Constraints from leptoproduction of vector meson within

 different frameworksAdrien Besse

Irfu - SPhN

MESON 2014, Cracow

Observables and kinematic ranges

- $W^{2} \gg|t|, Q^{2} \gg \Lambda_{Q C D}^{2}$, the Bjorken $x \sim \frac{Q^{2}}{W^{2}+Q^{2}}$
- Spin density matrix elements (SDME) linked to the helicity amplitudes :
(Schilling Wolf, '73) \& (Dielh, '07)
- small x HERA (H1 and ZEUS)
- mid-x region: COMPASS, HERMES, E665, NMC
- valence region: CLAS

Theoretical descriptions

Interaction via gluons exchange

Convenient to introduce saturation effects at small-x

Collinear fact. picture

Interaction via gluon and quark exchange

Valid from small- x to the valence region

Dipole model picture

Color dipole factorization scheme

- Impact parameter space representation of the amplitudes in the infinite momentum frame

```
Nikolaev, Zakharov, '91, Mueller, '90
```


- Initial Ψ_{i} and final Ψ_{f} states wave functions.
- Universal dipole/target scattering amplitude $\mathcal{N}(x, \underline{r}, \underline{b})$: (DIS structure functions, diffractive DIS, exclusive processes ...)

Dipole model picture

- Skewness effects can be taken into account in dipole cross-section model (Shuvaev, Golec-Biernat, Martin, Ryskin, '99)

$$
\mathcal{N}(x, \underline{r}) \equiv \mathcal{N}(x, \xi, \underline{r}) \quad \text { such that } \mathcal{N}(x, \xi=0, \underline{r})=s \hat{\sigma}(x, \underline{r})
$$

- Dipole models :
- access to $\operatorname{Im} \mathcal{M}_{V}^{g}$
- $\operatorname{Re} \mathcal{M}_{V}^{g}$ can be deduced from $\operatorname{Im} \mathcal{M}_{V}^{g}$ using dispersion relations
- In the limit $\underline{\Delta}=0$, i.e. $|t|=|t|_{\text {min }}$,

$$
\operatorname{Im}_{\mathcal{M}_{\lambda_{V} \lambda_{\gamma}}}\left(Q^{2}, x\right) \propto i \int d y \int d \underline{\tilde{\Psi}_{\lambda_{V}}^{*}}(y, \underline{r}) \hat{\Psi}_{\lambda_{\gamma}}(y, \underline{r}) \mathcal{N}(x, \xi, \underline{r})
$$

DVMP within Collinear factorization

Description of exclusive processes within Collinear factorization approach

- Description of DVMP, DVCS, TCS, ... in the Bjorken limit
- Collinear factorization proven for LT amplitude $\mathcal{M}_{V,\{0+; 0+\}}$ (Collins, Frankfurt, Strikman, '97, Radyushkin, '97)
- Set of GPDs, $H(x, \xi, t), E(x, \xi, t), \tilde{H}(x, \xi, t), \tilde{E}(x, \xi, t)$
- Quark and Gluon contributions:

Modified perturbative approach (MPA)

Gluon contribution in MPA

$$
\mathcal{M}_{V}^{g}=\int d x \int d y \int \frac{d^{2} \ell}{(2 \pi)^{2}} \underbrace{\ell_{q}=y p_{1}+\ell_{\perp}+\frac{\ell^{2}}{2 s y} p_{2}}_{\rightarrow \xi}
$$

- Neglect then $\frac{\ell_{1}^{2}}{y \tilde{y} Q^{2}}$ terms in numerator in the MPA spirit
- Fourier transform in transverse space \rightarrow impact parameter space
- Sudakov form factor (Sterman, Li ;92) (Resums soft gluon emmisions from the quark-antiquark dipole)

DVMP within MPA

Model dependences

- Models from (Kroll, Goloskokov, '08) :
- GPDs with evolution approximated by the DGLAP evolution
- Wavefunction models (Gaussian ansatz)

$$
\hat{\Psi}_{V}(y, \underline{r}) \propto \text { Leading twist DA } \times \exp \left(-\frac{\underline{r}^{2}}{4 a_{V}^{2}} y \bar{y}\right)
$$

- Sudakov form factor (Dahm, Jakob, Kroll, '95)
- Kroll\&Goloskokov GPD model based on double distribution ansatz (Musatov, Radyushkin, '00)

$$
H(x, \xi)=\int_{-1}^{1} d \beta \int_{-1+|\beta|}^{1-|\beta|} d \alpha \delta(\beta+\xi \alpha-x) f\left(\beta, \alpha, t^{\prime}\right)
$$

MPA results

- MPA result for the helicity amplitude $\gamma_{L}^{*} N(p) \rightarrow V_{L} N\left(p^{\prime}\right)$ (A.B. in preparation):

$$
\begin{aligned}
& \mathcal{M}_{V,\{0+, 0+\}}=\frac{s}{2 \sqrt{2 \pi}} \int_{0}^{1} d y \int d^{2} \underline{r} \sum_{f} C_{V}^{f}\left(\hat{\Psi}_{V}(y,-\underline{r}) \hat{\Psi}_{\gamma_{L}^{*}}^{f}(y, \underline{r})\right) \\
& \times\left(\frac{\pi \alpha_{s}\left(\mu^{2}\right)}{N_{c}}\left(\frac{4}{y \bar{y}(2 \xi s)}\right)\left\{\int_{0}^{1} d x \frac{2 \xi H^{g}(x, \xi, t)+2 x C_{F} \xi H_{\text {singlet }}^{f}(x, \xi, t)}{(x-\xi+i \epsilon)(x+\xi-i \epsilon)}\right\}\right)
\end{aligned}
$$

Dipole model vs MPA results

Results in the two different approaches in the limit $t \sim 0$

- MPA result for the helicity amplitude $\gamma_{L}^{*} N(p) \rightarrow V_{L} N\left(p^{\prime}\right)$ (A.B. in preparation):

$$
\begin{aligned}
\operatorname{Im} \mathcal{M}_{V,\{0+, 0+\}}^{g} & =\frac{s}{2 \sqrt{2 \pi}} \int_{0}^{1} d y \int d^{2} \underline{r} \sum_{f} C_{V}^{f}\left(\hat{\Psi}_{V}(y,-\underline{r}) \hat{\Psi}_{\gamma_{L}^{*}}^{f}(y, \underline{r})\right) \\
& \times\left(-\frac{\pi^{2}}{N_{c}} \frac{4}{y \bar{y} Q^{2}} \alpha_{s} H^{g}(\xi, \xi, 0)\right)
\end{aligned}
$$

- Dipole model result for the helicity amplitude $\gamma_{L}^{*} N(p) \rightarrow V_{L} N\left(p^{\prime}\right)$:

$$
\begin{aligned}
\mathcal{I} m \mathcal{M}_{V,\{0+, 0+\}}^{g} & =\frac{s}{2 \sqrt{2 \pi}} \int d y \int d^{2} \underline{r} \sum_{f} C_{V}^{f}\left(\hat{\Psi}_{V}(y,-\underline{r}) \hat{\Psi}_{\gamma_{L}^{*}}^{f}(y, \underline{r})\right) \\
& \times\left(-\frac{\mathcal{N}(x, \xi, \underline{r})}{s}\right)
\end{aligned}
$$

- At small- $x: 2 \xi s \approx Q^{2}$

Analogy between the results

Interpretation

- Forward dipole cross-section (Frankfurt, Radyushkin, Strikman, '97) :

$$
\frac{\mathcal{N}(x, 0, \underline{r})}{s}=\hat{\sigma}(x, \underline{r})=\frac{\pi^{2} \alpha_{s}}{N_{c}} \underline{r}^{2} x g(x) \quad \text { (color transparency) }
$$

- Comparing the results for DVMP, (Forward limit of gluon GPD : $H^{g}(x, \xi \rightarrow 0,0)=x g(x)$):

$$
\begin{aligned}
\frac{\mathcal{N}(x, \xi, \underline{r})}{s} & \leftrightarrow \frac{\pi^{2} \alpha_{s}}{N_{c}}\left(\frac{4}{y \bar{y} Q^{2}}\right) H^{g}(\xi, \xi, 0)=\frac{\pi^{2} \alpha_{S}}{N_{c}}\left(\underline{r}_{0}^{2}\right) H^{g}(\xi, \xi, 0) \\
& \text { with } \underline{r}_{0}^{2}=\frac{4}{y \bar{y} Q^{2}}
\end{aligned}
$$

- $\sqrt{\left\langle r_{0}^{2}\right\rangle} \geq 2 R_{0}(x)$ (Saturation radius) for $Q^{2} \sim 5 \mathrm{GeV}^{2}$ for $W=75 \mathrm{GeV}$

Comparison of predictions

- Leading twist result from collinear factorization (Blue)
- Leading twist DA + dipole cross-section with saturation (Red)

Beyond the imaginary part of gluon contribution in MPA

Contribution from gluons and quarks

$$
\begin{aligned}
& -\sum_{f} e_{f} C_{V}^{f} \mathcal{N}(x, \underline{r}) \longleftrightarrow \sum_{f} e_{f} C_{V}^{f} \frac{\pi \alpha_{s}\left(\mu^{2}\right)}{N_{c}}\left(\frac{4}{y \bar{y} Q^{2}}\right) \\
& \quad \times\left\{\int_{0}^{1} d x \frac{2 \xi H^{g}(x, \xi, t)+2 x C_{F} \xi H_{\text {singlet }}^{f}(x, \xi, t)}{(x-\xi+i \epsilon)(x+\xi-i \epsilon)}\right\}
\end{aligned}
$$

Contributions of other amplitudes

- Sea quark contribution (via interference term) not negligeable in MPA approach with GK GPDs based on (CTEQ6M, '02) fits ($10^{-4}<x<0.5$ and $4<Q^{2}<40 \mathrm{GeV}^{2}$)

Results

Comparison Gluon vs Total contributions

Results

Sudakov + meson wavefunction ansatz

Dipole model from GPDs?

Contribution from gluons and quarks

- At small-x: Glauber-Mueller dipole model :

$$
\hat{\sigma}(x, \underline{r})=\frac{\pi^{2} \alpha_{s}}{N_{c}} \underline{r}^{2} x g(x) \rightarrow \sigma_{0}\left(1-e^{-\frac{\pi^{2} \alpha_{s}}{N_{c} \sigma_{0}} \underline{r}^{2} x g(x)}\right)
$$

- For exclusive process, (Martin, Ryskin, Teubner '99) skewness effect $\Rightarrow R_{g}$:

$$
\hat{\sigma}(x, \underline{r})=\sigma_{0}\left(1-\exp \left\{-\frac{\pi^{2} \alpha_{s}}{N_{c} \sigma_{0}} \underline{r}^{2} R_{g} x g(x)\right\}\right)
$$

Summary

- Summary:
- Within MPA, $\mathcal{M}_{V,\{0,+; 0+\}}$ factorization of the overlap of the wavefunctions
- Allows to compare results within dipole picture and collinear factorization framework
- Role of the quark t-channel exchange within MPA can be important even at small- x
- Perspectives :
- The universality of the relation between the dipole scattering amplitude and GPDs has to be checked
- Other helicity amplitudes \Rightarrow sensitivity to other GPDs

Acknowledgement

Thanks to my collaborators for encouraging discussions on this work

P. Kroll
C. Lorcé
C. Mezrag
H. Moutarde
Al. Mueller
S. Munier
B. Pire
F. Sabatié
L. Szymanowski
S. Wallon

Dipole model picture

Factorization of the wavefunctions and models

$\notin\left(k_{1}\right) \propto \not p_{2}$

- Eikonal approximation leads to (Anikin, Wüsthof, '99)

$$
\not \phi p_{2} \rightarrow \tilde{q} \not p_{2} \propto v(\tilde{a}) \bar{v}(\tilde{a}) \not p_{2}, \text { such that } \tilde{a}^{2}=0
$$

- The wavefunction factorizes

$$
\left.\Psi_{\gamma^{*}}(y, \underline{\ell}) \propto \frac{\bar{u}\left(\ell_{1}\right) \notin(q) v(\tilde{a})}{a^{2}+i \epsilon}\right|_{\ell_{1}=y p_{1}+\ell_{\perp}+\frac{\ell^{2}}{2 y s} p_{2}}
$$

The factorization scheme within k_{T}-factorization

Factorization of helicity amplitudes

- Twist 2:
$\gamma_{L}^{*} \rightarrow \rho_{L}\left(\equiv T_{00}\right)$
$\gamma_{T}^{*} \rightarrow \rho_{L}\left(\equiv T_{01}\right)$
Ginzburg, Panfil, Serbo, ' 85
- Twist 3 , in the limit $t \sim 0$:
- $\gamma_{T}^{*} \rightarrow \rho_{T}\left(\equiv T_{11}\right)$

Anikin, Ivanov, Pire, Szymanowski,
Wallon, '10

- Link with the dipole model (A.B., Szymanowski, Wallon, '13) and implementation of the saturation effects using dipole cross-section models fitted on DIS

$$
\mathcal{I} m \mathcal{M}_{V,\{0+, 0+\}}^{g} \propto \int d y \int d^{2} \underline{r} \sum_{f} C_{V}^{f}\left(\varphi_{1}(y) \hat{\Psi}_{\gamma_{L}^{*}}^{f}(y, \underline{r})\right) \mathcal{N}(x, \xi, \underline{r})
$$

with $\varphi_{1}(y)$ the Leading twist DA

Dipole models

Models of dipole cross-section

- Small-x evolution
- Initial condition for the dipole cross-section at a given rapidity from DIS structure functions
- Evolution with rc-BK equation (Balitsky, '07)
- DGLAP evolution (Bartels, Golec-Biernat, Kowalski, '02)

$$
\hat{\sigma}(x, \underline{r})=\sigma_{0}\left(1-\exp \left\{-\frac{\pi^{2} \underline{r}^{2} \alpha_{s}\left(\mu^{2}\left(\underline{r}^{2}\right)\right) x g\left(x, \mu^{2}\left(\underline{r}^{2}\right)\right)}{3 \sigma_{0}}\right\}\right)
$$

Contributions of other amplitudes

Large Q^{2} limit check

- $\sigma_{L} \propto\left|\int d y \int d^{2} \underline{r}\left(\Psi_{V}^{*} \Psi_{\gamma}\right)(y, \underline{r}) \hat{\sigma}(x, r)\right|^{2}$
- Expect to find same numerical values at large Q^{2} using :
- a dipole cross-section model (here GBW model, (Golec-Biernat, Wüsthof, '98)): $\hat{\sigma}(x, r)=\sigma_{0}\left(1-e^{-r^{2} /\left(4 R_{0}(x)^{2}\right)}\right)$
- a dipole cross-section model with $\underline{r}^{2} \rightarrow \underline{r}_{0}^{2}=\frac{4}{y \bar{y} Q^{2}}$

Transversely polarized cross-section

- Helicity amplitude $\mathcal{M}_{V,\{++,++\}}$ within MPA .. under study
- The overlap of wavefunctions appearing within k_{T}-factorization $\Psi_{V}^{*}(y, \underline{r}) \Psi_{\gamma^{*}}(y, \underline{r}):$

$\lambda_{\gamma}=\lambda_{V}= \pm$
Twist 3 combination of DAs (in Wandzura-Wilczek approx.) (A.B., Szymanowski, Wallon, '13)
- Expected to be sensitive to the Sudakov form factor suppression

