

13th International Workshop on Meson Production, Properties and Interaction

| Kraków, Poland | 29th May – 3rd June 2014

Study of rare and suppressed processes in B meson decays with ATLAS

Jaroslav Günther

on behalf of the ATLAS Collaboration

Czech Technical University FNSPE, Prague

Outline

- ◆ Study of the decay B_d → K* (→ K⁺π⁻) μ⁺μ⁻
- Search for $B_s \rightarrow \mu^+\mu^-$

Conclusions

Kraków, Poland 29th May – 3rd June 2014

THE ATLAS DETECTOR

Inner Detector ($|\eta| < 2.4$) silicon pixel, strip & transition rad. tracker • Impact parameter resolution \approx 10 μm 2T solenoidal field

Muon Spectrometer ($|\eta| < 2.7$) Trigger chambers (RPC, TGC), Tracking chambers (MDT, CSC) 0.5-2 T toroidal field

014

Tracking

σ_{pT}/pτ ~ 0.05% pτ ⊕ 1.5%

σм(J/ψ-Y) ~ 60-120 MeV

(for pT < 100 GeV, ID dominant)

ATLAS Data Taking

2011 > 5 fb⁻¹ recorded instantaneous luminosity &

pile-up steadily increasing

2012

~ 20fb⁻¹ recorded

- Flatter instantaneous luminosity profile
- Challenging pile-up conditions !

di-muon trigger selection

Tier-0 processing RAW and derived data products registered for export (2010-12) Up-to 80k Tier-0 jobs completed/day (May to July 2012)

0 1 4

29th May – 3rd June 2014 Kraków, Poland

Jaroslav Guenther

STUDY OF THE DECAY $B_D \rightarrow K^* (\rightarrow K^+\pi^-) \mu^+\mu^-$

Motivation

- relatively small SM BR $\approx 1.1*10^{-6}$
- provides exclusive final state for
 - $b \rightarrow s + l+l$ transition
- only loop-mediated within SM

Observables sensitive to NP:

- Lepton forward-backward asymmetry A_{FB}
- K^{*0} longitudinal polarization fraction F_L

(hadronic uncertainties drop out - at some order)

 $d^4\Gamma$

 $dq^2 d\cos\theta_\ell d\cos\theta_{K^*} d\phi$

Measurement:

differential angular distributions of the 4-particle final state as a function of di-muon mass (q²)

B_D → K* (→ K⁺π⁻) $\mu^{+}\mu^{-}$ **Decay** & analysis method

Kinematic observables:

- 3 angles (θ_L , θ_K , Φ)
- dimuon mass q² (K^{*0} on shell)

θκ.

π+

⊼∗

B

 $d^4\Gamma$

 $dq^2 d\cos\theta_\ell d\cos\theta_{K^*} d\phi$

0 1 4

differential decay rate

Measured angular distributions:
insufficient statistics 2 out of 3 angles integrated out from the 4 diff. decay rate

$$\frac{1}{\Gamma}\frac{d^2\Gamma}{dq^2d\cos\theta_K} = \frac{3}{2}F_L(q^2)\cos^2\theta_K + \frac{3}{4}(1 - F_L(q^2))(1 - \cos^2\theta_K)$$

$$\frac{1}{\Gamma} \frac{d^2 \Gamma}{dq^2 d \cos \theta_l} = \frac{3}{4} F_L(q^2) (1 - \cos^2 \theta_l) + \frac{3}{8} (1 - F_L(q^2)) (1 + \cos^2 \theta_l) + A_{FB}(q^2) \cos \theta_l$$

 $\langle A_{FB} \rangle \& \langle F_L \rangle$ extraction:

• extended unbinned maximum-likelihood fits

• 1-D fits in bins of q^2 to mass and the 2 angles Θ_l , Θ_K

B_D → K* (→ K⁺π⁻) $\mu^+\mu^-$ signal yield

Constraints on measurement:

- q² < 2 GeV², limited statistics due to trigger acceptance
- experimental veto on $J/\psi \& \psi(2S)$ (cc regions)
 - 8.68 < q² < 10.09 J/ψ→ μ⁺μ⁻ (3σ)
 - 12.86 < q^2 < 14.18 $\psi(2S) \rightarrow \mu^+\mu^-(3\sigma)$
- to remove radiative c-decays and remaining J/ ψ & ψ (2S) in tails :
 - cut $|(m(B_d)_{REC} m(B_d)_{PDG}) (m(\mu^+\mu^-)_{REC} m(cc)_{PDG})| < \Delta m$

B_d mass likelihood fit :

- cut based selection optimised on MC
- Gaussian for signal
- (with per-event errors)
- Exponential for the background
- K^{*0} accepted if m ($K^{+}\pi^{-}$) \in (846,946)MeV
- $N_{sig} = 466 \pm 34$
- $N_{bkg} = 1132 \pm 43$

014

ATLAS-CONF-2013-038

Kraków, Poland | 29th May – 3rd June 2014

0 1 4

Jaroslav Guenther

B_D → K* (→ K⁺π⁻) $\mu^+\mu^-$, <A_{FB}> & <F_L> FIT RESULT

Fit Results:

statistical uncertainty dominates ATLAS measurement in agreement with SM

q^2 range (GeV ²)	N_{sig}	A_{FB}	F_L
$2.00 < q^2 < 4.30$	19 ± 8	$0.22 \pm 0.28 \pm 0.14$	$0.26 \pm 0.18 \pm 0.06$
$4.30 < q^2 < 8.68$	88 ± 17	$0.24 \pm 0.13 \pm 0.01$	$0.37 \pm 0.11 \pm 0.02$
$10.09 < q^2 < 12.86$	138 ± 31	$0.09 \pm 0.09 \pm 0.03$	$0.50 \pm 0.09 \pm 0.04$
$14.18 < q^2 < 16.00$	32 ± 14	$0.48 \pm 0.19 \pm 0.05$	$0.28 \pm 0.16 \pm 0.03$
$16.00 < q^2 < 19.00$	149 ± 24	$0.16 \pm 0.10 \pm 0.03$	$0.35 \pm 0.08 \pm 0.02$
$1.00 < q^2 < 6.00$	42 ± 11	$0.07 \pm 0.20 \pm 0.07$	$0.18 \pm 0.15 \pm 0.03$

ATLAS-CONF-2013-038

Search for $B_s \rightarrow \mu^+ \mu^-$

Motivation

- (SM) helicity suppressed FCNC
- strong QCD-free constraint on NP
- genuine probe of Yukawa interactions
- EW precision test (wrt. Z penguin)

Recent results

0 1 4

very consistent with SM hope for > BR due to NP (pseudo-)scalar op. room for NP also in :

- destructive interference between NP and SM • BR << BR_{SM} ???
- waits for LHC RUN II data

Kraków, Poland 29th May – 3rd June 2014

$B_s \rightarrow \mu^+ \mu^-$ strategy @ ATLAS

Analysis Features:

- Blind analysis technique B_s signal mass region excluded (± 300 MeV)
- sideband events split in 1/2 :
 - even # events = bkg. interpolation, odd # = selection optimization
- Multivariate analysis (BDT)
- Relative BR measurement:
 - reference signal decay = $B^+ \rightarrow J/\psi K^+$ (large stat.)
 - partial cancelation of syst. uncertainties on lumi, cross-sec, efficiencies

B_s → μ⁺μ⁻ signal & background

Signal extraction:

- N_{Bs} is a CLs limit derived from :
 - candidate count &
 - background estimation in signal region
- N_{B+} is an unbinned extended maximum-likelihood fit

$$N_{B_s o \mu^+ \mu^-} imes rac{1}{N_{B^+ o J/\psi K^+}}$$

Background composition:

- resonant: $B \rightarrow hh' (K/\pi)$
 - 'fake'-muon rates (MC) π±/ K+ /K- ~ 2.1/4.1/3.3 ‰
 - 0.3 B \rightarrow hh' events expected in the signal region
- continuum: non resonant $b\overline{b} \rightarrow \mu^+\mu^- X$
 - smooth in dimuon mass
 - sideband interpolation (even # events)

ATLAS-CONF-2013-076

B_s → $μ^+μ^-$ **Background Discrimination**

ATLAS-CONF-2013-076

13

Jaroslav Guenther

Kraków, Poland | 29th May – 3rd June 2014

B_s $\rightarrow \mu^{+}\mu^{-}$ **BDT** selection

Selection optimised in 2D space (Δm,q):

- Δm = signal mass window width
- q = BDT output (event classifier)

odd-numbered sideband events and signal MC used

N_{bkg} in sig. region estimated from sideband data

ATLAS-CONF-2013-076

B_s → μ⁺μ⁻ **Reference Decay Yield**

 $B^{\pm} \rightarrow J/\psi (\rightarrow \mu^{+}\mu^{-}) K^{\pm}$ yield:

 $N_{B\pm \rightarrow J/\psi} (\rightarrow \mu + \mu -) \kappa \pm =$ 15214 ± 1.1%(stat) ± 2.4%(syst)

ATLAS-CONF-2013-076

B_s $\rightarrow \mu^{+}\mu^{-}$ **Box opening**

New ATLAS result on 2012 data soon!

0 1 4

Kraków, Poland | 29th May – 3rd June 2014

CLUSIONS

Results from the full 2011 dataset

No NP signs or significant deviation from SM predictions

ATLAS has high quality b-physics program + search for the rare decay B_s → μ⁺μ⁻ **ATLAS-CONF-2013-076** angular analysis of the decay $B_d \rightarrow K^{*0} (\rightarrow K^+\pi^-) \mu^+\mu^-$ **ATLAS-CONF-2013-038**

Improved analysis techniques are being developed Plans:

Publish result on the full 2012 dataset (>20fb⁻¹) ASAP stay tuned !

THANK YOU FOR YOUR ATTENTION !

Kraków, Poland | 29th May – 3rd June 2014

BACKUP SLIDES

Kraków, Poland | 29th May – 3rd June 2014

Jaroslav Guenther

ATLAS TRIGGER

di-muon trigger event selection :

5 fb-1 ~ 150G B0-pairs, ~ 30M Bs $\rightarrow J/\psi \Phi$ specific dimuon selections with Barrel/Endcap logic introduced in 2012 new dedicated $\mu+\mu-X$ trigger introduced in 2012 B-physics trigger (mu4mu4) thresholds unprescaled during 2011 despite the increasing instantaneous luminosity

B_s $\rightarrow \mu^{+}\mu^{-}$ event reconstruction

Signal candidate selection
 2, 3 or 4 prong vertex constraint depending on decay topology Primary vertex selection: Closest in z to the B candidate Re-fit excluding B daughters
 Tracks: At least 1 pixel, 6 SCT and 9 TRT hits (good tracks) η < 2.5 and pT > 4 (2.5) GeV for muons (kaons)
 tracks from the tracking systems matched to muon spectrometer tracks B candidates pT > 8 GeV and η < 2.5 Events selected based on their decay topology using many discriminating
variables

T

B_s $\rightarrow \mu^{+}\mu^{-}$ set. of discriminating variables

Discriminating variables:

0 1 4

- Distinguish B and continuum events
- Highest discriminating power
- Exclusion of highly correlated variables
- Only variables not correlated with invariant mass were taken
- Exploit PV-SV separation (Lxy), symmetry of the final state (d0), pointing angle, b-hadronisation features (isolation, pT of the B)

B_s $\rightarrow \mu^{+}\mu^{-}$ **DISCRIMINATING VARIABLES**

S O N 0 1 4

Variable	Description	Ranking
$L_{\rm xy}$	Scalar product in the transverse plane of $(\Delta \vec{x} \cdot \vec{p}^B) / \vec{p}_T^B $	1
<i>I</i> _{0.7} isolation	Ratio of $ \vec{p}_T^B $ to the sum of $ \vec{p}_T^B $ and the transverse momenta of all tracks with $p_T > 0.5$ GeV within a cone $\Delta R < 0.7$ from the <i>B</i> direction, excluding <i>B</i> decay products	2
$ \alpha_{2D} $	Absolute value of the angle in the transverse plane between $\Delta \vec{x}$ and \vec{p}^B	3
$p_{ m L}^{ m min}$	Minimum momentum of the two muon candidates along the B direction	4
p_{T}^{B}	B transverse momentum	5
ct significance	Proper decay length $ct = L_{xy} \times m_B / p_T^B$ divided by its uncertainty	6
χ^2_z, χ^2_{xy}	Significance of the separation between production (PV) and decay vertex (SV) $\Delta \vec{x}^T \cdot (\sigma_{\Delta \vec{x}}^2)^{-1} \cdot \Delta \vec{x}$, in <i>z</i> and (<i>x</i> , <i>y</i>), respectively	7, 13
$ D_{xy} ^{\min}$, $ D_z ^{\min}$	Absolute values of the minimum distance of closest approach in the xy plane or along z of tracks in the event to the B vertex	8, 11
ΔR	Angle $\sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$ between $\Delta \vec{x}$ and \vec{p}^B	9
$ d_0 ^{\max}, d_0 ^{\min}$	Absolute values of the maximum and minimum impact parameter in the transverse plane of the <i>B</i> decay products relative to the primary vertex	10, 12

$B_s \rightarrow \mu^+ \mu^-$ isolation variable

Isolation variable:

- Tracks with pT > 0.5 GeV excluding B daughters in cone $\Delta R < 0.7$ $\Delta R = \sqrt{(\Delta \eta^2 + \Delta \phi^2)}$
- Only tracks associated with the corresponding PV are taken to avoid isolation cut efficiency to depend on pile-up

B_s $\rightarrow \mu^{+}\mu^{-}$ (acceptance x efficiency) Ratio

 $\frac{(\epsilon_{tot} \times A_{tot})_{B^+ \to J/\psi K^+}}{(\epsilon_{tot} \times A_{tot})_{B_s \to \mu^+ \mu^-}}$

Determined on reweighted Bs and B+ MC samples wrt the fiducial volume

• Systematic uncertainties:

0 1 4

- Dominant contribution from data-MC discrepancies of separation variables
- Main discrepancies come from : Isolation and Lxy
- Isolation is B-flavour dependent

 Lxy is correlated with the vertex reconstruction (→ with other discriminant variables) but is it B-flavour independent

	X	
Channel	$A \times \epsilon$	$R_{A\epsilon}$
B +//	$1.317 \pm 0.008\%$ (stat)	$0.267 \pm 1.8\%$ (stat) $\pm 6.0\%$ (syst)
B_s^0	4.929 ± 0.084% (stat)	$0.207 \pm 1.0\%$ (stat) $\pm 0.9\%$ (syst)

B_s → $\mu^{+}\mu^{-}$ systematics on SES

SES systematic uncertainties

 Table shows summary of ΔSES/SES uncertainty (due to syst. uncertainty sources) → SES statistical uncertainty of 2.1%

description	contribution
PDG branching fractions and f_s/f_d	8.5%
K^{\pm} tracking efficiency	5%
vertexing efficiency	2%
K^{\pm} charge asymmetry. in $B^{\pm} \rightarrow J/\psi K^{\pm}$	1%
$B^{\pm} \rightarrow J/\psi K^{\pm}$ yield	2.4%
$R_{A\epsilon}$	6.9%
total (comb. in quadrature)	12.5%

contributions from backgrounds:

- background interpolation from sidebands \rightarrow 4% on Rbkg
- B → hh' negligible

Mainly contribute: BRref and fu/fs , acc-vs-eff ratio (data-MC discrepancies), K tracking efficiency

B_s $\rightarrow \mu^{+}\mu^{-}$ upper limit extraction

CLs method with profile likelihood function

0 1 4

 $\mathcal{L} = \text{Poisson}(N_{SR}^{obs} | \epsilon \mathcal{B} + N_{bkg} + N_{B \to hh}) \text{Poisson}(N_{bkg,SB}^{obs} | R_{bkg} N_{bkg}) \times \\ \text{Gauss}(\epsilon^{obs} | \epsilon, \sigma_{\epsilon}) \text{Gauss}(R_{bkg}^{obs} | R_{bkg}, \sigma_{R_{bkg}}) \qquad \epsilon = 1/\text{SES}$

 the expected UL is calculated assuming the number of events in the signal region as the number of expected events obtained from the sideband interpolation (6.75 events):

 peeking background negligible, but included in the optimization procedure and in the upper limit calculation

	quantity	value
	$N_{J/\psi K^{\pm}}$	$15214 \pm 1.10\% \pm 2.39\%$
NKA N	$R_{A\epsilon}$	$0.267 \pm 1.8\% \pm 6.9\%$
	SES	$(2.07 \pm 0.26) \cdot 10^{-9}$
	R_{bkg}^{obs}	1.240 ± 0.050
	$N_{SR}^{exp} \mid N_{SR}^{obs}$	6.75 6
	$N^{obs}_{bkq,SB}$	8
	$N_{B \rightarrow hh}$	0.30

 $R = \Delta_{c_{R}} / \Delta_{c_{R}}$

$B_s \rightarrow \mu^+ \mu^-$ analysis flowchart

B_D → K* (→ K⁺π⁻) $\mu^+\mu^-$ **BaseLine cuts**

B_D → K* (→ K⁺π⁻) $\mu^{+}\mu^{-}$ FIT STRATEGY

- Extended unbinned maximum likelihood fit (performed sequentially):
 - 1) mass (Kπµµ) distribution fitted to separate signal and background yields
 - 2) mass-angular simultaneous fit performed on the signal events from the previous fit (fixed mass)
 - Done separately for each of the 6 q² bins

N

0 1 4

The procedure checked to give the same results as single-step fit except the lowest q2 bin (included in systematics there).

$$\mathcal{M}_{\rm sig}(m_i, \delta_{m_i}) = \frac{1}{\sqrt{2\pi} s_m \delta_{m_i}} \exp\left(\frac{-(m_i - m_{B_d^0})^2}{2(s_m \delta_{m_i})^2}\right)$$

$$\mathcal{L} = \prod_{i=1}^{N} \left[N_{\text{sig}} \cdot \mathcal{M}_{\text{sig}}(m_i, \delta_{m_i}) + N_{\text{bckg}} \cdot \mathcal{M}_{\text{bckg}}(m_i) \right], \qquad \mathcal{M}_{\text{bckg}}(m_i) = \epsilon$$

ATLAS-CONF-2013-038

 $-{m \lambda}{\cdot}m_{i}$

B_D → K* (→ K⁺π⁻) $\mu^{+}\mu^{-}$ FIT STRATEGY

• Angular fit (in each q2 bin): $\mathcal{L} = \prod_{i=1}^{n} [N_{\text{sig}}^{\text{fix}} \cdot \mathcal{M}_{\text{sig}}(m_i, \delta_{m_i} | \text{fixed}) \cdot \mathcal{A}_{L, \text{sig}}(\cos \theta_{L,i}) \cdot \alpha_L(\cos \theta_{L,i}) \cdot \mathcal{A}_{L, \text{sig}}(\cos \theta_{K,i}) \cdot \alpha_K(\cos \theta_{K,i}) + \mathcal{A}_{K, \text{sig}}(\cos \theta_{K$

 $N_{ ext{bckg}}^{ ext{fix}} \cdot \mathcal{M}_{ ext{bckg}}(m_i | ext{fixed}) \cdot \mathcal{A}_{L, ext{bckg}}(\cos heta_{L,i}) \cdot \mathcal{A}_{K, ext{bckg}}(\cos heta_{K,i})]$

• Signal PDFd: $\mathcal{A}_{L,\text{sig}}(\cos \theta_{L,i}) = \frac{3}{4} F_L(q^2) \left(1 - \cos^2 \theta_{L,i}\right) + \frac{3}{8} \left(1 - F_L(q^2)\right) \left(1 + \cos^2 \theta_{L,i}\right) + A_{FB}(q^2) \cos \theta_{L,i}$

$$\mathcal{A}_{K,\text{sig}}(\cos\theta_{K,i}) = \frac{3}{2}F_L(q^2)\cos^2\theta_{K,i} + \frac{3}{4}\left(1 - F_L(q^2)\right)\left(1 - \cos^2\theta_{K,i}\right)$$

Background PDF – linear combination of Chebyshev polynomials (to 2nd order)

$$\mathcal{A}_{L(K),\text{bkg}} = 1 + p_{1L(K)} \cos \theta_{L(K),i} + p_{2L(K)} \left(2 \cos^2 \theta_{L(K),i} - 1 \right)$$

detector and selection effects on the angular shapes taken into account via the acceptance functions $\alpha_L(\cos\theta_{L,i})$, $\alpha_K(\cos\theta_{K,i})$

ATLAS-CONF-2013-038

B_D → K* (→ K⁺π⁻) $\mu^{+}\mu^{-}$ systematic

- Ranges of the mass fit region
 - Differ in q2 bins due to deltaM cut effect
- Angular background shapes
 - Varied between 2nd and 3rd Chebyshev polynomials

Contribution of B± → µ+µ-K± events
estimated by removing potential B± → µ+µ-K± candidates
Angular acceptance effects
Mainly from limited MC statistics
Various signal angular shapes tested
Sequential fitting approach
Non-negligible effect only

in 2.00 < q2 < 4.30 GeV2 bin due to low statistics

Negligible sources:

- Contribution from S-wave
 - $(Bd \rightarrow K+\pi-\mu+\mu-)$
- Contribution from
 - $\mathsf{Bs} \to \Phi(\to \mathsf{K} + \mathsf{K}) \mu + \mu -$
- Background mass shape
- Possible bias due to angular fit approach (neglecting correlation)

ATLAS-CONF-2013-038

Jaroslav Guenther

33

Kraków, Poland | 29th May – 3rd June 2014

ATLAS-CONF-2013-038

Jaroslav Guenther

Kraków, Poland | 29th May – 3rd June 2014

014

ATLAS-CONF-2013-038

Kraków, Poland | 29th May – 3rd June 2014

014

ATLAS-CONF-2013-038

Kraków, Poland | 29th May – 3rd June 2014

014

