

Meson spectroscopy at LHCb

Outline

- LHCb Experiment
- Excited B states
- Charmed spectroscopy
- Search for Ξ_{cc} baryon
- Summary

On behalf of the LHCb Collaboration

Tomasz Szumlak AGH-UST, Michal Kreps University of Warwick

13th Workshop on Meson Production, Properties and Interactions 29/05 – 03/06/2014, Krakow, POLAND

Collaboration

- ≈900 physicists
 64 universities/laboratories
 16 countries
- >160 papers published

Physics Programme

- CP violation
- rare decays
- electroweak physics
- lepton flavour violation
- charm physics
- production and spectroscopy

LHCb is a dedicated flavour experiment with the main focus on searches for New Physics (NP)

□ precise measurement of CP-violation

□ rare decays of b- and c-mesons

Performs indirect searches using quantum loops

complementary to energy frontier experiments ATLAS & CMS

Must provide: excellent position, vertex and momentum resolution & PID

- Single arm spectrometer geometry
- $_{\rm o}$ Fully instrumented in rapidity range 2 < η <5
- $_{\rm o}$ Capable of reconstructing backward tracks (-4 < η < -1.5)

The LHCb detector at LHC (JINST 3 2008 S08005)

Operation conditions of the LHCb in 2011

- \Box recorded luminosity L \approx **1,2** [fb⁻¹] at beam energy 3.5 [TeV]
- **LHCb** stably operated at $L_{inst} = 4.0 \times 10^{32} [cm^{-2}s^{-1}]$ (nominal 2.0 x 10³²)
- \Box Average number of visible interactions per x-ing $\mu = 1.4$ (nominal 0.4)
- □ Data taking efficiency ~90 % with 99 % of operational channels
- □ HLT (High Level Trigger) input ~ 0.85 MHz, output ~ 3 kHz
- □ Ageing of the sub-detectors monitored according to expectations

Luminosity leveling

 Use displaced p-p beams
 Lower inst. Luminosity
 Stable conditions during the run
 Lower pile-up

Operation conditions of the LHCb in 2012

- □ Beam energy 4.0 [TeV] (15 % increase of the b-barb x-section)
- \Box Keep the luminosity at L_{inst} = 4.0 x 10³² [cm⁻²s⁻¹] for this year
- \Box Average number of visible interactions per x-ing slightly higher $\mu = 1.6$

 $\hfill\square$ Keep high data taking efficiency and quality

 \Box HLT (High Level Trigger) input \sim **1.0 MHz**, output \sim **5 kHz** (upgraded HLT farm and revisited code)

□ Collected ~ 2.1 fb⁻¹ of collision data

Orbitally excited (L=1) B states – Introduction

The Heavy Quark Effective Theory (HQET) is an important tool for predicting masses of $\boldsymbol{B}_{(s)}$ mesons

 $_{\textrm{\tiny D}}$ Perturbative expansion in terms of $\Lambda_{\textrm{QCD}}/\textrm{m}_{b}$

 \Box HQET can be validated by precise measurement of properties of the excited beauty mesons (both **B** and **B**_s)

Study of the B_s^{**} states @ LHCb

- Use BK mass spectrum to study the excited states
- B⁺ selected using a number of different decay channels
- Purity of the selected sample improved by the multivariate classifiers

Study of the B_s^{**} states @ LHCb

- □ **B**_{s1} state confirmed by LHCb
- World best measurements of the B_{s1}, B_{s2}* and B* masses

• **First observation** of the $B_{s2}^* \rightarrow B^{*+}K^-$ decay

• Can be used for testing the static quark model of hadrons

 Before LHCb only a few states observed out of those predicted theoreticaly in 80s (S. Godfrey and N. Isgur PR D32 (1985) 189)

• Can be used for testing the static quark model of hadrons

 Before LHCb only a few states observed out of those predicted theoreticaly in 80s (S. Godfrey and N. Isgur PR D32 (1985) 189)

• Can be used for testing the static quark model of hadrons

 Before LHCb only a few states observed out of those predicted theoreticaly in 80s (S. Godfrey and N. Isgur PR D32 (1985) 189)

• Can be used for testing the static quark model of hadrons

 Before LHCb only a few states observed out of those predicted theoreticaly in 80s (S. Godfrey and N. Isgur PR D32 (1985) 189)

D₁ meson spectroscopy – Event Selection Highlights

Charmed mesons in the inclusive final states are reconstructed using

□ $D^{*+} \rightarrow D^0 \pi^+, D^+ \rightarrow K^- \pi^+ \pi^+, D^0 \rightarrow K^- \pi^+$ □ High quality charged tracks with p > 3 GeV, $p_T > 250$ MeV

 All tracks used to reconstruct *D* mesons are required to have large impact parameter w.r.t the primary vertex

• Topological cuts to reduce contamination from **B** decays

I All decay products should be identified by RICH detectors

LHCb - JHEP 09 (2013) 145

D_{J} meson spectroscopy – $D^{*+} \pi^{-}$ Mass Spectra

- Spectrum is dominated by signals coming from D₁(2420)^o and D^{*}₂(2460)^o
 No structure seen in wrong-sign sample (i.e, D^{*+} π⁺)
- Complicated structure seen in mass range (2600 2800) MeV

D_{J} meson spectroscopy – $D^{*+} \pi^{-}$, Helicity Angle θ_{H}

 $_{\rm D}$ Using the helicity angle information spin-parity analysis is possible by fitting the D*+ π^- mass spectra $$\pi^+$$

- Natural spin-parity for states with J^P = 0⁺, 1⁻, 2⁺
 Expect the angular distribution to be ~ sin(θ_H)
- Unnatural spin-parity for states with J^P = 0⁻, 1⁺, 2⁻
 Expect the angular distribution to be ~ 1 + h·cos(θ_H)

Enhanced natural parity sample | $\cos(\theta_{H})| < 0.75$

 D^0

 θ_H

 π

D_{J} meson spectroscopy – $D^{*+} \pi^{-}$, Unnatural Parity Sample

Clear D₁(2420)^o signal, contribution from D^{*}₂(2460)^o highly suppressed

□ New structures observed: D_J(2420)^o, D_J(2740)^o and D_J(3000)^o

D_{J} meson spectroscopy – $D^{*+} \pi^{-}$, Unnatural Parity Sample

Clear D₁(2420)^o signal, contribution from D^{*}₂(2460)^o highly suppressed

New structures observed: D_J(2580)^o, D_J(2740)^o and D_J(3000)^o

15

D_J meson spectroscopy – $D^{*+} \pi^-$, Natural Parity Sample

 $_{\rm D}$ Expect both parity types, clear signal from $D_1(2420)^o$ and $D^*_2(2460)^o$

• New structures observed: D*,(2650)^o and D*,(2760)^o

16

D_{J} meson spectroscopy – $D^{*+} \pi^{-}$, Natural Parity Sample

• Expect both parity types, clear signal from $D_1(2420)^{\circ}$ and $D_2^*(2460)^{\circ}$

□ New structures observed: **D**^{*}_J(2650)^o and **D**^{*}_J(2760)^o

 $m(D^{*+}\pi)$ [MeV]

D_{J} meson spectroscopy – $D^{*+} \pi^{-}$, Angular Analysis (1)

New states D^{*},(2650)^o and D^{*},(2760)^o consistent with natural parity hypothesis

LHCb - JHEP 09 (2013) 145

D_{J} meson spectroscopy – $D^{*+} \pi^{-}$, Angular Analysis (2)

New states D_J(2420)^o, D_J(2740)^o and D_J(3000)^o consistent with unnatural parity hypothesis

LHCb - JHEP 09 (2013) 145

D_J meson spectroscopy – $D^{0/+} \pi^{+/-}$ Mass Spectra

- Contribution from natural parity states only
- Significant cross-feed from excited resonances decaying to D^*n final state
- □ Observed **D**^{*}_J(2760)^{+/0} decays to **D**^{0/+} **π**^{+/-}
- □ In order to obtain good quality fit to the mass spectrum a broad structure around 3000 MeV/c^2 is added and labeled as $D^*_J(3000)^{+/9}$

Searches for doubly charmed Ξ^+_{cc} baryon - Status

State predicted by the quark model

A number of theoretical predictions exist

□ mass m(Ξ^+_{cc}) ~ (3500 – 3700) *MeV/c*² □ life time τ (Ξ^+_{cc}) ~ (100 – 250) *fs*, i.e., weak decay □ predicted cross-section @ LHC σ ~ 10² *nb*

- Unconfirmed observation done by Selex (not seen by Belle nor Babar)
- Two decay channels: Λ⁺_cK⁻π⁺ and pD⁺K⁻

Results published in two papers

□ PRL 89 (2002) 112001, PLB 628 (2005) 18 □ mass m(Ξ^+_{cc}) = 3519 *MeV/c*² □ life time τ (Ξ^+_{cc}) = 33 *fs* @ 90% *C.L.*

Searches for doubly charmed Ξ^+_{cc} baryon – LHCb Results (1)

• Look for it in the $\Lambda^+_c \mathbf{K}^- \mathbf{\Pi}^+$ decay channel with $\Lambda^+_c \rightarrow \mathbf{p} \mathbf{K}^- \mathbf{\Pi}^+$

• Construct an **observable R** (cross sections ration) using Λ^+_c decay as a control channel:

$$R = \frac{\sigma(\Xi_{cc}^+)Br(\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+)}{\sigma(\Lambda_c^+)}$$

- □ Assume $Br(\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+) \approx Br(\Lambda_c^+ \to p K^- \pi^+) \approx 0.05$
- Expected R values @ LHCb in range $(10^{-5} 10^{-4})$
- □ Collision data used for the analysis collected in 2011 @ \sqrt{s} = 7 TeV

Data sample corresponding to 0.65 fb⁻¹

Relevant trigger lines operational only for half of the year

Searches for doubly charmed Ξ^+_{cc} baryon – LHCb Results (2)

 ${\scriptstyle \square}$ In order to enhance resolution use mass difference variable δm

 $\delta m = m(\Lambda_c^+ K^- \pi^+) - m(\Lambda_c^+) - m(K^-) - m(\pi^+)$

- Used two independent methods to estimate yield
- No significant signal observed

Searches for doubly charmed Ξ^+_{cc} baryon – LHCb Results (3)

- \square Upper limits on R variable as a function of the δm calculated
- Strong dependence on lifetime value hypothesis

Summary

- Barrier Higly excited B states seen @ LHCb
- First observation of the $B_{s2}^* \rightarrow B^{*+}K^-$ decay channel
- LHCb made Very important contribution to charm spectroscopy
- Four new states observed in the D_J sector
- Work on increasing the sensitivity with larger data sample ongoing
- \square No significant signal observed in Ξ^+_{cc} baryon searches
- Appropriate upper limits have been calculated