Interactions of light mesons with photons

Stefan Leupold

Uppsala University

Meson 2014, Cracow, May/June 2014

Collaborators

- Uppsala: Per Engström, Bruno Strandberg (now Glasgow), Hazhar Ghaderi, Carla Terschlüsen
- GSI: Igor Danilkin (now JLAB), Matthias Lutz
- Bonn: Franz Niecknig, Martin Hoferichter (now Bern), Sebastian Schneider, Bastian Kubis

Table of Contents

Transition form factors and two-gamma physics

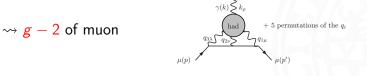
2 Lagrangian approach

3 Dispersive approach to pion transition form factor

Reactions of hadrons with (virtual) photons

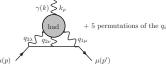
Why is it interesting?

- explore intrinsic structure of hadrons
 - \rightsquigarrow form factors
 - → to which extent does vector meson dominance hold?


Reactions of hadrons with (virtual) photons

Why is it interesting?

- explore intrinsic structure of hadrons
 - \rightsquigarrow form factors
 - \rightsquigarrow to which extent does vector meson dominance hold?
- background for physics beyond standard model


$$\rightsquigarrow$$
 rare pion decay $\pi^0
ightarrow e^+e^-$

Hadronic contribution to g - 2 of the muon

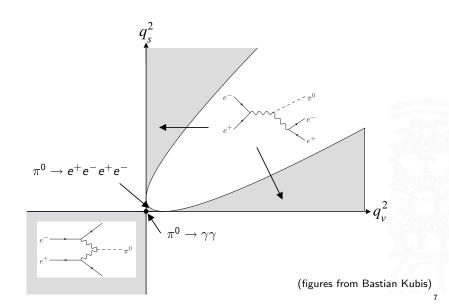
light-by-light scattering

• $\gamma^*\gamma^* \leftrightarrow \mathsf{hadron}(\mathsf{s})$ is not directly accessible by experiment

- → need good theory with reasonable estimate of uncertainty (ideally an effective field theory)
- \hookrightarrow need experiments to constrain such hadronic theories

true for all hadronic contributions:

• the lighter the hadronic system, the more important (though high-energy contributions not unimportant for light-by-light) $\hookrightarrow \gamma^{(*)}\gamma^{(*)} \leftrightarrow \pi^0$ (you've seen this before for rare pion decay), $\gamma^{(*)}\gamma^{(*)} \leftrightarrow 2\pi, \ldots$


Shopping list for hadron theory and experiment

- transition form factors of pseudoscalars $\gamma^{(*)}\gamma^{(*)}\leftrightarrow P$ with $P=\pi^0,\eta,\eta',\ldots$
- \hookrightarrow several interesting kinematical regions \rightsquigarrow next slide (for pion)

Stefan Leupold

Interactions of light mesons with photons

$\pi^0 ightarrow \gamma^*(q_v^2) \gamma^*(q_s^2)$ transition form factor

Shopping list for hadron theory and experiment

- transition form factors of pseudoscalars $\gamma^{(*)}\gamma^{(*)} \leftrightarrow P$ with $P = \pi^0, \eta, \eta', \dots$
- if invariant mass of dilepton around mass of a vector meson:

→→ relation to transition form factors of vector to pseudoscalar mesons $V \leftrightarrow P\gamma^{(*)}$ with $V = \rho^0, \omega, \phi, \dots$

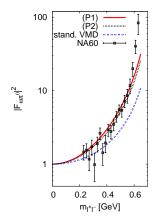
Shopping list for hadron theory and experiment

- transition form factors of pseudoscalars $\gamma^{(*)}\gamma^{(*)} \leftrightarrow P$ with $P = \pi^0, \eta, \eta', \dots$
- if invariant mass of dilepton around mass of a vector meson:
- →→ relation to transition form factors of vector to pseudoscalar mesons $V \leftrightarrow P\gamma^{(*)}$ with $V = \rho^0, \omega, \phi, \dots$
 - "two-gamma physics" $\gamma \gamma \rightarrow \pi^+ \pi^-, \pi^0 \pi^0, \pi^0 \eta, K\bar{K}, \dots$ (cross relation to polarizability of the pion)

 → has triggered a lot of experimental activity, in particular MesonNet (WASA, KLOE, MAMI, HADES, ...)

Two complementary approaches

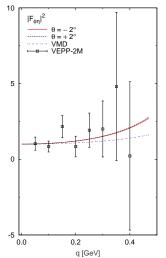
- Lagrangian approach
 - use only hadrons which are definitely needed (here: lowest nonets of pseudoscalar and vector mesons)
 - sort interaction terms concerning importance, essentially based on large-N_c
 - include causal rescattering/unitarization for reactions (I. Danilkin, L. Gil, M. Lutz, Phys.Lett. B703, 504 (2011))
 - long-term goal: obtain sensible estimates of uncertainties
- dispersive approach
 - include most important hadronic inelasticities
 - use measured (and dispersively improved) phase shifts (2-body)
 - use Breit-Wigner plus background for narrow resonances (n-body, n > 2)
 - error estimates from more vs. less subtracted dispersion relations


Table of Contents

1 Transition form factors and two-gamma physics

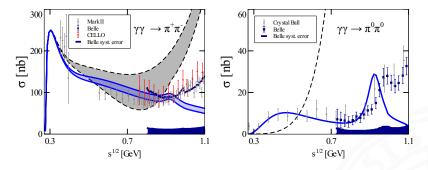
2 Lagrangian approach

3 Dispersive approach to pion transition form factor


Transition form factor $\omega \rightarrow \pi^0 + dilepton$

- data and our Lagrangian approach show strong deviations from vector-meson dominance (VMD)
- our approach describes data fairly well except for large invariant masses close to phase-space limit (log plot!)
- second experimental confirmation desirable

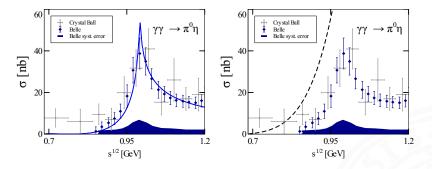
C. Terschlüsen, S.L., Phys. Lett. B691, 191 (2010)


Transition form factor $\phi \rightarrow \eta + \text{dilepton}$

- our Lagrangian approach deviates from VMD
- new data from KLOE will come soon

C. Terschlüsen, S.L., M.F.M. Lutz, Eur.Phys.J. A48, 190 (2012)

$$\gamma\gamma \to \pi^+\pi^-, \pi^0\pi^0$$



- dashed black lines: tree level, blue lines: with coupled-channel rescattering of two pseudoscalar mesons
- overall good description, room for improvement concerning $f_0(980)$
- at high energies spin-2 mesons are missing

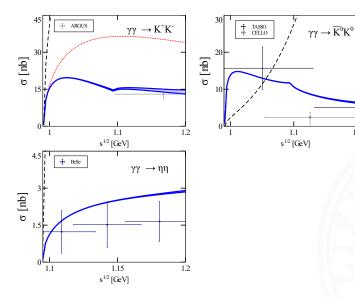
I.V. Danilkin, M.F.M. Lutz, S.L., C. Terschlüsen,

Eur.Phys.J. C73, 2358 (2013)

 $\gamma\gamma \to \pi^0\eta$

- dashed black line: tree level, blue line: with coupled-channel rescattering of two pseudoscalar mesons
- a₀(980) dynamically generated

I.V. Danilkin, M.F.M. Lutz, S.L., C. Terschlüsen,


Eur.Phys.J. C73, 2358 (2013)

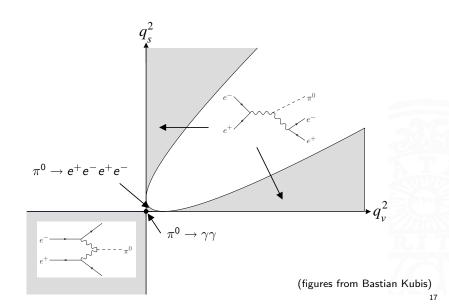
Stefan Leupold

Interactions of light mesons with photons

1.2

$\gamma\gamma \rightarrow {\it K}^+{\it K}^-, {\it K}^0 {ar K}^0, \eta\eta$ (pure predictions)

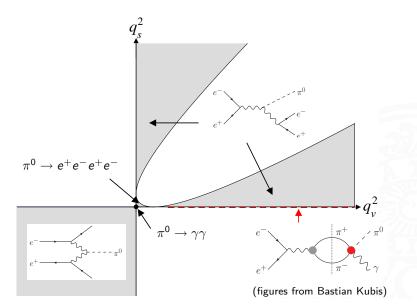
Table of Contents

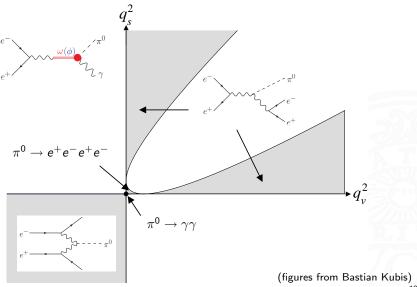


3 Dispersive approach to pion transition form factor

Stefan Leupold

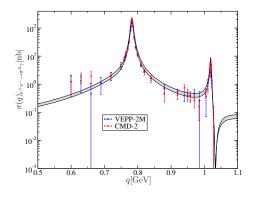
Interactions of light mesons with photons


$\pi^0 ightarrow \gamma^*(q_v^2) \gamma^*(q_s^2)$ transition form factor


Stefan Leupold

Interactions of light mesons with photons

 $\pi^0 \rightarrow \gamma^*(q_v^2) \gamma$ transition form factor


$\pi^0 ightarrow \gamma \gamma^*(q_s^2)$ transition form factor

Pion transition form factor — dispersive approach

- want prediction for $e^+e^-
 ightarrow \pi^0\gamma$ (up to $pprox 1\,{
 m GeV}$)
- \hookrightarrow dominant inelasticities:
 - $I = 1: e^+e^- \rightarrow \pi^+\pi^- \rightarrow \pi^0\gamma$ • $I = 0: e^+e^- \rightarrow \pi^0\pi^+\pi^- \rightarrow \pi^0\gamma$
 - required input for I = 1:
 - \bullet pion phase shift and pion form factor \leadsto measured
 - strength of amplitude $\pi^+\pi^- \rightarrow \pi^0 \gamma \rightsquigarrow$ chiral anomaly (M. Hoferichter, B. Kubis, D. Sakkas, Phys.Rev. D86 (2012) 116009)
 - input for I = 0 (three-body!):
 - \bullet dominated by narrow resonances $\omega,\,\phi$
 - $\, \hookrightarrow \,$ use Breit-Wigners plus background for amplitude
 - \hookrightarrow fit to $e^+e^- \to \pi^+\pi^-\pi^0$

Pion transition form factor ($e^+e^- ightarrow \pi^0\gamma$)

- unsubtracted dispersion relation
- uncertainty estimate from quality of $\omega/\phi \rightarrow \pi^0 \gamma$ Schneider et al., PRD86, 054013
- can be extended to decay region $\pi^0 \rightarrow \gamma \, e^+ e^-$ and to spacelike region
- final aim: double virtual transition form factor
- \hookrightarrow relevant for g-2 and $\pi^0 \to e^+e^-$

M. Hoferichter, B. Kubis, S.L., F. Niecknig and S. P. Schneider, in preparation

Summary

- meson (transition) form factors and two-photon reactions allow access to intrinsic structure of hadrons
- \hookrightarrow quark structure, polarizabilities, ...
 - in addition input for standard-model baseline calculations for rare decays (π^0) and high-precision determinations (muon's g 2)
- \hookrightarrow we are sharpening our theory tools to improve the accuracy of predictions

Instead of an outlook

From two- to three-gamma physics

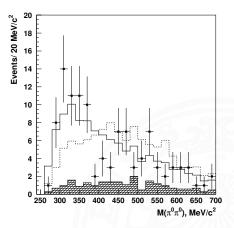
• yet another contribution to light-by-light scattering:

$$\gamma^* \to \omega \to 3\gamma^{(*)}$$

 \hookrightarrow related to scattering amplitude (dispersion theory)

$$\gamma \, \omega \to \pi \, \pi \to \gamma \, \gamma$$

i.e. to decays


$$\omega \to \gamma \, \pi^+ \, \pi^- \,, \qquad \omega \to \gamma \, \pi^0 \, \pi^0$$

more (differential) data needed
and also φ instead of ω (better data situation)

Rare ω decays into $2\pi\,\gamma$

•
$$\omega \to \pi^+ \pi^- \gamma$$
:
only upper limit

- $\omega \to \pi^0 \pi^0 \gamma$:
- \hookrightarrow branching ratio: $6.6\cdot 10^{-5}$
- → differential data from CMD2 (Akhmetshin et al., Phys.Lett.B580, 119 (2004))

histograms are simulations with an intermediate rho (full) or sigma meson (dotted)

backup slides

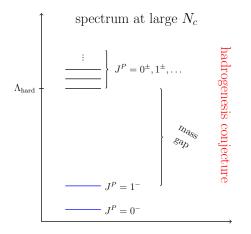
How we sort interactions/diagrams

- without assigning importance to anything:
 - infinitely many interaction terms (with more and more derivatives)
 - infinitely many loop diagrams
- large- N_c framework (N_c = number of colors)
 - \hookrightarrow loops are suppressed
 - note: we resum loops from rescattering, s-channel
 - → sorting scheme applies to scattering kernel (potential), not to scattering amplitude
- for interaction terms:
 - ensure appropriate N_c scaling by dimensionful decay constant $f \sim \sqrt{N_c}$
 - to ensure pertinent dimension of interaction term in Lagrangian:
 - \hookrightarrow assume large scale $\Lambda_{
 m hard} \gg m_V$ in denominator
 - $\hookrightarrow\,$ expansion in derivatives/momenta over $\Lambda_{\rm hard}$
 - depends on chosen representation

Examples for interaction terms

- $\bullet\,$ relevant, e.g., for $\omega \to 3\pi$ and $\omega \to \pi\gamma^*$
- both can proceed directly or via $\pi \rho^*$
- some unsuppressed interaction terms

$$\varepsilon_{\mu\nu\alpha\beta} \operatorname{tr} \left(\left\{ V^{\mu\nu}, \nabla_{\lambda} V^{\lambda\alpha} \right\} u^{\beta} \right) \,,$$


$$i f \operatorname{tr}(V_{\mu\nu}[u^{\mu}, u^{\nu}]), \qquad f \operatorname{tr}(V^{\mu\nu}f^+_{\mu\nu})$$

• some suppressed interaction terms (the direct ones)

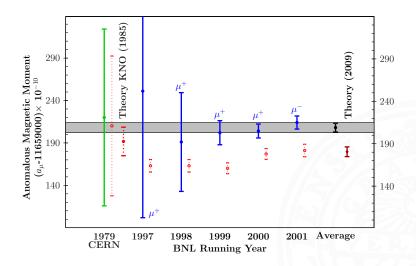
$$\frac{f}{\Lambda_{\rm hard}^2} \varepsilon^{\mu\nu\alpha\beta} \operatorname{tr} (\nabla^{\lambda} V_{\lambda\mu} \, u_{\nu} \, u_{\alpha} \, u_{\beta}), \\ \frac{f}{\Lambda_{\rm hard}^2} \varepsilon^{\mu\nu\alpha\beta} \operatorname{tr} (\{\nabla^{\lambda} V_{\lambda\mu}, f_{\nu\alpha}^+\} \, u_{\beta}).$$

 Λ_{hard}: hadrogenesis gap or (here also O.K.) mass of excited vector mesons

hadrogenesis conjecture

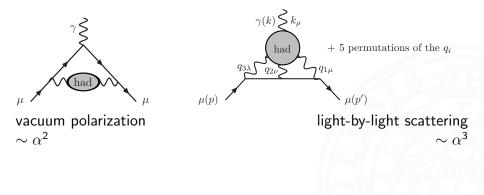
other observed mesons below $\Lambda_{\rm hard}$ are supposed to be dynamically generated, i.e. meson molecules

C. Terschlüsen, S.L., M.F.M. Lutz, Eur.Phys.J. A48, 190 (2012)


Rare pion decay — status

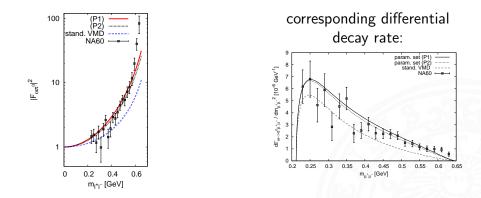
- $B(\pi^0 \rightarrow e^+e^-) = (6.46 \pm 0.33) \cdot 10^{-8}$ (KTeV, 2007)
- 3 σ deviation between experiment and standard model Dorokhov/Ivanov, Phys. Rev. D75, 114007 (2007) (but controversial among theorists!)
- for point-like pion QED loop is divergent

 \hookrightarrow process is sensitive to hadronic transition form factor of pion $\pi^0\leftrightarrow\gamma^{(*)}\gamma^{(*)}$


g-2 of the muon — status

Jegerlehner/Nyffeler, Phys. Rept. 477, 1 (2009)

g-2 of the muon — theory


Largest uncertainty of standard model: hadronic contributions

Stefan Leupold

Interactions of light mesons with photons

Transition form factor $\omega \rightarrow \pi^0 + \mu^+ \mu^-$

theory: C. Terschlüsen, S.L., Phys. Lett. B691, 191 (2010) data: NA60, Phys. Lett. B 677, 260 (2009)