
possible in γn → ηn, while in γ p → ηp, in addition, the K +Λ
state is possible.1 Thus, there is a cancellation between the con-
tribution from the intermediate K +Λ photon loop and from the
other contributions (π+n + K +Σ0 photon loops and terms with
bare γ N N∗ couplings) in the γ p → ηp reaction around Eγ ∼
1.05 GeV, while this cancellation is absent in the γn → ηn re-
action.

For the ratio σn/σp , the above discussed effect manifests it-
self in the observed peak structure in Fig. 3. Indeed, removing the
photon coupling to the K +Λ state in the γ p → ηp reaction, one
obtains the ratio given by the dotted line in Fig. 3; the peak has
disappeared.

In the following we discuss some further details of the under-
lying dynamics as well as the model dependence of the present
results. The inset in Fig. 3 shows again the free nucleon case (solid
line). If, apart from the photon coupling to K +Λ, we also remove
the couplings to K +Σ− (neutron case) and K +Σ0 (proton case),
the dashed curve is obtained. If we remove additionally the bare
photon couplings to the genuine states (γ N → N∗), the only re-
maining photon coupling is to the π+n (proton case) and π− p
(neutron case) intermediate state. This is shown as the dash-dotted
line in the inset. The ratio in this case is 1 over the entire energy
range, up to tiny isospin breaking effects from the use of physical
masses.

To check for the model dependence of the present results, we
have replaced the hadronic final state interaction (FSI) with the
Weinberg–Tomozawa (WT) term. For both reactions γ p → ηp and
γn → ηn, the mechanism is then given by the loop graph (a) of
Fig. 4 with the unitary M B → ηN transition (hatched circle) re-
placed by the WT term (This loop is sometimes referred to as
“triangle diagram” in the literature). This parameter-free triangle
graph is at order 1/ f 3

π in the coupling and contributes at next-
to-leading order (NLO) in the chiral expansion of the amplitude,
as discussed in Section 3.2 of Ref. [33] (cf. also Ref. [52]). The re-
sulting ratio σn/σp , shown as the dash-dotted line in Fig. 3, is, of
course, very different in magnitude from the full result (dashed
line) — replacing the strong, non-perturbative FSI by the tree-level
WT term is certainly an oversimplification. Note in particular that,
since the WT term does not provide direct π N → ηN transitions,
the otherwise large contribution from the π N photon loop is ab-
sent in this case. However, apart from the overall magnitude of the
σn/σp ratio, its energy dependence shows the same feature as the
full result shown in Fig. 3: in particular the slow fall-off around
Eγ ∼ 800 MeV is present, followed by the very steep rise when
approaching the KΣ threshold and the weak slope above the KΣ
threshold.

1 The subleading contribution from the baryon pole term [33] (cf. Fig. 4(b)) is not
included in the results, but discussed in Section 3.

Fig. 5. Cross section ratio σ (γ n → ηn)/σ (γ p → ηp) for the quasi-free processes.
Solid line: full result, same as in Fig. 3. Dotted line: Removing all contributions
from genuine N∗ resonances. Dash-dotted line: including the ππ N channel in the
result. Dashed line: including the ππ N channel plus the baryon pole term (b) from
Fig. 4.

Thus, on one hand a strong hadronic FSI interaction is needed
to quantitatively explain the σn and σp cross sections in this
non-perturbative energy region. On the other hand, the pro-
nounced resonance-like enhancement of σn compared to σp , at
Eγ ∼ 1.05 GeV, is already present when considering the triangle
diagram at NLO in the chiral expansion. Note that this very trian-
gle diagram (with π+n intermediate state) is also quantitatively
responsible for the pronounced energy dependence of the cusp
structure in near-threshold π0 p photoproduction [33].2

3. Tests of η photoproduction

As discussed in the previous section, the final state interac-
tion (FSI) from the unitarized M B → ηN transition is needed for
a quantitative description of the results. This FSI is strong and
non-linear and thus it is difficult to fully disentangle the individual
contributions. In particular, thresholds are present not only in the
photon loops but also in the M B → ηN amplitude, and for spe-
cific reaction channels, those thresholds may or may not appear
pronounced. Still, the sensitivity of the results to changes of the
model can be tested, which is done in the following.

To start with, apart from the photon couplings to intermedi-
ate states discussed in the previous section, the current model [33]
contains explicit isospin breaking from the different bare couplings
γ p → N∗(+) and γn → N∗(0) . To make sure these free param-
eters do not mock up the different cross sections in η photo-
production on p and n, we have removed all contributions from
the two genuine resonances, i.e. the bare photon and strong cou-
plings γ N → N∗ and M B → N∗ have been set to zero. The result
is shown as the dotted line in Fig. 5. The energy dependence of
σn/σp is barely changed but its magnitude is shifted downwards.
This is not unexpected, because one of the genuine resonances has
its pole far in the complex plane and provides an almost energy
independent background [33]. Thus, removing this contribution re-
sults in the observed, almost energy independent shift of σn/σp

2 There are, however, higher order terms not considered that induce a small, en-
ergy independent discrepancy for Re E0+(π0 p) [33].
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Model	  for	  the	  γ	  N	  à	  K0	  Σ	  reac3on	  

V’B’=K*Y	  

+	  Form	  factor	  at	  the	  Yukawa-‐type	  vertex	  
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Comparison	  to	  cross	  secZon	  data	  
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R.	  Ewald	  et	  al.	  (CBELSA/TAPS	  CollaboraZon)	  
Phys.	  Le\.	  B713	  (2012)	  180-‐185	  

MR	  =	  1977	  MeV 	  ΓR	  =	  64	  MeV	  

MR	  =	  2035	  MeV 	  ΓR	  =	  125	  MeV	  

JP	  =	  1/2-‐,	  3/2-‐	  	  

VB	  model	  adjusted	  to	  reproduce	  downfall:	  

ü  N*(2080)	  (3/2-‐)	  and	  N*(2090)	  (1/2-‐)	  
were	  in	  earlier	  PDG	  versions…	  

ü  it	  appears	  in	  other	  VM	  models	  too:	  
	  	  	  	  	  	  	  D.	  Gamermann,	  C.	  Garcia-‐Recio,	  J.	  Nieves,	  L.L.	  Salcedo,	  
	  	  	  	  	  	  	  Phys.Rev.	  D84	  (2011)	  056017	  
	  	  	  	  	  	  	  K.P.	  Khemchandani,	  H.	  Kaneko,	  H.	  Nagahiro,	  A.	  Hosaka,	  	  	  	  	  	  
	  	  	  	  	  	  	  Phys.Rev.	  D83	  (2011)	  114041	  	  	  

ü  N*(2080)	  (3/2-‐)	  leads	  to	  good	  descrip3on	  of	  	  
	  	  	  	  	  	  LEPS	  data	  for	  γ	  p	  ➔	  K+ Λ(1520)	  	  	  
	  	  	  	  	  	  J.J.	  Xie	  and	  J.	  Nieves,	  Phys.	  Rev.	  C82	  (2010)	  045205	  



Another	  reac3on:	  	  γ	  p	  à	  K*0	  Σ+	  

•  Data	  from	  CLAS	  and	  CBELS/TAPS	  (discrepancies)	  

•  A	  few	  theore3cal	  models	  exist,	  based	  on	  tree-‐level	  Born	  approxima3on	  

I.	  Hleiqawi	  et	  al,	  Phys.Rev.C75	  (2007)	  042201	  (R);	  76	  (2007)	  039905	  (E)	  

M.	  Nanova	  et	  al,	  Eur.Phys.J.	  A	  35	  (2008)	  333	  

S-‐H.	  Kim,	  A.	  Hosaka,	  S-‐i.	  Nam,	  H-‐C.	  Kim,	  arXiv:1310.6551	  [hep-‐ph]	  Y.	  Oh,	  	  and	  H.	  Kim,	  Phys.Rev.C74	  (2006)	  015208	  

γ	  p	  à	  K*0	  Σ+	  

κ	




(t-‐channel	  mechanism)	  

No	  t-‐channel	  tree-‐level	  term	  
(K*	  has	  zero	  charge!)	  

➔	  the	  coupled-‐channel	  loop	  
acquires	  a	  dominant	  role!	  	  

A	  tree-‐level	  term	  of	  the	  type	  γKK*	  (anomalous)	  also	  contributes	  
(unitariza3on	  of	  this	  contribu3on	  is	  negligible)	  
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The γ	  p	  à	  K*0	  Σ+	  reac3on	  from	  VB	  dynamics	  
A.	  Ramos,	  E.	  Oset,	  in	  preparaZon	  

	  ➔	  smooth	  background	  contribu3on	  free	  from	  coupled-‐channel	  interference	  effects	  



Missing	  mechanism	  in	  previous	  works!	  
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Results	  for	  γ	  p	  à	  K*0	  Σ+	  
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•  The	  combina3on	  of	  Chiral	  dynamics	  with	  non-‐perturba3ve	  unitary	  techniques	  	  has	  
revealed	  as	  a	  powerful	  method	  to	  inves3gate	  the	  nature	  of	  hadrons.	  	  

à 	  Poles	  in	  the	  amplitudes	  correspond	  to	  dynamically	  generated	  resonances.	  	  
	  	  	  	  	  (many	  of	  the	  known	  baryon	  resonances	  can	  be	  interpreted	  this	  way)	  
	  
•  Vector	  mesons	  should	  enter	  the	  scheme	  in	  order	  to	  interpret	  the	  resonances	  and	  

reac3ons	  for	  W	  ≥	  2	  GeV.	  
	  
•  The	  reac3on	  γ p	  à	  K0	  Σ+	  around	  2	  GeV	  is	  a	  nice	  example	  that	  demonstrate	  the	  	  important	  

role	  of	  vector	  mesons	  in	  coupled	  channels.	  
à  Our	  model	  for	  the	  VB	  interac3on	  reproduces	  the	  rapid	  downfall	  of	  the	  
	  	  	  	  	  	  	  γ p	  à	  K0	  Σ+	  	  reac3on,	  from	  an	  interference	  between	  amplitudes	  containing	  
	  	  	  	  	  	  	  intermediate	  K*Σ	  and	  K*Λ	  
à  A	  fit	  to	  the	  CBELSA/TAPS	  data	  allows	  to	  predict	  the	  posi3on	  of	  a	  resonance	  at	  2030	  MeV	  
à  Predic3ons	  are	  given	  for	  γ n	  à	  K0	  Σ0	  	  
	  
•  The	  coupled-‐channel	  vector-‐baryon	  interac3on	  has	  also	  revealed	  important	  in	  the	  study	  

of	  the	  reac3on	  γ p	  à	  K*0	  Σ+	  	  	  

à  More	  work	  is	  needed…	  

Conclusions	  


