Feasibility Studies for Nucleon Structure Measurements with **PANDA**

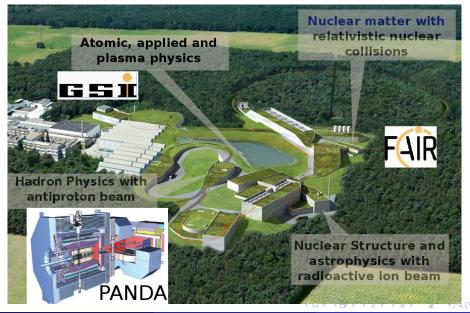
Meson 2014

Ermias ATOMSSA, Binsong MA On behalf of the PANDA Collaboration

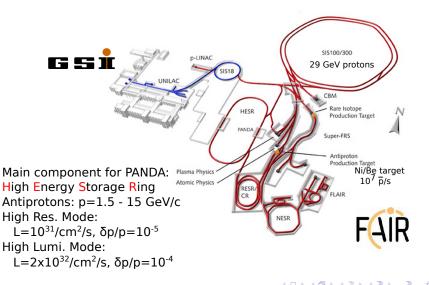
Institut de Physique Nucléaire d'Orsay

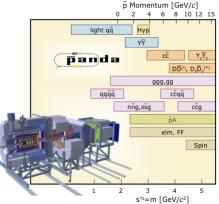
29th May - 3th June 2014, Kraków, Poland

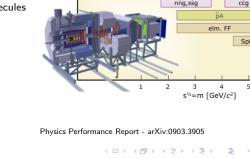
June 2, 2014



- PANDA experimental setup
- PANDA physics program overview
- Nucleon structure: Form Factors and TDAs
- Feasibility studies of nucleon structure measurements

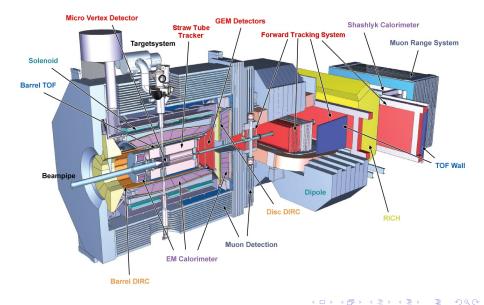

FAIR: Facility for Antiproton and Ion Research

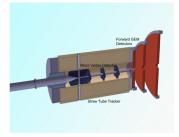

The FAIR Accelerator Complex



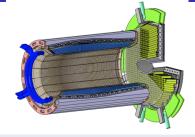
PANDA : Anti-Proton ANnihilation at DArmstadt

- Meson Spectroscopy D mesons, charmonia
- Search for exotic QCD states Glueballs, tetraquarks, hybrids, molecules
- Single and double hypernuclei ۲
- Hadrons in nuclear matter
- Nucleon structure using EM probes ۲



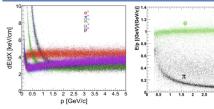


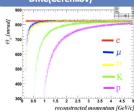
PANDA detector



Tracking and PID for Nucleon Structure Physics

Large coverage (2 π , 5° < θ <145°) Silicon MVD and Straw Tube and GEM tracker dE/dx for PiD from STTs




PbWO crystal EMCal, APDs (barrel) VPT (forward) Operation at -25°C for optimal photon production Wide dynamic range: $\gtrsim 3 \text{ MeV}$ Excellent resolution: $\sigma(E)/E \approx 1\% \oplus 2\%/\sqrt{E(GeV)}$

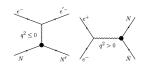
Straw Tube Tracker

ElectroMagneticCalorimeter

DIRC(Cerenkov)

Ermias ATOMSSA, Binsong MA (IPNO)

Meson2014, PANDA Nucleon Structure


3.5 4 4.5 momentum [GeV/c panda

Form Factors

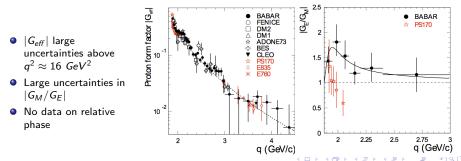
Parametrizations of hadronic current in the matrix element for:

- Elastic scattering of a lepton off a nucleon (I[±]N → I[±]N): Spacelike (SL) real analytic functions of q² < 0 Well constrained to high values of -q² ≈ 30 GeV²
- Annihilation reaction of I^+I^- or $N\bar{N}$ pairs $(N\bar{N} \leftrightarrow e^+e^-)$: Timelike (TL) complex analytic functions of $q^2 > 4m_p^2$ Scarce data for TL FF (especially at high q^2)

Extraction in the TL region:

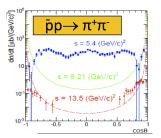
Angular distribution $ar{p}p o e^+e^-$
$rac{d\sigma}{d\cos heta_{CM}}=rac{\pilpha^2}{8M_p^2 au\sqrt{ au(au-1)}} imes$
$\left[\tau G_M ^2 \left(1 + \cos^2 \theta_{CM}\right) + G_E ^2 \sin^2 \theta_{CM}\right]$

Form Factors

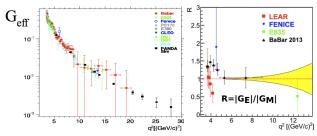


Parametrizations of hadronic current in the matrix element for:

- Elastic scattering of a lepton off a nucleon (I[±]N → I[±]N): Spacelike (SL) real analytic functions of q² < 0 Well constrained to high values of -q² ≈ 30 GeV²
- Annihilation reaction of *I*⁺*I*[−] or *NN* pairs (*NN* ↔ *e*⁺*e*[−]): Timelike (TL) complex analytic functions of *q*² > 4*m*²_p Scarce data for TL FF (especially at high *q*²)


e^{-} e^{+} N e^{+} N $q^{2} \ge 0$ N N' e^{-} N

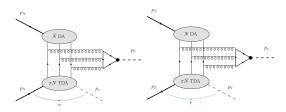
TL FFs existing data (Phys Rev D87 (2013) 092005)



Feasibility of Timelike FF Measurements

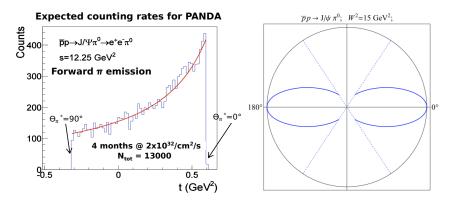
- Full MC of Main background sources: $\bar{p}p \rightarrow \pi^+\pi^- \sigma \approx 10^6 \times \bar{p}p \rightarrow e^+e^-$ Param. by Ong and Van de Wiele (EPJA46 (2010) 291) $\bar{p}p \rightarrow \pi^0\pi^0$ followed by π^0 Dalitz: Relatively easy to reject using kinematical constraints
- Requirement on background rejection: < 0.1%
- Full PANDA PiD with kinematical cuts: Rejection of 10⁹ on background Efficiency for signal above 20% (average 40%)

Significant improvement with 4 months @ $2 \times 10^{32} / cm^2 / s$


Ermias ATOMSSA, Binsong MA (IPNO) Meson2014, PANDA Nucleon Structure

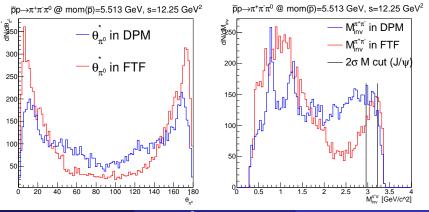
Transition Distribution Amplitudes

Universal non perturbative objects that appear in the factorized calculation of cross sections of some exclusive processes (Eg: $\bar{p}p \rightarrow J/\psi\pi^0$, $\bar{p}p \rightarrow e^+e^-\pi^0$ and $\gamma^*N \rightarrow \pi N$)



- Short distance dominated part computed within pQCD
 - Validity requires large scale (usually taken as virtuality of lepton pair emission)
- Universal non-perturbative components: TDA and DA
 - TDA: Probe the mesonic content of nucleon wave functions
- Factorization description valid in two kinematical regimes
 - Near forward kinematics $t=(p_{\pi}-p_{ar{N}})^2pprox 0$ for \piar{N} TDA
 - Near backward kinematics $u = (p_{\pi} p_N)^2 \approx 0$ for πN TDA
- Test universality of TDAs that occur also in $\gamma^* N \to \pi N$ and $N\bar{N} \to I^+ I^- \pi$ reactions

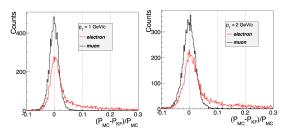
Feasibility of $\bar{p}p \rightarrow J/\psi \pi^0$ in $\bar{P}ANDA$ (Signal)

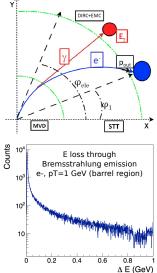


- Background in charmonium spectroscopy studies ($c\bar{c}$ resonances that decay into $J/\psi\pi$)
- Cross section calculation from Pire *et.al* (Phys. Lett. B. 724 99-107): $\sigma \approx 2 \times 100$ pb
- Cross section peaked around $\theta^*_{\pi^0} = 0^\circ$ for $\bar{p}\pi$ TDA and at $\theta^*_{\pi^0} = 180^\circ$ for $p\pi$ TDA
- Compared to e^+e^- : Pros: mass cut for background rejection, Cons: fixed Q^2

Feasibility of $\bar{p}p \rightarrow J/\psi \pi^0$ in PANDA (Backgrouse panels)

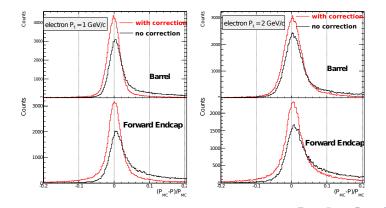
- Main background: $\pi^+\pi^-\pi^0 \sigma \approx 400 \ \mu b$
- Two string fragmentation models DPM and FTF give similar π^0 CM polar angle distribution peaked near $\theta_{\pi^0}^* = 0^\circ$ and $\theta_{\pi^0}^* = 180^\circ$ like signal (simulations by A. Galoyan)
- $\pi^+\pi^-$ invariant mass distribution, with substantial difference between models
 - High precision measurement by PANDA will help discriminate between models
 - 2σ mass cut for J/ψ rejects \approx 90% of $\pi^+\pi^-\pi^0$ background (before PID)
 - $\bullet \hspace{0.1 cm} \text{Better momentum resolution} \hspace{0.1 cm} \Longrightarrow \hspace{0.1 cm} \text{better rejection}$

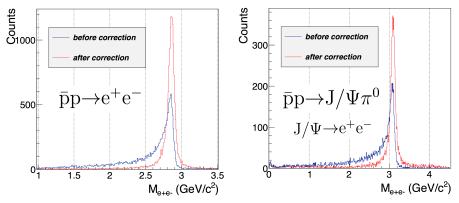



Electron momentum reconstruction in PANDA

Resolution loss due to Bremsstrahlung

- Tracking points: MVD (4 to 6) and STT (up to 24)
- 80% of X/X_0 inside tracking system from MVD
- Significant Bremsstrahlung photon emission (Almost collinear with photon direction)
- Helix prefit used as input for Kalman filter
- Kalman filter assumes Gaussian errors
 External radiation not taken into account




Event by event correction of Bremsstrahlung

- Exploit spatial correlation between γ_{Brem} and e^+/e^- clusters
- Combined with low threshold EMCal, possible to
 - Find Bremsstrahlung photon candidates track by track
 - Correct each track's momentum by adding back total energy from all $\gamma_{\textit{Brem}}$
- Approach works: clear improvement in electron momentum resolution

60% gain in efficiency with 2σ cut for $\bar{p}p \rightarrow J/\psi\pi^0$ 70% gain in efficiency with minimum mass cut of $\sqrt{s} - m_{\pi^0}$ for $\bar{p}p \rightarrow e^+e^-$

- PANDA will open exciting opportunities for hadronic physics
- Form factor measurements in the TL region over an extended range of q^2
- Excellent test bed for the universality TDAs
- Correcting momentum reconstruction for Bremsstrahlung yields quantitaive improvements