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@ Introduction The Anomalous Magnetic Moment of the Muon

Magnetic moment

Relation of spin and magnetic moment of a lepton:

. € .
g —3S
He = ge 2y

ge: Landé factor, gyromagnetic ratio

Dirac’s prediction: g. = 2

Anomalous magnetic moment: a, = (g, — 2)/2

Helped to establish QED and QFT as the framework
for elementary particle physics

Today: probing not only QED but entire SM



@ Introduction The Anomalous Magnetic Moment of the Muon

a,,: comparison of theory and experiment
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@ Standard Model vs. Experiment

Interaction of a muon with an external
electromagnetic field

Anomalous magnetic moment given by one particular
form factor



@ Standard Model vs. Experiment QED and Electroweak Contributions

QED and electroweak contributions

e Full O(a’) calculation by Kinoshita et al. 2012
(involves 12672 diagrams!)

e EW contributions (EW gauge bosons, Higgs)
calculated to two loops (three-loop terms negligible)

10t . ay, 10t . Aay,

QED total 116 584 718.95 0.08

EW 153.6 1.0

Theory total 116 591 855 99




@ Standard Model vs. Experiment Hadronic Vacuum Polarisation
Leading hadronic contribution: O(a?)

e Problem: QCD is
non-perturbative at low
energies

o First principle calculations
(lattice QCD) may become

available in the future
had.
e Current evaluations based on

dispersion relations and data



@ Standard Model vs. Experiment Hadronic Vacuum Polarisation

Leading hadronic contribution: O(a?)

WMQWW

e Basic principles: unitarity and analyticity
e Direct relation to experiment: total hadronic cross
section oy, (eTe” — 4* — hadrons)

e One Lorentz structure, one kinematic variable



@ Standard Model vs. Experiment Hadronic Vacuum Polarisation

Leading hadronic contribution: O(a?)

e At present: dominant theoretical uncertainty
e Theory error due to experimental input

e Can be systematically improved: dedicated e*e™
program (BaBar, Belle, BESIIl, CMD3, KLOE2, SND)

10t . ay, 10t . Aay,
LO HVP 6949 43

Theory total 116 591855 99




@ Standard Model vs. Experiment Hadronic Vacuum Polarisation

Higher order hadronic contributions: O(«

1011 . ay, 1011 . Aay,
NLO HVP -98 1

Theory total 116 591 855 59




@ Standard Model vs. Experiment Hadronic Light-by-Light Scattering

Higher order hadronic contributions: O(a?)
Hadronic light-by-light (HLbL) scattering

e Hadronic matrix element of
four EM currents

e Up to now, only model
calculations

e Lattice QCD not yet
competitive



@ Standard Model vs. Experiment Hadronic Light-by-Light Scattering

Higher order hadronic contributions: O(a?)
Hadronic light-by-light (HLbL) scattering

¢ Uncertainty estimate based
rather on consensus than on a
systematic method

o Will dominate theory error in a
few years

o "Dispersive treatment
impossible"



@ Standard Model vs. Experiment Summary and Prospects
10 - aq, 10 - Aaq,

BNL E821 116 592 091 63 — PDG 2013
QED total 116 584 718.95 0.08 —s Kinoshita et al. 2012
EW 153.6 1.0

LO HVP 6949 43 — Hagiwara et al. 2011
NLO HVP —98 1 — Hagiwara et al. 2011
NNLO HVP 12.4 0.1 — Kurz et al. 2014
LO HLbL 116 40 —s Jegerlehner, Nyffeler 2009
NLO HLbL 3 2 — Colangelo et al. 2014
Hadronic total 6982 59

Theory total 116 591 855 59




@ Standard Model vs. Experiment Summary and Prospects
a,: Theory vs. Experiment

e Theory error completely dominated by hadronic
effects

e Discrepancy between Standard Model and
experiment ~ 3o

e Hint to new physics?

e New experiments (FNAL, J-PARC) aim at reducing
the experimental error by a factor of 4
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@ Dispersive Approach to HLbL Scattering  Dispersive Evaluation of HVP

Leading hadronic contribution: O(a?)

Photon vacuum polarisation function:

WWQMM - —z'(ngW - qﬂqV)H(QQ)

Unitarity of the S-matrix implies the optical theorem:

ImII(s) = Latot(eJre_ — 7" — hadrons)

e(s)?



@ Dispersive Approach to HLbL Scattering  Dispersive Evaluation of HVP

Dispersion relation

Causality implies analyticity:

TIm(s)
Cauchy integral formula:

I(s) = = }{/ Mals'

211 s —s

Deform integration path:

TI(s) — 1(0) = f/:o _ImlI(s)

T Janz (8" — s —ie)s’




@ Dispersive Approach to HLbL Scattering The Problem

How to improve HLbL calculation?

¢ "Dispersive treatment
impossible": No!

e Relate HLbL to experimentally
accessible quantities

e Make use of unitarity,
analyticity, gauge invariance
and crossing symmetry

20



@ Dispersive Approach to HLbL Scattering

21

Mixed scales

@

A
2?7 pQCD
xPT 277

The Problem

e HLbL ‘blob’ inside loops:
two independent loop
momenta

e Problem of mixed
scales: neither
low-energy effective
theory nor perturbative
QCD works

>



@ Dispersive Approach to HLbL Scattering The Problem

HLbL tensor: properties

e Object in question: T2 (g, go, q3)
 Basis: 29 independent structures contribute to a,

e Five dynamical variables, e.g. two Mandelstam
variables

s=(q+ @) t=(q+aq)

and three photon virtualities ¢2, ¢?, ¢2

e Much more complicated analytic structure than HVP

22



@ Dispersive Approach to HLbL Scattering Method and Approximations

23

Mandelstam representation

e We limit ourselves to intermediate states of at most
two pions

e Writing down a double-spectral (Mandelstam)
representation allows us to split up the HLbL tensor:

__ rym¥-pole FSQED | T3
HMV/\U - Huy)\a' + H/.LV)\O’ + HMV)\U +..



@ Dispersive Approach to HLbL Scattering Method and Approximations

23

Mandelstam representation

e We limit ourselves to intermediate states of at most
two pions

e Writing down a double-spectral (Mandelstam)
representation allows us to split up the HLbL tensor:

__ ym°-pole FSQED | T3
HMV/\U - H;u/)\a + H/.LV)\O’ + HMV)\U +..

One-pion intermediate state:




@ Dispersive Approach to HLbL Scattering Method and Approximations

23

Mandelstam representation

e We limit ourselves to intermediate states of at most
two pions

e Writing down a double-spectral (Mandelstam)
representation allows us to split up the HLbL tensor:

_ yn%-pole FSQED | T3
HMV/\U - Huu)\a' + H/.LI/)\J + HMV)\U +..

Two-pion intermediate state in both channels:




@ Dispersive Approach to HLbL Scattering Method and Approximations

23

Mandelstam representation

e We limit ourselves to intermediate states of at most
two pions

e Writing down a double-spectral (Mandelstam)
representation allows us to split up the HLbL tensor:

_ yn%-pole FSQED | (13
HMV/\U - Huu)\a' + H/.LV)\O’ + Hl“’)\a +..

Two-pion intermediate state in first channel:



@ Dispersive Approach to HLbL Scattering Method and Approximations

23

Mandelstam representation

e We limit ourselves to intermediate states of at most
two pions

e Writing down a double-spectral (Mandelstam)
representation allows us to split up the HLbL tensor:

_ yn%-pole FSQED | T3
HMV/\U - Huu)\a' + H/.LV)\O’ + HMV)\U Tt

Neglected: higher intermediate states



@ Dispersive Approach to HLbL Scattering Method and Approximations

Pion pole

e Input the doubly-virtual
and singly-virtual pion
transition form factors

| Fryenemo @Nd Foes o

e Dispersive analysis of
transition form factors in
progress

— B. Kubis, Amherst workshop 2014

24



@ Dispersive Approach to HLbL Scattering Method and Approximations

25

FsQED
.

F(ad) P (a3) Y (3) >

o

Simultaneous two-pion cuts in two channels

Analytic properties correspond to SQED box diagram

Gauge invariance requires triangle and bulb diagrams

¢*-dependence given by multiplication with pion
vector form factor Y (¢) for each off-shell photon



@ Dispersive Approach to HLbL Scattering Method and Approximations

26

Remainder

Two-pion cut in only one channel
= scalar functions have only a
right-hand cut

Expand into partial waves

Unitarity relates it to the helicity
amplitudes of the subprocess
vy =

Dispersive integrals over the
imaginary parts give I,
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@ Conclusion and Outlook

28

Summary

Our dispersive approach to HLbL scattering is based
on fundamental principles: unitarity, analyticity,
crossing, gauge invariance

We take into account the lowest intermediate states:
7%-pole and wr-cuts

Relation to experimentally accessible (or again with
data dispersively reconstructed) quantities

A step towards a model-independent calculation of a,,

Numerical evaluation is work in progress



@ Conclusion and Outlook

A roadmap for HLbL

Pion transition form factor
2 2
Froe(ai, a3)
Pion vector
form factor Fy;

29
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Partial waves for
YY* = 7
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— Flowchart by M. Hoferichter
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