

Non-perturbative pion dynamics for the *X*(3872)

Vadim Baru

Institut für Theoretische Physik II, Ruhr-Universität Bochum Germany Institute for Theoretical and Experimental Physics, Moscow, Russia

Meson 2014, Krakow

in collaboration with E. Epelbaum, A. Filin, C. Hanhart, Yu. Kalashnikova, A. Kudryavtsev, U.-G. Meißner and A. Nefediev

related articles: PLB 726, 537 (2013), PRD 84, 074029 (2011)

X(3872). Known facts Discovered by the Belle: $B^{\pm} \rightarrow K^{\pm}J/\Psi \pi^{+}\pi^{-}$ Observed: CDF, D0, BABAR, LHCb, BESIII M_X= 3871.68 ± 0.17 MeV PDG (2013)

- $\Gamma_X < 2.3~{
 m MeV}$ Belle
- $X \to J/\Psi \gamma \implies C = +$ Belle

- $Br(X \to J/\Psi\omega)/Br(X \to J/\Psi\rho) \approx 0.8 \pm 0.3$ Belle (2003), BABAR(2010) \implies isospin violation
- Quantum numbers: 1⁺⁺ and 2⁻⁺ from BABAR/Belle angular distributions
- LHCb (2013): 2^{-+} is rejected with CL = 8 $\sigma \implies X$ is 1^{++}

X(3872). Mechanisms

 $\eta_{c2}(1^{1}D_{2})$ ruled out by LHCb • Conventional charmonium:

 $\chi_{c1}'(2^{3}P_{1})$

• Exotics: tetraquark, molecular, mixture....

tetraquarks Maiani,...

compact state

Strong hadronic interactions with large s-wave scatt. length natural effective range specific analytic properties: DD^{*} unitarity cut Weinberg (1963-65)

 $M_X = 3871.68 \pm 0.17 \text{ MeV};$ $M_{D^0D^{0*}} = 3871.80 \pm 0.35 \text{ MeV}$

 \Rightarrow X is the S-wave bound state of DD^{*} with E_B= 0.12 ± 0.26 MeV

From NN system to charm sector

Prediction of the $\overline{D}D^*$ molecular state in analogy to the deuteron

From NN system to charm sector

Prediction of the $\overline{D}D^*$ molecular state in analogy to the deuteron

X(3872) as a $\overline{D}D^*$ bound state. Status.

Pionless:

- Asymptotic behavior of the X w.f. Voloshin (2004)
- Contact theory AlFiky et al. (2006), Nieves, Valderrama (2012)

X(3872) as a $\overline{D}D^*$ bound state. Status.

Pionless:

- Asymptotic behavior of the X w.f. Voloshin (2004)
- Contact theory AlFiky et al. (2006), Nieves, Valderrama (2012)

Pionful:

- X-EFT: resummation of LO contact operators + perturbative pions
 Similar to KSW in NN sector
 Flemming et al. (2007), Hammer et al. (2014), Mehen, Braaten et al. (2014), Mehen, Braaten et al. (2010-2011)
- Phenomenological deuteron-like studies with nonperturb. static OPE and formfactors

For example: Liu et al. (2008), Thomas and Close (2008), Törnqvist (2004)

X(3872) as a $\overline{D}D^*$ bound state. Status.

Pionless:

- Asymptotic behavior of the X w.f. Voloshin (2004)
- Contact theory AIFiky et al. (2006), Nieves, Valderrama (2012)

Pionful:

- X-EFT: resummation of LO contact operators + perturbative pions
 Similar to KSW in NN sector
 Flemming et al. (2007), Hammer et al. (2014), Mehen, Braaten et al. (2014), Mehen, Braaten et al. (2010-2011)
- Phenomenological deuteron-like studies with nonperturb. static OPE and formfactors
 For example: Liu et al.

Goals of our study

For example: Liu et al. (2008), Thomas and Close (2008), Törnqvist (2004)

- Investigate the role of 3-body πDD dynamics on a near threshold resonance
- Check the validity of the static pion approximation
- Investigate the role of coupled channel effects: $D^0 \bar{D}^{*0}, D^+ \bar{D}^{*-}$ Needed to explain isospin violation: $Br(J/\Psi\rho) \simeq Br(J/\Psi\omega)$ Gamermann, Oset (2009)
- Study the dependence of the X binding energy on the light quark masses (chiral extrapolations)

Formalism. Faddeev-type integral Eqs. for 1++ DD*

Channels:

$$a_{00}^{nn'}(\mathbf{p},\mathbf{p}',E) = \lambda_0 V_{00}^{nn'}(\mathbf{p},\mathbf{p}') - \sum_{i=0,c} \lambda_i \int \frac{d^3s}{\Delta_i(s)} V_{0i}^{nm}(\mathbf{p},\mathbf{s}) a_{i0}^{mn'}(\mathbf{s},\mathbf{p}',E)$$
$$a_{c0}^{nn'}(\mathbf{p},\mathbf{p}',E) = \lambda_c V_{c0}^{nn'}(\mathbf{p},\mathbf{p}') - \sum_{i=0,c} \lambda_i \int \frac{d^3s}{\Delta_i(s)} V_{ci}^{nm}(\mathbf{p},\mathbf{s}) a_{i0}^{mn'}(\mathbf{s},\mathbf{p}',E),$$
$$\underset{\text{isospin coefficients}}{\overset{\text{isospin coefficients}}}$$

• Partial waves of DD*: ${}^{3}S_{1}, {}^{3}D_{1} \implies$ projection operators

- Δ_0 and $\Delta_c D\overline{D}^*$ propagators of the states $|0\rangle$ and $|c\rangle$
- $a_0 = (a_{00} a_{c0})/2$ the X-amplitude

• Same 3-body cut appears due to dressing the D^{*} propagator by π D loops

Renormalization of OPE

- Similar to NN Lepage (1997), Nogga et al. (2005), Epelbaum et al. (2006-2009),
- $V_{OPE} \xrightarrow{p \to \infty}$ const \implies divergent integrals \implies regularize, e.g., with cutoff $\Lambda \implies$ renormalize tuning $C_0(\Lambda)$ to reproduce the binding energy
- Renormalization group limit cycle Nogga et al. (2005), Bedaque et al.(1999), Braaten and Phillips (2004)

Once renormalized, observables should not depend on Λ within the range of applicability!

Partial width of the X(3872) due to the decay to $\pi^0 D^0 \overline{D}^0$

VB, Filin, Hanhart, Kalashnikova, Kudryavtsev, Nefediev (2011)

Chiral Extrapolations of the X(3872) with m_{π} VB, Epelbaum Filin, Hanhart, Meißner, Nefediev (2013)

Strategy: vary all quantities with m_{π} , expand around physical pion mass m_{π}^{ph}

• $f(\Lambda)$ is needed to absorb extra Λ -dependence when $m_{\pi} \neq m_{\pi}^{\rm ph}$

$$C_0(\Lambda, m_\pi) = C_0(\Lambda) \left(1 + f(\Lambda) \frac{m_\pi^2 - m_\pi^{\text{ph}^2}}{M^2} \right) + O\left(\frac{\delta m_\pi^4}{M^4}\right)$$

- could be fixed if we knew the slope $(\partial E_B / \partial m_\pi) \Big|_{m_\pi = m_\pi^{\rm ph}}$ from lattice
- Estimate $f(\Lambda)$: from two-pion exchange $\implies |f(\Lambda)| \sim 1$, more conservatively: $f(\Lambda) \in [-5, 5]$

Chiral Extrapolations of the X(3872) with m_{π} VB, Epelbaum Filin, Hanhart, Meißner, Nefediev (2013)

Strategy: vary all quantities with m_{π} , expand around physical pion mass m_{π}^{ph}

• $f(\Lambda)$ is needed to absorb extra Λ -dependence when $m_{\pi} \neq m_{\pi}^{\rm ph}$

$$C_0(\Lambda, m_\pi) = C_0(\Lambda) \left(1 + f(\Lambda) \frac{m_\pi^2 - m_\pi^{\rm ph^2}}{M^2} \right) + O\left(\frac{\delta m_\pi^4}{M^4}\right)$$

- $(\partial E_B / \partial m_\pi) \Big|_{m_\pi = m_\pi^{\rm ph}}$ from lattice • could be fixed if we knew the slope
- Estimate $f(\Lambda)$: from two-pion exchange $\implies |f(\Lambda)| \sim 1$, more conservatively: $f(\Lambda) \in [-5, 5]$ physical pion mass **Conclusions:** 1) $\left| f(\partial E_B / \partial m_\pi) \right|_{m_\pi = m_\pi^{\rm ph}} < 0 \Rightarrow f(\Lambda) < 0 \implies$ -2 negative slope, case 1), full bound state disappears quickly with m_{π} -E_B [MeV] negative slope, case 1), contact growth. Dominated by short-range physics positive slope, case 2), full 2) $\left| f(\partial E_B / \partial m_\pi) \right|_{m_\pi = m_\pi^{\text{ph}}} > 0 \Rightarrow f(\Lambda) > 0 \implies$ positive slope, case 2), contact -6 The X is bound deeper with m_{π} growth. Strong influence of pion dynamics -85 1.5 $\xi = m_{\pi} / m_{\pi}^{\text{ph}}$

Chiral Extrapolations of the X(3872) with m_{π}

VB, Epelbaum, Filin, Hanhart, Meißner, Nefediev (2013)

Strategy: vary all quantities with m_{π} , expand around physical pion mass m_{π}^{ph}

• $f(\Lambda)$ is needed to absorb extra Λ -dependence when $m_{\pi} \neq m_{\pi}^{\text{ph}}$

$$C_0(\Lambda, m_\pi) = C_0(\Lambda) \left(1 + f(\Lambda) \frac{m_\pi^2 - m_\pi^{\text{ph}^2}}{M^2} \right) + O\left(\frac{\delta m_\pi^4}{M^4}\right)$$

- could be fixed if we knew the slope $(\partial E_B/\partial m_\pi)|_{m_\pi = m_\pi^{\rm ph}}$ from lattice
- Estimate $f(\Lambda)$: from two-pion exchange $\implies |f(\Lambda)| \sim 1$, more conservatively: $f(\Lambda) \in [-5, 5]$

Conclusions ctd :

First lattice measurement of the X(3872) Prelovsek and Leskovec PRL(2013), talk on Saturday

 $E_B = -11 \pm 7 \text{ MeV}$ $m_{\pi} = 266(4) \text{ MeV}$

 \Rightarrow scenario 2) seems to be preferred

Comparison to other EFT studies

• chiral extrapol. of the binding energy with m_{π} to NLO in X-EFT M.Jansen et al. (2013) Conclusion : qualitative agreement with our results

Comparison to other EFT studies

- chiral extrapol. of the binding energy with m_{π} to NLO in X-EFT M.Jansen et al. (2013) Conclusion : qualitative agreement with our results
- chiral extrapol. of the binding energy with m_{π} with non perturbative pions

P. Wang and X.G. Wang, PRL (2013)

Claims:

- 1) OPE alone is sufficient to bind $D^0 \overline{D^{*0}}$
- 2) Short range contr'n (CT) a small correction
- 3) X pole disappears when m_{π} grows

Comparison to other EFT studies

- chiral extrapol. of the binding energy with m_{π} to NLO in X-EFT M.Jansen et al. (2013) Conclusion : qualitative agreement with our results
- chiral extrapol. of the binding energy with m_{π} with non perturbative pions

P. Wang and X.G. Wang, PRL (2013)

Claims:

- 1) OPE alone is sufficient to bind $D^0 \overline{D^{*0}}$
- 2) Short range contr'n (CT) a small correction
- 3) X pole disappears when m_{π} grows

Our opinion

• All claims are scheme dependent. OPE due to its short ranged part is always tuned with CT

Example:

in cutoff regularization X has the same E_B if $C_0(\Lambda)=0$ ($\Lambda \approx 1 \text{ GeV}$) or $C_0(\Lambda)=\infty$ ($\Lambda \approx 3 \text{ GeV}$)

• 3) is in conflict with recent lattice results Prelovsek and Leskovec PRL(2013)

Conclusions

- We studied the role of nonperturbative long-range $\pi D\overline{D}$ dynamics on the X(3872) within a molecular picture
- 3-body effects are important in pionful approaches but pion is essentially perturbative
- static pion approximation is not appropriate
- $\Gamma(X \to D^0 \overline{D}{}^0 \pi^0) = 44 \text{ KeV} \text{ for } E_B = 0.5 \text{ MeV}$
- The dependence of the X-binding energy on m_{π} is highly nontrivial may provide insights on the binding mechanism
 - the X bound state may either disappear or get more bound depending on the interplay of long- and short-range forces
 - First lattice results: more bound

More accurate lattice data with better controlled finite volume corrections would be important