Dispersive Approach to Hadronic Light-by-Light Scattering and the Muon g - 2

Peter Stoffer

arXiv:1402.7081 in collaboration with

G. Colangelo, M. Hoferichter and M. Procura

Albert Einstein Center for Fundamental Physics Institute for Theoretical Physics University of Bern

30th May 2014

13th International Workshop on Meson Production, Properties and Interaction MESON 2014, Kraków

1

- 2 Standard Model vs. Experiment
- 3 Dispersive Approach to HLbL Scattering
- **4** Conclusion and Outlook

1 Introduction

- 2 Standard Model vs. Experiment
- **3** Dispersive Approach to HLbL Scattering
- 4 Conclusion and Outlook

Magnetic moment

Introduction

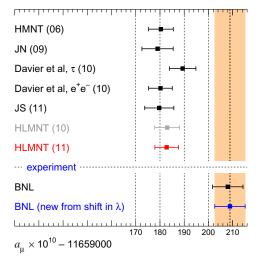
• Relation of spin and magnetic moment of a lepton:

$$\vec{\mu}_\ell = g_\ell \frac{e}{2m_\ell} \vec{s}$$

 g_ℓ : Landé factor, gyromagnetic ratio

- Dirac's prediction: $g_e = 2$
- Anomalous magnetic moment: $a_{\ell} = (g_{\ell} 2)/2$
- Helped to establish QED and QFT as the framework for elementary particle physics
- Today: probing not only QED but entire SM

a_{μ} : comparison of theory and experiment



 \rightarrow Hagiwara et al. 2012

Introduction

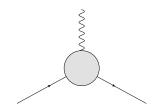
1 Introduction

2 Standard Model vs. Experiment QED and Electroweak Contributions Hadronic Vacuum Polarisation Hadronic Light-by-Light Scattering Summary and Prospects

3 Dispersive Approach to HLbL Scattering

4 Conclusion and Outlook

Interaction of a muon with an external electromagnetic field



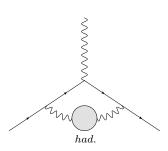
Anomalous magnetic moment given by one particular form factor

QED and electroweak contributions

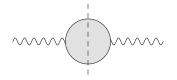
- Full $\mathcal{O}(\alpha^5)$ calculation by Kinoshita et al. 2012 (involves 12672 diagrams!)
- EW contributions (EW gauge bosons, Higgs) calculated to two loops (three-loop terms negligible)

	$10^{11} \cdot a_{\mu}$	$10^{11} \cdot \Delta a_{\mu}$
QED total	116584718.95	0.08
EW	153.6	1.0
Theory total	116591855	59

2



- Problem: QCD is non-perturbative at low energies
- First principle calculations (lattice QCD) may become available in the future
- Current evaluations based on dispersion relations and data

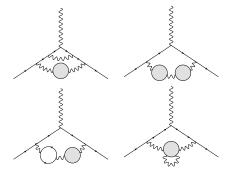


- Basic principles: unitarity and analyticity
- Direct relation to experiment: total hadronic cross section σ_{tot}(e⁺e⁻ → γ^{*} → hadrons)
- One Lorentz structure, one kinematic variable

- At present: dominant theoretical uncertainty
- Theory error due to experimental input
- Can be systematically improved: dedicated e⁺e⁻ program (BaBar, Belle, BESIII, CMD3, KLOE2, SND)

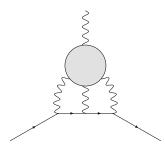
	$10^{11} \cdot a_{\mu}$	$10^{11} \cdot \Delta a_{\mu}$
LO HVP	6949	43
Theory total	116591855	59

Higher order hadronic contributions: $\mathcal{O}(\alpha^3)$



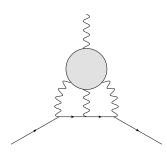
	$10^{11} \cdot a_{\mu}$	$10^{11} \cdot \Delta a_{\mu}$
NLO HVP	-98	1
Theory total	116591855	59

Higher order hadronic contributions: $O(\alpha^3)$ Hadronic light-by-light (HLbL) scattering



- Hadronic matrix element of four EM currents
- Up to now, only model calculations
- Lattice QCD not yet competitive

Higher order hadronic contributions: $O(\alpha^3)$ Hadronic light-by-light (HLbL) scattering



- Uncertainty estimate based rather on consensus than on a systematic method
- Will dominate theory error in a few years
- "Dispersive treatment impossible"

	$10^{11} \cdot a_{\mu}$	$10^{11}\cdot\Delta a_{\mu}$	
BNL E821	116592091	63	\rightarrow PDG 2013
QED total	116584718.95	0.08	\rightarrow Kinoshita et al. 2012
EW	153.6	1.0	
LO HVP	6949	43	\rightarrow Hagiwara et al. 2011
NLO HVP	-98	1	\rightarrow Hagiwara et al. 2011
NNLO HVP	12.4	0.1	\rightarrow Kurz et al. 2014
LO HLbL	116	40	\rightarrow Jegerlehner, Nyffeler 2009
NLO HLbL	3	2	\rightarrow Colangelo et al. 2014
Hadronic total	6982	59	
Theory total	116591855	59	

a_{μ} : Theory vs. Experiment

- Theory error completely dominated by hadronic effects
- Discrepancy between Standard Model and experiment $\sim 3\sigma$
- Hint to new physics?
- New experiments (FNAL, J-PARC) aim at reducing the experimental error by a factor of 4

Introduction

2 Standard Model vs. Experiment

3 Dispersive Approach to HLbL Scattering Dispersive Evaluation of HVP The Problem Method and Approximations

Photon vacuum polarisation function:

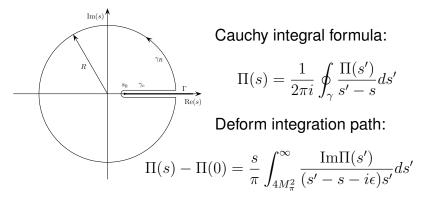
$$\cdots = -i(q^2 g_{\mu\nu} - q_\mu q_\nu) \Pi(q^2)$$

Unitarity of the *S*-matrix implies the optical theorem:

Im
$$\Pi(s) = \frac{s}{e(s)^2} \sigma_{\text{tot}}(e^+e^- \to \gamma^* \to \text{hadrons})$$

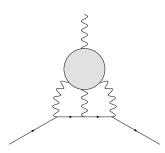
Dispersion relation

Causality implies analyticity:



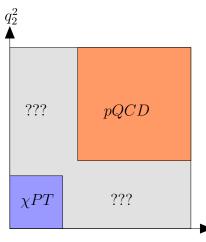
The Problem

How to improve HLbL calculation?



- "Dispersive treatment impossible": No!
- Relate HLbL to experimentally accessible quantities
- Make use of unitarity, analyticity, gauge invariance and crossing symmetry

Mixed scales



- HLbL 'blob' inside loops: two independent loop momenta
- Problem of mixed scales: neither low-energy effective theory nor perturbative QCD works

HLbL tensor: properties

- Object in question: $\Pi^{\mu\nu\lambda\sigma}(q_1, q_2, q_3)$
- Basis: 29 independent structures contribute to a_µ
- Five dynamical variables, e.g. two Mandelstam variables

$$s = (q_1 + q_2)^2, t = (q_1 + q_3)^2$$

and three photon virtualities q_1^2 , q_2^2 , q_3^2

Much more complicated analytic structure than HVP

- We limit ourselves to intermediate states of at most two pions
- Writing down a double-spectral (Mandelstam) representation allows us to split up the HLbL tensor:

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^{0}\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\mathsf{FsQED}}_{\mu\nu\lambda\sigma} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \dots$$

- We limit ourselves to intermediate states of at most two pions
- Writing down a double-spectral (Mandelstam) representation allows us to split up the HLbL tensor:

$$\Pi_{\mu\nu\lambda\sigma} = \Pi_{\mu\nu\lambda\sigma}^{\pi^{0}\text{-pole}} + \Pi_{\mu\nu\lambda\sigma}^{\text{FsQED}} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \dots$$
ne-pion intermediate state:

 \cap

- We limit ourselves to intermediate states of at most two pions
- Writing down a double-spectral (Mandelstam) representation allows us to split up the HLbL tensor:

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^{0}\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\mathsf{FsQED}}_{\mu\nu\lambda\sigma} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \dots$$

Two-pion intermediate state in both channels:

- We limit ourselves to intermediate states of at most two pions
- Writing down a double-spectral (Mandelstam) representation allows us to split up the HLbL tensor:

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^{0}\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\mathsf{FsQED}}_{\mu\nu\lambda\sigma} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \dots$$

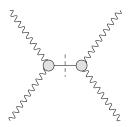
Two-pion intermediate state in first channel:

- We limit ourselves to intermediate states of at most two pions
- Writing down a double-spectral (Mandelstam) representation allows us to split up the HLbL tensor:

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^{0}\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\mathsf{FsQED}}_{\mu\nu\lambda\sigma} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \dots$$

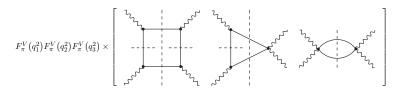
Neglected: higher intermediate states

Pion pole



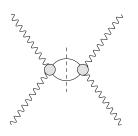
- Input the doubly-virtual and singly-virtual pion transition form factors $\mathcal{F}_{\gamma^*\gamma^*\pi^0}$ and $\mathcal{F}_{\gamma^*\gamma\pi^0}$
- Dispersive analysis of transition form factors in progress
 - \rightarrow B. Kubis, Amherst workshop 2014

3



- · Simultaneous two-pion cuts in two channels
- Analytic properties correspond to sQED box diagram
- Gauge invariance requires triangle and bulb diagrams
- q^2 -dependence given by multiplication with pion vector form factor $F_{\pi}^V(q^2)$ for each off-shell photon

Remainder



- Two-pion cut in only one channel
 ⇒ scalar functions have only a right-hand cut
- Expand into partial waves
- Unitarity relates it to the helicity amplitudes of the subprocess $\gamma^*\gamma^{(*)} \to \pi\pi$
- Dispersive integrals over the imaginary parts give $\bar{\Pi}_{\mu\nu\lambda\sigma}$

Introduction

- 2 Standard Model vs. Experiment
- **3** Dispersive Approach to HLbL Scattering
- 4 Conclusion and Outlook

Summary

- Our dispersive approach to HLbL scattering is based on fundamental principles: unitarity, analyticity, crossing, gauge invariance
- We take into account the lowest intermediate states: π^0 -pole and $\pi\pi$ -cuts
- Relation to experimentally accessible (or again with data dispersively reconstructed) quantities
- A step towards a model-independent calculation of a_µ
- Numerical evaluation is work in progress

A roadmap for HLbL

