Dalitz plot analysis of $D^0 \rightarrow K_S^0 \pi^+ \pi^$ decays in a factorization approach

Analysis done in collaboration with

Robert Kamiński (Institute of Nuclear Physics PAS, Kraków, Poland),

Jean-Pierre Dedonder and Benoit Loiseau (LPNHE, Paris, France)

published recently in Physical Review D 89, 094018 (2014), arXiv: 1403.2971 [hep-ph].

Motivation

Studies of the $D^0 \rightarrow K_s^0 \pi^+ \pi^-$ reaction are useful in:

- 1. measurements of the $D^0 \overline{D}^0$ mixing parameters,
- 2. determination of the **Cabibbo- Kobayashi- Maskawa** angle γ in the decay amplitude $B^{\pm} \rightarrow D K^{\pm}$, $D \rightarrow K_S^0 \pi^+ \pi^-$,
- 3. description of the **final state** interactions between mesons, in particular in the S-waves,
- 4. testing theoretical models of meson form factors,
- 5. understanding properties of the meson resonances and their interference effects on the **Dalitz plot**.

Isobar model and its problems

- Amplitudes in the isobar model are not unitary neither in three-body decay channels nor in two-body subchannels.
- 2. It is **difficult** to distinguish the **S-wave** amplitude from the **background** terms. Their interference is often very strong.
- 3. Some **branching fractions** extracted in such analyses could be unreliable.
- 4. The isobar model has many free parameters (at least two fitted parameters for each amplitude component).
 Recently Belle used 49 fitted parameters and BaBar 43 parameters.

Why unitarity is important?

Unitary model allows for:

- 1. proper construction of the D-decay amplitudes,
- 2. partial wave analyses of final states,
- 3. explanation of structures seen in Dalitz plots,
- 4. adequate determination of branching fractions and CP asymmetries for different quasi-two-body decays,
- 5. extraction of standard model parameters (weak amplitudes),
- application not only in analyses of D decays but also in studies of other reactions.

Towards a unitary approach

- 1. Construction of unitary three-body strong interaction amplitudes in a wide range of effective masses is difficult.
- 2. As a first step we attempt to incorpotate in our model two-body unitarity into the D-decay amplitudes with final state interactions in the following subchannels: a) $K^0 \pi$ S-wave amplitude, b) $\pi \pi$ S-wave amplitude,
 - c) $\pi \pi$ P-wave amplitude.

Allowed and suppressed tree transitions

$$O_{1} \propto \frac{G_{F}}{\sqrt{2}} V_{cs}^{*} V_{ud} (\bar{s}c)_{V-A} (\bar{u}d)_{V-A}$$
$$V_{cs} \approx V_{ud} \approx \cos \theta_{C} \quad \theta_{C} = \text{Cabibbo angle}$$
allowed

$$O_2 \propto \frac{G_F}{\sqrt{2}} V_{cd}^* V_{us} (\overline{d}c)_{V-A} (\overline{u}s)_{V-A}$$

 $V_{cd} \approx -\lambda, \quad V_{us} \approx \lambda, \quad \lambda = \sin \theta_C \approx 0.225$

doubly Cabibbo suppressed

Transition

Tree diagrams with internal W lines

doubly Cabibbo suppressed

Annihilation decay amplitudes

Factorization approach

Quark currents:
$$j_1 = (\bar{s}c)_{V-A}$$
, $j_2 = (\bar{u}d)_{V-A}$, $j_1' = (\bar{u}c)_{V-A}$, $j_2' = (\bar{s}d)_{V-A}$
main part of the effective Hamiltonian: $H \propto G_F / \sqrt{2} \ V_{cs}^* V_{ud} j_1 \otimes j_2$
Factorization: $\langle \overline{K}^0 \pi^- \pi^+ | j_1 \otimes j_2 | D^0 \rangle \approx \langle \overline{K}^0 \pi^- | j_1 | D^0 \rangle \langle \pi^+ | j_2 | 0 \rangle$
 $+ \langle \pi^- \pi^+ | j_1' | D^0 \rangle \langle \overline{K}^0 \pi^- \pi^+ | j_2' | 0 \rangle$
 $+ \langle 0 | j_1' | D^0 \rangle \langle \overline{K}^0 \pi^- \pi^+ | j_2' | 0 \rangle$
 $\langle \pi^+ | j_2^{\mu} | 0 \rangle = i f_{\pi} p_{\pi}^{\mu}$ f_{π} - pion decay constant

 $\langle \overline{K}^0 | j_2'^{\mu} | 0 \rangle = i f_K p_K^{\mu}$ f_K - kaon decay constant

 $\langle 0 \mid j_1^{\prime \mu} \mid D^0 \rangle = -i f_D p_D^{\mu}$

f_D - D decay constant

Types of decay amplitudes

27 amplitudes for the $D^0 \rightarrow K_S^0 \pi^+ \pi^-$ decay:

- a) 7 allowed tree amplitudes,
- b) 6 doubly Cabibbo suppressed tree amplitudes,
- c) 14 annihilation (W-exchange) amplitudes(7 allowed and 7 doubly Cabibbo suppressed).

Seven partial wave amplitudes:

- 1. S-, P- and D- wave amplitudes in the $K\pi$ subsystem,
- 2. S-, P- and D- wave amplitudes in the $\pi^+ \pi^-$ subsystem, including in addition the $\omega \to \pi^+ \pi^-$ P- wave transition.

Resonances in decay amplitudes

 $K^0\pi^+$

 $\pi^+\pi^-$

same list as above but with pion charge +

S $f_0(500) \text{ or } \sigma, f_0(980), f_0(1400)$

P $\rho(770), \rho(1450), \omega(782)$ D $f_2(1270)$

Very rich resonance spectrum \rightarrow complexity of final state interactions

Selected formulae of decay amplitudes

$$D^{0} \to K_{S}^{0} \pi^{+} \pi^{-} \qquad |K_{S}^{0}\rangle \approx \frac{1}{\sqrt{2}} (|K^{0}\rangle + |\overline{K}^{0}\rangle)$$

Allowed transitions with $K_S^0 \pi^-$ final state interactions $\Lambda_1 = V_{cs}^* V_{ud}$ m_{\mp} eff. masses of $K_S^0 \pi^{\mp}$, $m_0 - \pi^+ \pi^-$ eff. mass a_1 - effective Wilson coefficient

S-wave:

$$A_{1S} = -\frac{G_F}{2} \Lambda_1 a_1 f_\pi (m_D^2 - m_\pi^2)) F_0^{DK_0^{*-}} (m_\pi^2) F_0^{\overline{K}_0 \pi^-} (m_-^2)$$

$$F_0^{DK_0^{*-}} (m_\pi^2) \quad - \text{ D to } K_0^* \text{ transition scalar form factor}$$

$$F_0^{\overline{K}_0 \pi^-} (m_-^2) \quad - K_0 \pi \text{ scalar form factor} \quad m_-^2 = (p_{\pi^-} + p_{K^0})$$

P-wave:

$$A_{1P} = -\frac{G_F}{2} \Lambda_1 a_1 \frac{f_{\pi}}{f_{\rho}} [m_0^2 - m_+^2 + \frac{(m_D^2 - m_{\pi}^2)(m_K^2 - m_{\pi}^2)}{m_-^2}] A_0^{DK^{*-}}(m_{\pi}^2) F_1^{\overline{K}_0 \pi^-}(m_-^2)$$

 $A_0^{DK_0^{*-}}(m_{\pi}^2)$ - D to K_0^{*} transition vector form factor

 $F_1^{\bar{K_0}\pi^-}(m_-^2)$ - $K_0\pi$ vector form factor

$$m_{+}^{2} = (p_{\pi^{+}} + p_{K^{0}})^{2}$$

 $)^2$

$$m_0^2 = (p_{\pi^-} + p_{\pi^+})^2$$

kaon-pion scalar form factor

pion scalar form factor

$$\chi^{2} = \chi_{D^{0}}^{2} + \chi_{\tau}^{2} + \chi_{Br}^{2}$$

Data for:

- 1. $D^0 \rightarrow K_S^0 \pi^+ \pi^-$ decays, A. Poluektov et al. (Belle Coll.), Phys. Rev. D 81, 112002 (2010),
- 2. $\tau^- \rightarrow K_s^0 \pi^- v_{\tau}$ decays, D. Epifanov et al. (Belle Coll.), Phys. Lett. B 654, 65 (2008),
- 3. total branching fraction Br exp = (2.82±0.19) %.

Number of degrees of freedom:

ndf= 6321 + 89 + 1 – 33 free model param.= 6378.

Result: $\chi^2 = 9451$ which gives χ^2 / ndf = 1.48.

Dalitz plot density distribution for the D⁰ \rightarrow K_S⁰ π^+ π^- decay

Comparison of the $K_s^0 \pi^2$ effective mass squared distributions with the Belle data

Comparison of the $K_s^0 \pi^+$ and $\pi^+ \pi^-$ effective mass squared distributions with the Belle data

 $K_{s}^{0}\pi^{+}$

 $\pi^+\pi^-$

Comparison with the Belle data on the $\tau\tau^- \rightarrow K_s^0 \pi^- \nu_{\tau}$ decay

 $m_{K\pi}$ (GeV)

Branching fractions

	Channel	Br (%)	Br (tree)	Annihil. low. limit
	$[K_{S}^{0}\pi^{-}]_{S}\pi^{+}$	25.0 ± 3.6	8.2 ± 0.1	7.9 ± 0.1
	$\mathrm{K_{S}^{0}}\left[\pi^{-}\pi^{+} ight]_{\mathrm{S}}$	16.9 ± 1.3	14.7 ± 0.2	2.9 ± 0.1
	$[K_{S}^{0} \pi^{-}]_{P} \pi^{+}$	62.7 ± 4.5	24.7 ± 5.7	8.7 ± 3.0
	$K_{S}^{0} [\pi \pi^{-} \pi^{+}]_{P}$	$\textbf{22.0} \pm \textbf{1.6}$	$\textbf{4.4} \pm \textbf{0.1}$	6.7 ± 0.04
E	Br ($K_S^0 \rho$) = (21.2 ± 0.5) %			
	' Br	⁻ (K*(892)⁺π⁻)	= (62.9 ± 0.8) %	

Summary

- 1. The $D^0 \rightarrow K_S^0 \pi^+ \pi^-$ decays are analysed using the factorization approximation.
- 2. The annihilation (via W-echange) amplitudes are added to the weak-decay tree amplitudes.
- The strong interactions between kaon-pion and pion-pion pairs in the S-, P- states are described in terms of the corresponding **form factors**. For D-waves we use relativistic Breit-Wigner formulae.
- 2. The kaon-pion and pion-pion scalar form factors are constrained using unitarity, analyticity and chiral symmetry and by the present Dalitz plot analysis.
- 5. A good agreement with the **Belle and BABAR Dalitz plot** density distributions and with the $\tau^- \rightarrow K_s^0 \pi^- \nu_{\tau}$ decay data is achieved.
- 6. The lower-limit values of the branching fractions of the **annihilation** amplitudes are **significant**.

parameter	modulus	phase (deg)
χ_1	$5.43 \pm 0.22 \pm 0.00$	$248.1 \pm 1.3 \pm 2.0$
χ_2	$32.50\pm1.21\pm0.09$	$221.9\pm0.9\pm0.7$
$\tilde{F}_0^{\pi^+ R_S[\overline{K}^0 \pi^-]}, (m_{D^0}^2)$	$1.94\pm0.03\pm0.00$	$245.6\pm1.1\pm1.1$
$\tilde{F}_{0}^{\overline{K}^{0}R_{S}[\pi^{-}\pi^{+}]}(m_{D^{0}}^{2})$	$1.36\pm0.02\pm0.00$	$37.7 \pm 0.4 \pm 0.2$
$\tilde{A}_{0}^{\pi^{+}R_{P}[\overline{K}^{0}\pi^{-}]}(m_{D^{0}}^{2})$	$0.95\pm0.05\pm0.06$	$294.2\pm2.2\pm11.9$
$\tilde{A}_0^{\overline{K}^0 R_P [\pi^- \pi^+]}(m_{D^0}^2)$	$0.66\pm0.04\pm0.01$	$0.0 \ (fixed)$
$ ilde{A}_0^{\overline{K}^0\omega}(m_{D^0}^2)$	$1.23\pm0.04\pm0.03$	$319.1\pm1.1\pm0.2$
q_6	$1.44 \pm 0.07 \pm 0.15$	$26.2\pm1.6\pm3.8$
<i>s</i> ₆	$1.84\pm0.09\pm0.16$	$199.2\pm1.3\pm1.5$
q_7	$0.68\pm0.03\pm0.02$	$245.9\pm1.6\pm4.9$
87	$1.01\pm0.05\pm0.03$	$102.3\pm1.7\pm4.1$
28	$2.09\pm0.12\pm0.04$	$206.1\pm3.1\pm3.5$
<i>z</i> 9	$1.64\pm0.09\pm0.31$	$135.3\pm1.9\pm0.3$
q_{10}	$23.19\pm1.26\pm3.10$	$220.8\pm3.1\pm15.6$
s_{10}	$24.26\pm1.33\pm3.74$	$40.3\pm3.0\pm14.5$
$c \; (\text{GeV}^{-4})$	$0.29\pm0.02\pm0.02$	
$\kappa \ (MeV)$	$305.61\pm2.74\pm1.33$	
$m_{K^{*\mp}}$ (MeV)	894.74 ± 0.08	
Γ_{K^*} (MeV)	46.98 ± 0.18	

Amplitude	channel	Br	tree	ann. low
\mathcal{M}_1	$[K_S^0 \pi^-]_S \pi^+$	$25.03\pm3.61\pm0.18$	8.24 ± 0.10	7.88 ± 0.11
\mathcal{M}_2	$K_{S}^{0}[\pi^{-}\pi^{+}]_{S}$	$16.92\pm1.27\pm0.02$	14.70 ± 0.17	2.92 ± 0.09
\mathcal{M}_3	$[K_S^0 \pi^-]_P \pi^+$	$62.72\pm4.45\pm0.15$	24.69 ± 5.65	8.74 ± 2.97
\mathcal{M}_4	$K_S^0[\pi^-\pi^+]_P$	$21.96\pm1.55\pm0.06$	4.36 ± 0.06	6.74 ± 0.04
\mathcal{M}_5	$K_S^0 \omega$	$0.79\pm0.07\pm0.04$	0.24 ± 0.01	0.16 ± 0.02
\mathcal{M}_6	$[K_S^0 \pi^-]_D \pi^+$	$1.41 \pm 0.11 \pm 0.04$		
\mathcal{M}_7	$K_{S}^{0}[\pi^{-}\pi^{+}]_{D}$	$2.15\pm0.19\pm0.10$		
\mathcal{M}_8	$[K_S^0 \pi^+]_S \pi^-$	$0.56\pm0.07\pm0.03$	0.07 ± 0.00	0.29 ± 0.02
\mathcal{M}_9	$[K_S^0 \pi^+]_P \pi^-$	$0.64\pm0.06\pm0.02$	0.77 ± 0.15	0.01 ± 0.01
\mathcal{M}_{10}	$[K_S^0 \pi^+]_D \pi^-$	$0.63 \pm 0.07 \pm 0.11$	0	0.63 ± 0.11

Lower limit of annihilation amplitudes

$$M = \sum_{i=1}^{10} M_i; \quad M_i = \mathsf{T}_i + \mathsf{A}_i \quad \mathsf{T}_i - \text{tree ampl.} \quad \mathsf{A}_i - \text{annihilation ampl.}$$
$$d^2 B r_i = \mathsf{I}_i + \mathsf$$

 $\frac{d D_{i}}{ds_{-}ds_{+}} = c |M_{i}|^{2} = c |\overline{M}_{i}|^{2}; \quad \text{fitted ampl. } \overline{M}_{i} = e^{-i\rho} M_{i}$

$$\frac{d^2 B r_i^{tree}}{ds_{-} ds_{+}} = c |T_i|^2; \qquad \frac{d^2 B r_i^{ann.}}{ds_{-} ds_{+}} = c |A_i|^2$$

 $A_i = e^{i
ho}\overline{M}_i - T_i$ ho = phase of the K_s⁰ ho amplitude

Lower limit of the annihilation branching fraction:

$$Br_i^{ann.\ low} = Br_i + Br_i^{tree} - 2\int \int ds_{-}ds_{+} |\overline{M}_i| |T_i|$$

Transition matrix elements (1)

Two mesons form a resonance $R=h_2h_3$

$$\langle h_2(p_2)h_3(p_3) | j | D^0(p_D) \rangle \approx G_{Rh_2h_3}(s_{23}) \langle R(p_2 + p_3) | j | D^0(p_D) \rangle$$

Example: $D^{0}(p_{D}) \to \pi^{+}(p_{1})\overline{K}^{0}(p_{2})\pi^{-}(p_{3}) \qquad R = K^{*}(892)^{-} \to \overline{K}^{0}\pi^{-}$

$$p_D = p_1 + p_2 + p_3, \ s_{23} = (p_2 + p_3)^2, \ p_1^2 = m_{\pi}^2 \qquad j = (\bar{s}c)_{V-A}$$

$$R(p_2 + p_3) | j | D^0(p_D) \rangle = -i2m_{K^*} \frac{\varepsilon^* \cdot p_D}{p_1^2} p_1^{\mu} A_0^{DK^*}(m_{\pi}^2) + 3 \text{ other terms}$$

$${\mathcal E}$$
 - \overline{K}^* polarization

 $A_0^{DK^*}(m_{\pi}^2)$ D to K* transition form factor

Vertex function:

$$G_{K^{*-}\overline{K}^{0}\pi^{-}}(s_{23}) = \varepsilon \cdot (p_{2} - p_{3}) \frac{1}{m_{K^{*}}f_{K^{*}}} F_{1}^{\overline{K}^{0}\pi^{-}}(s_{23})$$

 $F_1^{\overline{K}^0\pi^-}(s_{23})$ - kaon-pion transition vector form factor

Transition matrix elements (2)

$$\langle h_1(p_1)h_2(p_2)h_3(p_3) | j' | 0 \rangle \approx G_{Rh_2h_3}(s_{23}) \langle h_1(p_1)R(p_2+p_3) | j' | 0 \rangle$$

Example: $h_1 = \overline{K}^0$, $R = f_0 \rightarrow \pi^+ \pi^-$

 $p_D = p_1 + p_2 + p_3, \ s_{23} = (p_2 + p_3)^2, \ j' = (\bar{s}d)_{V-A}$

$$\langle \overline{K}^{0}(p_{1})f_{0}(p_{2}+p_{3}) | j'^{\mu} | 0 \rangle = -i \frac{m_{K^{0}}^{2} - s_{23}}{p_{D}^{2}} p_{D}^{\mu} F_{0}^{\overline{K}^{0}f_{0}}(m_{D}^{2}) + 2 \text{nd term}$$

 $F_0^{\overline{K}^0 f_0}(m_D^2)$ - kaon to f₀ transition form factor (complex number)

$$G_{f_0\pi^+\pi^-}(s_{23}) \approx \chi_2 F_0^{\pi^+\pi^-}(s_{23})$$

 $F_0^{\pi^+\pi^-}(s_{23})$ - pion scalar form factor, χ_2 - constant

Selected formulae of decay amplitudes (1)

$$D^{0} \to K_{S}^{0} \pi^{+} \pi^{-} \qquad |K_{S}^{0}\rangle \approx \frac{1}{\sqrt{2}} (|K^{0}\rangle + |\overline{K}^{0}\rangle)$$

Allowed transitions with $K_S^0 \pi^-$ final state interactions $\Lambda_1 = V_{cs}^* V_{ud}$ m_{\mp} eff. masses of $K_S^0 \pi^{\mp}$, $m_0 - \pi^+ \pi^-$ eff. mass a_1 - effective Wilson coefficient

S-wave:

$$A_{1S} = -\frac{G_F}{2} \Lambda_1 a_1 f_{\pi} (m_D^2 - m_{\pi}^2)) F_0^{DK_0^{*-}} (m_{\pi}^2) F_0^{\overline{K}_0 \pi^-} (m_{-}^2)$$

$$F_0^{DK_0^{*-}} (m_{\pi}^2) \quad - \text{ D to } K_0^{*} \text{ transition scalar form factor}$$

P-wave:

$$A_{1P} = -\frac{G_F}{2} \Lambda_1 a_1 \frac{f_{\pi}}{f_{\rho}} [m_0^2 - m_+^2 + \frac{(m_D^2 - m_{\pi}^2)(m_K^2 - m_{\pi}^2)}{m_-^2}] A_0^{DK^{*-}}(m_{\pi}^2) F_1^{\overline{K}_0 \pi^-}(m_-^2)$$

D-wave:

$$A_{1D} = -\frac{G_F}{2} \Lambda_1 a_1 f_{\pi} F^{DK_2^*}(m_-^2) \frac{G_{K_2^* K_3^0 \pi} D(m_+^2, m_-^2)}{m_{K_2^*}^2 - m_-^2 - i m_{K_2^*} \Gamma_{K_2^*}}$$

 $F^{DK_2^{*-}}(m_-^2)$ - combination of D to $K_2^{*-}(1430)$ transition form factors

 $G_{K_2^*K_S^0\pi}$ - coupling constant, $D(m_+^2,m_-^2)$ = D-wave angular distribution function

Selected formulae of decay amplitudes (2)

Annihilation (W-exchange) transitions with $\pi^+\pi^-$ final state interactions

 $m_0 = \pi^+ \pi^-$ effective mass a_2 - effective Wilson coefficient S-wave: $An_{2S} = -\frac{G_F}{2}\Lambda_1 a_2 \chi_2 f_D(m_K^2 - m_0^2) F_0^{\overline{K}^0 f_0}(m_D^2) F_0^{\pi^+ \pi^-}(m_0^2)$ $F_0^{\overline{K}^0 f_0}(m_D^2)$ - \overline{K}^0 to f_0 scalar transition form factor P-wave: $An_{2P} = \frac{G_F}{2} \Lambda_1 a_2 \frac{f_D}{f_2} (m_-^2 - m_+^2) A_0^{\rho \overline{K}^0} (m_D^2) F_1^{\pi^+ \pi^-} (m_0^2)$ $A_0^{
ho \overline{K}^0}(m_D^2)$ - ho to \overline{K}^0 transition form factor D-wave: $An_{2D} = \frac{G_F}{2} \Lambda_1 a_2 f_D F^{Df_2}(m_0^2) \frac{G_{f_2 \pi \pi} D(m_+^2, m_0^2)}{m_{f_2}^2 - m_0^2 - im_{f_2} \Gamma_{f_2}(m_0^2)}$ $F^{Df_2}(m_0^2)$ - combination of D to f_2 (1270) transition form factors

 $G_{_{f_2}\pi\pi}$ - coupling constant, $D(m_{_+}^2,m_0^2)$ - D-wave angular distribution function

-	•	•
	channel	resonances a
\mathcal{M}_1	$[K^0_S \pi^-]_S \pi^+$	$K_0^*(800)^-, K_0^*(1430)^-$
\mathcal{M}_2	$K_{S}^{0} [\pi^{+}\pi^{-}]_{S}$	$f_0(500), f_0(980), f_0(1400)$
\mathcal{M}_3	$[K_S^0 \pi^-]_P \pi^+$	$K^{*}(892)^{-}$
\mathcal{M}_4	$K_{S}^{0} [\pi^{+}\pi^{-}]_{P}$	$\rho(770)$
\mathcal{M}_5	$K_S^0 \left[\pi^+ \pi^- \right]_\omega$	$\omega(782)$
\mathcal{M}_6	$[K_S^0 \pi^-]_D \pi^+$	$K_2^*(1430)^-$
\mathcal{M}_7	$K_{S}^{0} [\pi^{+} \pi^{-}]_{D}$	$f_2(1270)$
\mathcal{M}_8	$[K_S^0 \pi^+]_S \pi^-$	$K_0^*(800)^+, K_0^*(1430)^+$
\mathcal{M}_9	$[K_S^0 \pi^+]_P \pi^-$	$K^{*}(892)^{+}$
\mathcal{M}_{10}	$[K_S^0 \pi^+]_D \pi^-$	$K_2^*(1430)^+$

Amplitude Quasi two-body Dominant

Experimental data on $D^0 \rightarrow K_S^0 \pi^+ \pi^-$ decay

- a) A. Poluektov et al. (Belle Coll.), Phys. Rev. D 81, 112002
- 10^{3} s+ (GeV²/c⁴) а b) P. del Amo Sanchez et al. (BaBar Coll.), 10² Phys. Rev. Lett. 105 (2010) 081803 10 3 1 2 s_ (GeV²/c⁴) Events / 0.025 GeV ²/c⁴ b) 80000 Events / 0.035 GeV²/c⁴ 0.5 1.5 s. (GeV²/c⁴) s+ (GeV²/c⁴) s₀ (GeV²/c⁴) $s_{-} = (p_{K_{s}^{0}} + p_{\pi^{-}})^{2}$ $s_{+} = (p_{K_{s}^{0}} + p_{\pi^{+}})^{2}$ $s_0 = (p_{\pi^+} + p_{\pi^-})^2$