



# Light Hadron Production in Experiments with SND Detector at the e+e- Collider VEPP-2000

Sergey Serednyakov Novosibirsk State University Budker Institute of Nuclear Physics

13<sup>th</sup> workshop on meson production, properties and interaction Cracow, Poland, 29 may – 3 June, 2014

# BINP, Novosibirsk



## Outline

1. Experiment  
2. 
$$e^+e^- \rightarrow$$
 mesons  
3.  $e^+e^- \rightarrow$  nucleons  
4. Conclusions

## VEPP-2000 complex, in operation since 2010





- » beam length 3.3 см
- energy spread 0.7 M<sub>3</sub>B L  $\simeq 1.10^{32}$  at 2E=2.0 Г<sub>3</sub>B
- Meson 2014, 29.05-3.06 2014



# SND, in operation since 1995

### NIM A449 (2000) 125-139



- •3 aerogel cherenkov counter,
- •4 NaI(TI) crystals, 5 phototriodes,
- •6 iron muon absorber, 7–9 –

•muon detector, 10 – focusing solenoids.





# Experiments 2010 - 2012

| Experiment/year<br>(1.05 – 2.0 GeV) | Integrated<br>Iuminosity | √s > 1.88 GeV        |  |
|-------------------------------------|--------------------------|----------------------|--|
| MHAD 2010                           | 5 pb <sup>-1</sup>       | 71 nb <sup>-1</sup>  |  |
| MHAD 2011                           | 25 pb <sup>-1</sup>      | 3.8 pb <sup>-1</sup> |  |
| MHAD 2012                           | 17 pb <sup>-1</sup>      | 4.9 pb <sup>-1</sup> |  |
| Total                               | 47pb <sup>-1</sup>       | 8.8 pb <sup>-1</sup> |  |

# Experiment 2013

| Energy<br>region (√s,<br>GeV) | Integrated<br>Iuminosity,<br>pb <sup>-1</sup> | ρ - ω<br>region,<br>pb <sup>-1</sup> | η′ -<br>meson<br>region,<br>pb <sup>-1</sup> | φ - meson<br>region, pb <sup>-</sup><br>1 | non-<br>resonant,<br>pb <sup>-1</sup> |
|-------------------------------|-----------------------------------------------|--------------------------------------|----------------------------------------------|-------------------------------------------|---------------------------------------|
| 0.32–1.06                     | 32                                            | 15.5                                 | 3.5                                          | 7.5                                       | 5.5                                   |

$$e^+e^- \rightarrow \omega \pi^0 \rightarrow \pi^0 \pi^0 \gamma$$
 (1)

(arXiv:1303.5198[hep-ex]) Phys.Rev. **D**88 (2013) 054013





e<sup>+</sup>e<sup>-</sup> -> K<sup>+</sup> K<sup>-</sup>, New SND measurement after Babar



Meson 2014, 29.05-3.06 2014

--- kaon ID

## **e<sup>+</sup>e<sup>-</sup> ->** π<sup>+</sup> π<sup>-</sup>

### Beginning of the analysis, 5 pb<sup>-1</sup>





 $e^+e^- \rightarrow \eta \pi^+ \pi^-$ 

### Ready to submit to journal



 $e+e \rightarrow \eta K+K -$ 





### $e^+e^- \rightarrow \eta \pi^+\pi^-\pi^0$ ( $\eta -> 2\gamma$ )



## ele=>nv=>/v,

### first measurement for vs >1.4 GeV)



# $e^+e^- \rightarrow N\overline{N}$ cross section

# Differential cross section:

$$\sigma(e^+e^- \to B\overline{B}) = \frac{\alpha^2 \beta C^2}{4m^2} \left( \left| G_M \right|^2 (1 + \cos^2 \theta) + \frac{4m_B^2}{m^2} \left| G_E \right|^2 (1 - \cos^2 \theta) \right)$$

Total cross section:

$$\sigma(e^+e^- \rightarrow B\overline{B}) = \frac{4\pi\alpha^2\beta C}{3m^2} \left( \left| G_M \right|^2 + \frac{2m_B^2}{m^2} \left| G_E \right|^2 \right)$$

Effective form factor

$$F|^{2} = \frac{|G_{M}|^{2} + |G_{E}|^{2}/2\tau}{1 + 1/2\tau}, \quad \tau = \frac{m^{2}}{4m_{B}^{2}}$$

Two measurable values: 1 - effective FF, 2 - G<sub>E</sub>/G<sub>M</sub>

**C** for protons :  $c = y/(1 - e^{-y}), y = \pi \alpha / \beta$  **C=1** for neutrons

At threshold :  $s=4m_B^2 \rightarrow |G_E| = |G_M| = |F|$ 

Asymptotic prediction:  $F(+\infty) = -F(-\infty) \sim 1/s^2$ 

## e⁺e⁻ →pp, SND

## preliminary



## Cos $\theta$ , e<sup>+</sup>e<sup>-</sup> $\rightarrow$ pp, SND



Second measurement after Babar, confirmed Babar



## e⁺e⁻ →nīn, SND

### preliminary



### Neutron and proton form factors

Effective form factor: 
$$|F|^2 = \frac{|G_M|^2 + |G_E|^2 / 2\tau}{1 + 1 / 2\tau}, \quad \tau = \frac{s}{4m_N^2}$$



## Cos $\theta$ , $|G_E/G_M|$ , $e^+e^- \rightarrow n\bar{n}$ , SND



Compensation effect in total e+e- -> hadron cross section at the nucleon threshold

arXiv:1402.5225v1 [hep-ph] 21 Feb 2014

- -Negative jump in  $e+e->6\pi$
- Positive jump in  $e+e \rightarrow N$  anti-N
- No jump in total cross section
- No explanation, why in  $6\pi$  ..

![](_page_25_Figure_6.jpeg)

Meson 2014<mark>, 29.05-3.06 2014</mark>

### List of analysis, E=1.05 – 2 GeV

1\*. 
$$e^+e^- \rightarrow w\pi^0 \rightarrow \pi^0\pi^0\gamma$$
  
2<sup>-</sup>.  $e^+e^- \rightarrow K^+K^-$   
3<sup>-</sup>.  $e^+e^- \rightarrow \pi^+\pi^-$   
4.  $e^+e^- \rightarrow \pi^+\pi^-\pi^0$   
5.  $e^+e^- \rightarrow \eta\pi^+\pi^-$   
6<sup>-</sup>.  $e^+e^- \rightarrow \eta K^+K^-$   
7.  $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$   
8<sup>-</sup>.  $e^+e^- \rightarrow \eta\pi^+\pi^-\pi^0$   
9\*.  $e^+e^- \rightarrow \eta\gamma \rightarrow 7\gamma$   
10.  $e^+e^- \rightarrow \eta \gamma \rightarrow 7\gamma$   
11.  $e^+e^- \rightarrow \eta anti-\eta$   
12\*.  $e^+e^- \rightarrow \pi^+ N anti-N$ 

## Possible applications of VEPP-2000 data

1. 
$$g-2_{\mu}$$
  
2.  $\alpha_{em} (s=M_Z^2)$   
3.  $CVC (e^+e^- \rightarrow \tau)$   
4.  $V^* \rightarrow \rho', \omega', \phi', ...$   
5.

## Conclusions

- VEPP-2000 e+e- collider since 2011 had accumulated ~70 inv.pb data with each SND and CMD-3 detectors in the range E=0.3 – 2 GeV. First results are published.
- 2. At SND the data analysis on meson and nucleon production is going on. The results for more than 10 processes are presented at MESON 2014 Conference.
- After VEPP-2000 upgrade in 2015 the data taking runs will be resumed with the goal of ~ 1 inv.fb of integrated luminosity.
- 4. We hope to reach about ~3-5 % accuracy for the most of e+e- -> hadrons cross sections.

Thank you for attention