Dalitz plot analysis of $\mathrm{D}^{0} \rightarrow \mathrm{~K}_{\mathrm{s}}{ }^{0} \pi^{+} \pi^{-}$ decays in a factorization approach

Analysis done in collaboration with

Robert Kamiński
(Institute of Nuclear Physics PAS, Kraków, Poland),
Jean-Pierre Dedonder and Benoit Loiseau (LPNHE, Paris, France)

published recently in Physical Review D 89, 094018 (2014), arXiv: 1403.2971 [hep-ph].

Motivation

Studies of the $\mathrm{D}^{0} \rightarrow \mathrm{~K}_{s}^{0} \pi^{+} \pi^{-}$reaction are useful in:

1. measurements of the $\mathbf{D}^{0}-\overline{\mathbf{D}}^{0}$ mixing parameters,
2. determination of the Cabibbo- Kobayashi- Maskawa angle γ in the decay amplitude $\mathrm{B}^{ \pm} \rightarrow \mathrm{D} \mathrm{K}^{ \pm}, \mathrm{D} \rightarrow \mathrm{K}_{\mathrm{s}}{ }^{0} \pi^{+} \pi^{-}$,
3. description of the final state interactions between mesons, in particular in the S-waves,
4. testing theoretical models of meson form factors,
5. understanding properties of the meson resonances and their interference effects on the Dalitz plot.

Isobar model and its problems

1. Amplitudes in the isobar model are not unitary neither
in three-body decay channels nor in two-body subchannels.
2. It is difficult to distinguish the S-wave amplitude from the background terms. Their interference is often very strong.
3. Some branching fractions extracted in such analyses could be unreliable.
4. The isobar model has many free parameters (at least two fitted parameters for each amplitude component). Recently Belle used 49 fitted parameters and BaBar 43 parameters.

Why unitarity is important?

Unitary model allows for:

1. proper construction of the D-decay amplitudes,
2. partial wave analyses of final states,
3. explanation of structures seen in Dalitz plots,
4. adequate determination of branching fractions and CP asymmetries for different quasi-two-body decays,
5. extraction of standard model parameters (weak amplitudes),
6. application not only in analyses of D decays but also in studies of other reactions.

Towards a unitary approach

1. Construction of unitary three-body strong interaction amplitudes in a wide range of effective masses is difficult.
2. As a first step we attempt to incorpotate in our model two-body unitarity into the D-decay amplitudes with final state interactions in the following subchannels:
a) $K^{0} \pi$ S-wave amplitude,
b) $\pi \pi$ S-wave amplitude,
c) $\pi \pi$ P-wave amplitude.

Allowed and suppressed tree transitions

Transition $\quad c \rightarrow s u \bar{d}$

Transition $\quad c \rightarrow d u \bar{s}$
 π^{-}
$O_{1} \propto \frac{G_{F}}{\sqrt{2}} V_{c s}^{*} V_{u d}(\bar{s} c)_{V-A}(\bar{u} d)_{V-A}$
$V_{c s} \approx V_{u d} \approx \cos \theta_{C} \quad \theta_{\mathrm{C}}=$ Cabibbo angle allowed

$$
O_{2} \propto \frac{G_{F}}{\sqrt{2}} V_{c d}^{*} V_{u s}(\bar{d} c)_{V-A}(\bar{u} s)_{V-A}
$$

$$
V_{c d} \approx-\lambda, \quad V_{u s} \approx \lambda, \quad \lambda=\sin \theta_{C} \approx 0.225
$$ doubly Cabibbo suppressed

Tree diagrams with internal W lines

> allowed

doubly Cabibbo suppressed

Annihilation decay amplitudes

Transition $\quad c \rightarrow s u \bar{d}$
allowed

Transition
$c \rightarrow d u \bar{s}$
doubly Cabibbo suppressed

Factorization approach

Quark currents:

$$
j_{1}=(\bar{s} c)_{V-A}, j_{2}=(\bar{u} d)_{V-A}, \quad j_{1}{ }^{\prime}=(\bar{u} c)_{V-A}, j_{2}{ }^{\prime}=(\bar{s} d)_{V-A}
$$

main part of the effective Hamiltonian:

$$
H \propto G_{F} / \sqrt{2} V_{c s}^{*} V_{u d} j_{1} \otimes j_{2}
$$

Factorization:

$$
\begin{aligned}
\left\langle\bar{K}^{0} \pi^{-} \pi^{+}\right| j_{1} \otimes j_{2}\left|D^{0}\right\rangle & \approx\left\langle\bar{K}^{0} \pi^{-}\right| j_{1}\left|D^{0}\right\rangle\left\langle\pi^{+}\right| j_{2}|0\rangle \\
& +\left\langle\pi^{-} \pi^{+}\right| j_{1}^{\prime}\left|D^{0}\right\rangle\left\langle\bar{K}^{0}\right| j_{2}{ }^{\prime}|0\rangle \\
& +\langle 0| j_{1}\left|D^{0}\right\rangle\left\langle\bar{K}^{0} \pi^{-} \pi^{+}\right| j_{2}{ }^{\prime}|0\rangle
\end{aligned}
$$

$$
\begin{array}{ll}
\left\langle\pi^{+}\right| j_{2}^{\mu}|0\rangle=i f_{\pi} p_{\pi}^{\mu} & \mathrm{f}_{\pi}-\text { pion decay constant } \\
\left\langle\bar{K}^{0}\right| j_{2}^{\prime \mu}|0\rangle=i f_{K} p_{K}^{\mu} & \mathrm{f}_{\mathrm{K}}-\text { kaon decay constant } \\
\langle 0| j_{1}{ }^{\prime \mu}\left|D^{0}\right\rangle=-i f_{D} p_{D}^{\mu} & \mathrm{f}_{\mathrm{D}}-\mathrm{D} \text { decay constant }
\end{array}
$$

Types of decay amplitudes

27 amplitudes for the $D^{0} \rightarrow K_{s}{ }^{0} \pi^{+} \pi^{-}$decay:
a) $\mathbf{7}$ allowed tree amplitudes,
b) 6 doubly Cabibbo suppressed tree amplitudes,
c) 14 annihilation (W-exchange) amplitudes
(7 allowed and 7 doubly Cabibbo suppressed).
Seven partial wave amplitudes:

1. $S-, P-$ and $D-$ wave amplitudes in the $K \pi$ subsystem,
2. $\mathrm{S}-, \mathrm{P}$ - and D - wave amplitudes in the $\pi^{+} \pi^{-}$subsystem, including in addition the $\omega \rightarrow \pi^{+} \pi^{-} \mathrm{P}$ - wave transition .

Resonances in decay amplitudes

Channel: wave: name:

$$
\begin{array}{ll}
\bar{K}^{0} \pi^{-}
\end{array} \begin{aligned}
& \mathrm{S} \\
& \mathrm{P} \\
& \\
& \\
& \mathrm{D} \\
& K_{0}^{*}(800)^{-} \text {or } \kappa^{-}, K_{0}^{*}(1430)^{-} \\
& \\
& K_{2}^{*}(1430)^{-}, K^{*}(1410)^{-}, K^{*}(1680)^{-}
\end{aligned}
$$

$K^{0} \pi^{+}$
same list as above but with pion charge +
$\pi^{+} \pi^{-}$
$\mathrm{S} \quad f_{0}(500)$ or $\sigma, f_{0}(980), f_{0}(1400)$
$\mathrm{P} \quad \rho(770), \rho(1450), \omega(782)$
D $\quad f_{2}(1270)$

Very rich resonance spectrum \rightarrow complexity of final state interactions

Selected formulae of decay amplitudes

$D^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-} \quad\left|K_{s}^{0}\right\rangle \approx \frac{1}{\sqrt{2}}\left(\left|K^{0}\right\rangle+\left|\bar{K}^{0}\right\rangle\right)$
Allowed transitions with $K_{S}^{0} \pi^{-}$final state interactions $\quad \Lambda_{1}=V_{c s}^{*} V_{u d}$ m_{\mp} eff. masses of $K_{S}^{0} \pi^{\mp}, m_{0}-\pi^{+} \pi^{-}$eff. mass $\quad a_{1}$ - effective Wilson coefficient

S-wave:
$\left.A_{1 S}=-\frac{G_{F}}{2} \Lambda_{1} a_{1} f_{\pi}\left(m_{D}^{2}-m_{\pi}^{2}\right)\right) F_{0}^{D K_{0}^{*-}}\left(m_{\pi}^{2}\right) F_{0}^{\bar{K}_{0} \pi^{-}}\left(m_{-}^{2}\right)$
$F_{0}^{D K_{0}^{*}}\left(m_{\pi}^{2}\right)-\mathrm{D}$ to K_{0}^{*} transition scalar form factor
$F_{0}^{\bar{K}_{0} \pi^{-}}\left(m_{-}^{2}\right) \quad-\mathrm{K}_{0} \pi$ scalar form factor $\quad m_{-}^{2}=\left(p_{\pi^{-}}+p_{K^{0}}\right)^{2}$
P-wave:

$$
A_{1 P}=-\frac{G_{F}}{2} \Lambda_{1} a_{1} \frac{f_{\pi}}{f_{\rho}}\left[m_{0}^{2}-m_{+}^{2}+\frac{\left(m_{D}^{2}-m_{\pi}^{2}\right)\left(m_{K}^{2}-m_{\pi}^{2}\right)}{m_{-}^{2}}\right] A_{0}^{D K^{*-}}\left(m_{\pi}^{2}\right) F_{1}^{\bar{K}_{0} \pi^{-}}\left(m_{-}^{2}\right)
$$

$A_{0}^{D K_{0}^{*-}}\left(m_{\pi}^{2}\right)-\mathrm{D}$ to $\mathrm{K}_{0}{ }^{*}$ transition vector form factor

$$
F_{1}^{\bar{K}_{0} \pi^{-}}\left(m_{-}^{2}\right)-\mathrm{K}_{0} \pi \text { vector form factor }
$$

$$
\begin{aligned}
& m_{+}^{2}=\left(p_{\pi^{+}}+p_{K^{0}}\right)^{2} \\
& m_{0}^{2}=\left(p_{\pi^{-}}+p_{\pi^{+}}\right)^{2}
\end{aligned}
$$

kaon-pion scalar form factor

pion scalar form factor

χ^{2} joint fit

$$
\chi^{2}=\chi_{D^{0}}{ }^{2}+\chi_{\tau}^{2}+\chi_{B r}{ }^{2}
$$

Data for:

1. $\mathrm{D}^{0} \rightarrow \mathrm{~K}_{\mathrm{S}}{ }^{0} \pi^{+} \pi^{-}$decays, A . Poluektov et al. (Belle Coll.), Phys. Rev. D 81, 112002 (2010),
2. $\tau^{-} \rightarrow K_{S}{ }^{0} \pi^{-} \nu_{\tau}$ decays, D. Epifanov et al. (Belle Coll.), Phys. Lett. B 654, 65 (2008),
3. total branching fraction $\mathrm{Br}^{\exp }=(2.82 \pm 0.19) \%$.

Number of degrees of freedom:

$$
\text { ndf }=6321+89+1-33 \text { free model param. }=6378 .
$$

Result: $\chi^{2}=9451$ which gives $\chi^{2} / \mathrm{ndf}=1.48$.

Dalitz plot density distribution for the $\mathrm{D}^{0} \rightarrow \mathrm{~K}_{s}{ }^{0} \pi^{+} \pi^{-}$decay

$$
\begin{aligned}
& S_{+}=\left(p_{K_{S}^{0}}+p_{\pi^{+}}\right)^{2} \\
& s_{-}=\left(p_{K_{S}^{0}}+p_{\pi^{-}}\right)^{2}
\end{aligned}
$$

Comparison of the $K_{s}{ }^{0} \pi^{-}$effective mass squared distributions with the Belle data

Comparison of the $K_{s}{ }^{0} \pi^{+}$and $\pi^{+} \pi^{-}$effective mass squared distributions with the Belle data

$K_{S}{ }^{0} \pi^{+}$
$\pi^{+} \pi^{-}$

Comparison with the Belle data on the $\tau \tau^{-} \rightarrow K_{s}{ }^{0} \pi^{-} \nu_{\tau}$ decay

$m_{K \pi}(\mathrm{GeV})$

Branching fractions

Channel	$\mathrm{Br}(\%)$	Br (tree)	Annihil. low. limit
$\left[\mathrm{K}_{S}{ }^{0} \pi^{-}\right]_{S} \pi^{+}$	25.0 ± 3.6	8.2 ± 0.1	7.9 ± 0.1
$\mathrm{~K}_{S}{ }^{0}\left[\pi^{-} \pi^{+}\right]_{\mathrm{S}}$	16.9 ± 1.3	14.7 ± 0.2	2.9 ± 0.1
$\left[\mathrm{~K}_{S}{ }^{0} \pi^{-}\right]_{P} \pi^{+}$	62.7 ± 4.5	24.7 ± 5.7	8.7 ± 3.0
$\mathrm{~K}_{S}{ }^{0}\left[\pi^{-} \pi^{+}\right]_{P}$	22.0 ± 1.6	4.4 ± 0.1	6.7 ± 0.04

Exp. $\left\{\begin{array}{l}\operatorname{Br}\left(\mathrm{K}_{\mathrm{s}}{ }^{0} \rho\right)=(21.2 \pm 0.5) \% \\ \operatorname{Br}\left(\mathrm{~K}^{*}(892)^{+} \pi^{-}\right)=(62.9 \pm 0.8) \%\end{array}\right.$

Summary

1. The $\mathbf{D}^{0} \rightarrow \mathrm{~K}_{s}{ }^{0} \pi^{+} \pi^{-}$decays are analysed using the factorization approximation.
2. The annihilation (via W-echange) amplitudes are added to the weak-decay tree amplitudes.
3. The strong interactions between kaon-pion and pion-pion pairs in the S -, P - states are described in terms of the corresponding form factors. For D-waves we use relativistic Breit-Wigner formulae.
4. The kaon-pion and pion-pion scalar form factors are constrained using unitarity, analyticity and chiral symmetry and by the present Dalitz plot analysis.
5. A good agreement with the Belle and BABAR Dalitz plot density distributions and with the $\tau^{-} \rightarrow K_{s}{ }^{0} \pi^{-} \nu_{\tau}$ decay data is achieved.
6. The lower-limit values of the branching fractions of the annihilation amplitudes are significant.

parameter	modulus	phase (deg)
χ_{1}	$5.43 \pm 0.22 \pm 0.00$	$248.1 \pm 1.3 \pm 2.0$
χ_{2}	$32.50 \pm 1.21 \pm 0.09$	$221.9 \pm 0.9 \pm 0.7$
$\tilde{F}_{0}^{\pi^{+}} R_{S}\left[\bar{K}^{0} \pi^{-}\right],\left(m_{D^{0}}^{2}\right)$	$1.94 \pm 0.03 \pm 0.00$	$245.6 \pm 1.1 \pm 1.1$
$\tilde{F}_{0}^{\bar{K}^{0} R_{S}\left[\pi^{-} \pi^{+}\right]}\left(m_{D^{0}}^{2}\right)$	$1.36 \pm 0.02 \pm 0.00$	$37.7 \pm 0.4 \pm 0.2$
$\tilde{A}_{0}^{\pi^{+} R_{P}\left[\bar{K}^{0} \pi^{-}\right]}\left(m_{D^{0}}^{2}\right)$	$0.95 \pm 0.05 \pm 0.06$	$294.2 \pm 2.2 \pm 11.9$
$\tilde{A}_{0}^{\bar{K}^{0} R_{P}\left[\pi^{-} \pi^{+}\right]}\left(m_{D^{0}}^{2}\right)$	$0.66 \pm 0.04 \pm 0.01$	$0.0($ fixed $)$
$\tilde{A}_{0}^{\bar{K}^{0} \omega}\left(m_{D^{0}}^{2}\right)$	$1.23 \pm 0.04 \pm 0.03$	$319.1 \pm 1.1 \pm 0.2$
q_{6}	$1.44 \pm 0.07 \pm 0.15$	$26.2 \pm 1.6 \pm 3.8$
s_{6}	$1.84 \pm 0.09 \pm 0.16$	$199.2 \pm 1.3 \pm 1.5$
q_{7}	$0.68 \pm 0.03 \pm 0.02$	$245.9 \pm 1.6 \pm 4.9$
s_{7}	$1.01 \pm 0.05 \pm 0.03$	$102.3 \pm 1.7 \pm 4.1$
z_{8}	$2.09 \pm 0.12 \pm 0.04$	$206.1 \pm 3.1 \pm 3.5$
z_{9}	$1.64 \pm 0.09 \pm 0.31$	$135.3 \pm 1.9 \pm 0.3$
q_{10}	$23.19 \pm 1.26 \pm 3.10$	$220.8 \pm 3.1 \pm 15.6$
s_{10}	$24.26 \pm 1.33 \pm 3.74$	$40.3 \pm 3.0 \pm 14.5$
$c\left(\mathrm{GeV}{ }^{-4}\right)$	$0.29 \pm 0.02 \pm 0.02$	
$\kappa(\mathrm{MeV})$	$305.61 \pm 2.74 \pm 1.33$	
$m_{K}{ }^{*} \mp(\mathrm{MeV})$	894.74 ± 0.08	
$\Gamma_{K^{*}}(\mathrm{MeV})$	46.98 ± 0.18	

Amplitude channel	Br	tree	ann. low	
\mathcal{M}_{1}	$\left[K_{S}^{0} \pi^{-}\right]_{S} \pi^{+}$	$25.03 \pm 3.61 \pm 0.18$	8.24 ± 0.10	7.88 ± 0.11
\mathcal{M}_{2}	$K_{S}^{0}\left[\pi^{-} \pi^{+}\right]_{S}$	$16.92 \pm 1.27 \pm 0.02$	14.70 ± 0.17	2.92 ± 0.09
\mathcal{M}_{3}	$\left[K_{S}^{0} \pi^{-}\right]_{P} \pi^{+}$	$62.72 \pm 4.45 \pm 0.15$	24.69 ± 5.65	8.74 ± 2.97
\mathcal{M}_{4}	$K_{S}^{0}\left[\pi^{-} \pi^{+}\right]_{P}$	$21.96 \pm 1.55 \pm 0.06$	4.36 ± 0.06	6.74 ± 0.04
\mathcal{M}_{5}	$K_{S}^{0} \omega$	$0.79 \pm 0.07 \pm 0.04$	0.24 ± 0.01	0.16 ± 0.02
\mathcal{M}_{6}	$\left[K_{S}^{0} \pi^{-}\right]_{D} \pi^{+}$	$1.41 \pm 0.11 \pm 0.04$		
\mathcal{M}_{7}	$K_{S}^{0}\left[\pi^{-} \pi^{+}\right]_{D}$	$2.15 \pm 0.19 \pm 0.10$		
\mathcal{M}_{8}	$\left[K_{S}^{0} \pi^{+}\right]_{S} \pi^{-}$	$0.56 \pm 0.07 \pm 0.03$	0.07 ± 0.00	0.29 ± 0.02
\mathcal{M}_{9}	$\left[K_{S}^{0} \pi^{+}\right]_{P} \pi^{-}$	$0.64 \pm 0.06 \pm 0.02$	0.77 ± 0.15	0.01 ± 0.01
\mathcal{M}_{10}	$\left[K_{S}^{0} \pi^{+}\right]_{D} \pi^{-}$	$0.63 \pm 0.07 \pm 0.11$	0	0.63 ± 0.11

Lower limit of annihilation amplitudes

$M=\sum_{i=1}^{10} M_{i} ; \quad M_{i}=\mathrm{T}_{\mathrm{i}}+\mathrm{A}_{\mathrm{i}} \quad \mathrm{T}_{\mathrm{i}}-$ tree ampl. $\quad \mathrm{A}_{\mathrm{i}}$ - annihilation ampl.
$\left.\frac{d^{2} B r_{i}}{d s_{-} d s_{+}}=c\left|M_{i}\right|^{2}=c \right\rvert\, \bar{M}_{i}{ }^{2} ; \quad$ fitted ampl. $\bar{M}_{i}=\mathrm{e}^{-\mathrm{i} \rho} M_{i}$
$\frac{d^{2} B r_{i}^{\text {tree }}}{d s_{-} d s_{+}}=c\left|T_{i}\right|^{2} ; \quad \frac{d^{2} B r_{i}^{\text {ann. }}}{d s_{-} d s_{+}}=c\left|A_{i}\right|^{2}$
$A_{i}=e^{i \rho} \bar{M}_{i}-T_{i} \quad \rho=$ phase of the $\mathrm{K}_{\mathrm{s}}{ }^{0} \rho$ amplitude
Lower limit of the annihilation branching fraction:
$B r_{i}^{\text {ann. low }}=B r_{i}+B r_{i}^{\text {tree }}-2 \iint d s_{-} d s_{+}\left|\bar{M}_{i}\right|\left|T_{i}\right|$

Transition matrix elements (1)

Two mesons form a resonance $R=h_{2} h_{3}$

$$
\left\langle h_{2}\left(p_{2}\right) h_{3}\left(p_{3}\right)\right| j\left|D^{0}\left(p_{D}\right)\right\rangle \approx G_{R h_{2} h_{3}}\left(s_{23}\right)\left\langle R\left(p_{2}+p_{3}\right)\right| j\left|D^{0}\left(p_{D}\right)\right\rangle
$$

Example: $\quad D^{0}\left(p_{D}\right) \rightarrow \pi^{+}\left(p_{1}\right) \bar{K}^{0}\left(p_{2}\right) \pi^{-}\left(p_{3}\right) \quad R=K^{*}(892)^{-} \rightarrow \bar{K}^{0} \pi^{-}$

$$
p_{D}=p_{1}+p_{2}+p_{3}, s_{23}=\left(p_{2}+p_{3}\right)^{2}, p_{1}{ }^{2}=m_{\pi}{ }^{2} \quad j=(\bar{s} c)_{V-A}
$$

$\left.R\left(p_{2}+p_{3}\right)|j| D^{0}\left(p_{D}\right)\right\rangle=-i 2 m_{K^{*}} \frac{\varepsilon^{*} \cdot p_{D}}{p_{1}^{2}} p_{1}^{\mu} A_{0}^{D K^{*}}\left(m_{\pi}^{2}\right)+3$ other terms
$\varepsilon-K^{*}$ polarization
$A_{0}^{D K^{*}}\left(m_{\pi}^{2}\right) \quad \mathrm{D}$ to K^{*} transition form factor

Vertex function:

$$
G_{K^{*}-\bar{K}^{0} \pi^{-}}\left(s_{23}\right)=\varepsilon \cdot\left(p_{2}-p_{3}\right) \frac{1}{m_{K^{*}} f_{K^{*}}} F_{1}^{\bar{K}^{0} \pi^{-}}\left(s_{23}\right)
$$

$F_{1}^{\bar{K}^{0} \pi^{-}}\left(s_{23}\right)$ - kaon-pion transition vector form factor

Transition matrix elements (2)

$$
\left\langle h_{1}\left(p_{1}\right) h_{2}\left(p_{2}\right) h_{3}\left(p_{3}\right)\right| j^{\prime}|0\rangle \approx G_{R h_{2} h_{3}}\left(s_{23}\right)\left\langle h_{1}\left(p_{1}\right) R\left(p_{2}+p_{3}\right)\right| j^{\prime}|0\rangle
$$

Example: $h_{1}=\bar{K}^{0}, \quad R=f_{0} \rightarrow \pi^{+} \pi^{-}$

$$
p_{D}=p_{1}+p_{2}+p_{3}, s_{23}=\left(p_{2}+p_{3}\right)^{2}, \quad j^{\prime}=(\bar{s} d)_{V-A}
$$

$$
\left\langle\bar{K}^{0}\left(p_{1}\right) f_{0}\left(p_{2}+p_{3}\right)\right| j^{\prime \mu}|0\rangle=-i \frac{m_{K^{0}}^{2}-s_{23}}{p_{D}^{2}} p_{D}^{\mu} F_{0}^{\bar{K}^{0} f_{0}}\left(m_{D}^{2}\right)+\text { 2nd term }
$$

$F_{0}^{\bar{K}^{0} f_{0}}\left(m_{D}^{2}\right)$ - kaon to f_{0} transition form factor (complex number)

$$
G_{f_{0} \pi^{+} \pi^{-}}\left(s_{23}\right) \approx \chi_{2} F_{0}^{\pi^{+} \pi^{-}}\left(s_{23}\right)
$$

$F_{0}^{\pi^{+} \pi^{-}}\left(s_{23}\right)$ - pion scalar form factor, χ_{2} - constant

Selected formulae of decay amplitudes (1)

$D^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-} \quad\left|K_{S}^{0}\right\rangle \approx \frac{1}{\sqrt{2}}\left(\left|K^{0}\right\rangle+\left|\bar{K}^{0}\right\rangle\right)$
Allowed transitions with $K_{S}^{0} \pi^{-}$final state interactions $\quad \Lambda_{1}=V_{c s}^{*} V_{u d}$ m_{\mp} eff. masses of $K_{S}^{0} \pi^{\mp}, m_{0}-\pi^{+} \pi^{-}$eff. mass $\quad a_{1}$-effective Wilson coefficient

S-wave:

$$
\left.A_{1 S}=-\frac{G_{F}}{2} \Lambda_{1} a_{1} f_{\pi}\left(m_{D}^{2}-m_{\pi}^{2}\right)\right) F_{0}^{D K_{0}^{*-}}\left(m_{\pi}^{2}\right) F_{0}^{\bar{K}_{0} \pi^{-}}\left(m_{-}^{2}\right)
$$

P-wave:
$F_{0}^{D K_{0}^{*-}}\left(m_{\pi}^{2}\right)-\mathrm{D}$ to K_{0}^{*} transition scalar form factor

$$
A_{1 P}=-\frac{G_{F}}{2} \Lambda_{1} a_{1} \frac{f_{\pi}}{f_{\rho}}\left[m_{0}^{2}-m_{+}^{2}+\frac{\left(m_{D}^{2}-m_{\pi}^{2}\right)\left(m_{K}^{2}-m_{\pi}^{2}\right)}{m_{-}^{2}}\right] A_{0}^{D K^{*-}}\left(m_{\pi}^{2}\right) F_{1}^{\bar{K}_{0} \pi^{-}}\left(m_{-}^{2}\right)
$$

D- wave:

$$
A_{1 D}=-\frac{G_{F}}{2} \Lambda_{1} a_{1} f_{\pi} F^{D K_{2}^{*}}\left(m_{-}^{2}\right) \frac{G_{K_{2}^{*} K_{s}^{0} T} D\left(m_{+}^{2}, m_{-}^{2}\right)}{m_{K_{2}^{*}}^{2}-m_{-}^{2}-i m_{K_{2}^{*}}^{*} \Gamma_{K_{2}^{*}}}
$$

$F^{D K_{-}^{*}}\left(m_{-}^{2}\right) \quad$ - combination of D to $K_{2}^{*-}(1430)$ transition form factors
$G_{K_{2}^{*} K_{S}^{0} \pi}$ - coupling constant, $D\left(m_{+}^{2}, m_{-}^{2}\right)=$ D-wave angular distribution function

Selected formulae of decay amplitudes (2)

Annihilation (W-exchange) transitions with $\pi^{+} \pi^{-}$final state interactions

$$
m_{0}=\pi^{+} \pi^{-} \text {effective mass } \quad \mathrm{a}_{2}-\text { effective Wilson coefficient }
$$

S-wave:

$$
A n_{2 S}=-\frac{G_{F}}{2} \Lambda_{1} a_{2} \chi_{2} f_{D}\left(m_{K}^{2}-m_{0}^{2}\right) F_{0}^{\bar{K}^{0} f_{0}}\left(m_{D}^{2}\right) F_{0}^{\pi^{+} \pi^{-}}\left(m_{0}^{2}\right)
$$

$F_{0}^{\bar{K}^{0} f_{0}}\left(m_{D}^{2}\right) \quad-\quad \overline{\mathbf{K}}^{0}$ to $\mathbf{f}_{\mathbf{0}}$ scalar transition form factor
P-wave:

$$
\frac{A n_{2 P}=\frac{G_{F}}{2} \Lambda_{1} a_{2} \frac{f_{D}}{f_{\rho}}\left(m_{-}^{2}-m_{+}^{2}\right) A_{0}^{\rho \bar{K}^{0}}\left(m_{D}^{2}\right) F_{1}^{\pi^{+} \pi^{-}}\left(m_{0}^{2}\right)}{A_{0}^{\rho \bar{K}^{0}}\left(m_{D}^{2}\right)-\rho \text { to } \bar{K}^{0} \text { transition form factor }}
$$

D-wave:

$$
A n_{2 D}=\frac{G_{F}}{2} \Lambda_{1} a_{2} f_{D} F^{D f_{2}}\left(m_{0}^{2}\right) \frac{G_{f_{2} \pi \tau} D\left(m_{+}^{2}, m_{0}^{2}\right)}{m_{f_{2}}^{2}-m_{0}^{2}-i m_{f_{2}} \Gamma_{f_{2}}\left(m_{0}^{2}\right)}
$$

$F^{D f_{2}}\left(m_{0}^{2}\right) \quad$ - combination of D to $f_{2}(1270)$ transition form factors
$G_{f_{2} \pi \pi}$ - coupling constant, $D\left(m_{+}^{2}, m_{0}^{2}\right)$ - D-wave angular distribution function

Amplitude Quasi two-body channel		Dominant resonances
\mathcal{M}_{1}	$\left[K_{S}^{0} \pi^{-}\right]_{S} \pi^{+}$	$K_{0}^{*}(800)^{-}, K_{0}^{*}(1430)^{-}$
\mathcal{M}_{2}	$K_{S}^{0}\left[\pi^{+} \pi^{-}\right]_{S}$	$f_{0}(500), f_{0}(980), f_{0}(1400)$
\mathcal{M}_{3}	$\left[K_{S}^{0} \pi^{-}\right]_{P} \pi^{+}$	$K^{*}(892)^{-}$
\mathcal{M}_{4}	$K_{S}^{0}\left[\pi^{+} \pi^{-}\right]_{P}$	$\rho(770)$
\mathcal{M}_{5}	$K_{S}^{0}\left[\pi^{+} \pi^{-}\right]_{\omega}$	$\omega(782)$
\mathcal{M}_{6}	$\left[K_{S}^{0} \pi^{-}\right]_{D} \pi^{+}$	$K_{2}^{*}(1430)^{-}$
\mathcal{M}_{7}	$K_{S}^{0}\left[\pi^{+} \pi^{-}\right]_{D}$	$f_{2}(1270)$
\mathcal{M}_{8}	$\left[K_{S}^{0} \pi^{+}\right]_{S} \pi^{-}$	$K_{0}^{*}(800)^{+}, K_{0}^{*}(1430)^{+}$
\mathcal{M}_{9}	$\left[K_{S}^{0} \pi^{+}\right]_{P} \pi^{-}$	$K^{*}(892)^{+}$
\mathcal{M}_{10}	$\left[K_{S}^{0} \pi^{+}\right]_{D} \pi^{-}$	$K_{2}^{*}(1430)^{+}$

Experimental data on $\mathrm{D}^{0} \rightarrow \mathrm{~K}_{s}{ }^{0} \pi^{+} \pi^{-}$decay

a) A. Poluektov et al. (Belle Coll.), Phys. Rev. D 81, 112002
b) P. del Amo Sanchez et al. (BaBar Coll.), Phys. Rev. Lett. 105 (2010) 081803

$s_{-}=\left(p_{K_{S}^{0}}+p_{\pi^{-}}\right)^{2}$

$S_{+}=\left(p_{K_{S}^{0}}+p_{\pi^{+}}\right)^{2}$

$s_{0}=\left(p_{\pi^{+}}+p_{\pi^{-}}\right)^{2}$

