Mixing and CP violation in the B_s system

A T L A S

Pavol Bartoš

(Comenius University) On behalf of ATLAS collaboration

Meson 2014, Krakow

Motivation

→ CP violation in the $B_S^0 \rightarrow J/\psi \phi$ decay occurs due to interference of direct decays and decays occurring through $B_S^0 - \overline{B}_S^0$ mixing

u,c,t \overline{B}_{S}^{0} - mass difference of heavy (B_H) and light (B_L) b mass eigenstates

→ quantities involved in $B_S^0 - \overline{B}_S^0$ mixing:

CP-violating phase ϕ_s – weak phase difference between amplitudes of B-mixing and direct decay \rightarrow some New Physics models predict large values, while satisfying all

existing constrains

Width difference $\Delta \Gamma_s = \Gamma(B_L) - \Gamma(B_H)$:

→ should not be affected as significantly as ϕ_s by beyond-SM physics

Average decay width $\Gamma_s = [\Gamma(B_L) + \Gamma(B_H)] / 2$

P. Bartoš

Atlas detector

Muon Spectrometers (MS)

 \rightarrow tracking chambers + detectors for triggering

→ inside toroidal magnetic field; coverage: $|\eta| < 2.7$; $\sigma/p_{\tau} \approx 2-7$ %

 \rightarrow data collected during rising instantaneous luminosity and varying trigger conditions (2011)

Meson 2014, Krakow

calorimeter – $|\eta| < 4.9$

Event selection (I)

- → using 4.9 fb⁻¹ of data collected in 2011 in pp collisions with $\sqrt{s} = 7 \text{ TeV}$
- → trigger based on $J/\psi \rightarrow \mu^+ \mu^-$ decay identification: → requires: – 1 muon with p₊ > 4 GeV + another muon with p₊ > 2 GeV
- → event has to contain ≥ 1 primary vertex (built from ≥ 4 ID tracks) ≥ 1 pair of oppositely charge muon candidates

→ J/ Ψ candidates reconstruction:

- → muon tracks refitted to common vertex (χ^2 /d.o.f. < 10)
- → di-muon invariant mass requirements:

invariant mass requirement		Muon 1			
		η < 1.05	1.05 < η < 2.5		
Muon 2	 η < 1.05	(2.959 – 3.229) GeV	(2.913 – 3.273) GeV		
	1.05 < η < 2.5	(2.913 – 3.273) GeV	(2.852 – 3.332) GeV		

* due to varying mass resolution; 99.8% candidates are identified

Event selection (II)

- $\rightarrow \ \varphi \rightarrow K^{+}K^{-}$ candidates reconstruction:
 - → reconstructed from all pairs of oppositely charged tracks ($p_{\tau} > 0.5$ GeV, $|\eta| < 2.5$, not identified as μ)

→ final selection:

- → fitting the tracks for each combination of $J/\Psi \to \mu^+\mu^-$ and $\phi \to K^+K^-$ to common vertex
- \rightarrow fit constrain: J/ Ψ mass (PDG world average: 3096.916 ± 0.011 MeV)

→ fit requirements:

1) fitted p_{τ} of $\phi \rightarrow K^{+}K^{-}$ tracks > 1 GeV; m (K⁺K⁻) in [1.0085; 1.0305] GeV

2) fit χ^2 /d.o.f. < 3

Primary-vertex selection:

- → average # of interaction in selected events is 5.6
- → use primary vertex with smallest
 3-dimensional impact parameter of the reconstructed B-momentum
- \rightarrow 1% of wrong assignment

Mean Number of Interactions per Crossing

Flavour tagging

Opposite side tagging:

- \rightarrow initial flavour of B_s is inferred from the other B meson
- → Calculate weighted sum of the charge of the tracks in a cone around:
 - a) additional muon in the event

(originate near interaction point)

- → combined muon (combination of ID track and MS track
- \rightarrow segment tagged muon (full ID track matched to track segment in MS)
- b) b-jet axis (b-jet associated to same interaction point)

Tagger	Efficiency [%]	Dilution [%]	Tagging Power [%]
Segment Tagged muon	1.08 ± 0.02	36.7 ± 0.7	0.15 ± 0.02
Combined muon	3.37 ± 0.04	50.6 ± 0.5	0.86 ± 0.04
Jet charge	27.7 ± 0.1	12.68 ± 0.06	0.45 ± 0.03
Total	32.1 ± 0.1	21.3 ± 0.08	1.45 ± 0.05

Dilution D = 2*P(B|Q)-1

Tagging power = εD^2

Methods are studied and calibrated on $B^+ \to J/\psi K^+$ and $B^- \to J/\psi K^-$ events

Methodology

 \rightarrow unbinned maximum likelihood fit used to extract B_S^0 decay parameters

 \rightarrow uses information of:

- \rightarrow reconstructed mass \boldsymbol{m} and its uncertainty
- \rightarrow measured proper decay time and its uncertainty:

 $M_{\rm p} = 5.3663 \text{ GeV}$ (PDG, world average mass) $t = \frac{L_{xy}M_B}{c p_{T_B}}$ $L_{xy} - displacement of B_s^0 decay vertex from primary vertex In transverse plane$ In transverse plane $p_{_{TB}}$ – reconstructed transverse momentum of $B_{_{1}}^{0}$ candidate \rightarrow transversity angles $\Omega = (\theta_T, \psi_T, \varphi_T)$ J/Ψ rest frame Φ rest frame → flavour tagging \rightarrow i.e. per-B_c candidate $J/\psi B_s^0$ probability that the B_{s} J/Ψ xy-plane was borned as B_{s} and not B P. Bartoš Meson 2014, Krakow 7

Likelihood fit

Flavour tagging enters the fit via the tag probability in the signal time-angular PDF, increasing sensitivity to ϕ_s and strong phase δ_{\perp}

Fit projections

Systematics

	φ _s	$\Delta \Gamma_s$	Γ_s	$ A_{ }(0) ^2$	$ A_0(0) ^2$	$ A_{S}(0) ^{2}$	δ_{\perp}	$\delta_{ }$	$\delta_{\perp} - \delta_{S}$
	(rad)	(ps^{-1})	(ps^{-1})				(rad)	(rad)	(rad)
ID alignment	$< 10^{-2}$	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	-	$< 10^{-2}$	$< 10^{-2}$	-
Trigger efficiency	$< 10^{-2}$	$< 10^{-3}$	0.002	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-2}$	$< 10^{-2}$	$< 10^{-2}$
B_d^0 contribution	0.03	0.001	$< 10^{-3}$	$< 10^{-3}$	0.005	0.001	0.02	$< 10^{-2}$	$< 10^{-2}$
Tagging	0.10	0.001	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	0.002	0.05	$< 10^{-2}$	$< 10^{-2}$
Models:									
default fit	$< 10^{-2}$	0.002	$< 10^{-3}$	0.003	0.002	0.006	0.07	0.01	0.01
signal mass	$< 10^{-2}$	0.001	$< 10^{-3}$	$< 10^{-3}$	0.001	$< 10^{-3}$	0.03	0.04	0.01
background mass	$< 10^{-2}$	0.001	0.001	$< 10^{-3}$	$< 10^{-3}$	0.002	0.06	0.02	0.02
resolution	0.02	$< 10^{-3}$	0.001	0.001	$< 10^{-3}$	0.002	0.04	0.02	0.01
background time	0.01	0.001	$< 10^{-3}$	0.001	$< 10^{-3}$	0.002	0.01	0.02	0.02
background angles	0.02	0.008	0.002	0.008	0.009	0.027	0.06	0.07	0.03
Total	0.11	0.009	0.003	0.009	0.011	0.028	0.13	0.09	0.04

ID alignment – effect of residual misalignment studied in signal MC Trigger efficiency – uncertainty in trigger selection efficiency B_d⁰ contribution – uncertainty in relative fraction of B⁰ background Tagging – Uncertainty in the calibration of the tag probability Models – uncertainties of fit model derived in pseudo-experiment studies

Results

The PDFs describing B⁰ decay is **invariant under following transformations**:

$$\{\phi_{\rm S}, \Delta\Gamma_{\rm S}, \delta_{\perp}, \delta_{\parallel}\} \rightarrow \{\pi - \phi_{\rm S}, -\Delta\Gamma_{\rm S}, \pi - \delta_{\perp}, 2\pi - \delta_{\parallel}\}$$

 $\rightarrow \Delta \Gamma_{c}$ has been determined to be positive (LHCb: PRL 108 (2012), 241801) => unique solution

RESULTS:

→ SM prediction:

$\phi s - \Delta \Gamma$ contour plot

Tagging power of flavour tagging methods

N dh N dh N dh

Correlations between physics parameters

	ϕ_s	ΔΓ	Γ_s	$ A_{ }(0) ^2$	$ A_0(0) ^2$	$ A_{S}(0) ^{2}$	δ_{\parallel}	δ_{\perp}	$\delta_{\perp} - \delta_{S}$
ϕ_s	1.000	0.107	0.026	0.010	0.002	0.029	0.021	-0.043	-0.003
$\Delta\Gamma$		1.000	-0.617	0.105	0.103	0.069	0.006	-0.017	0.001
Γ_s			1.000	-0.093	-0.063	0.034	-0.003	0.001	-0.009
$ A_{ }(0) ^2$				1.000	-0.316	0.077	0.008	0.005	-0.010
$ A_0(0) ^2$					1.000	0.283	- 0.003	-0.016	-0.025
$ A_{S}(0) ^{2}$						1.000	-0.011	-0.054	-0.098
δ_{\parallel}							1.000	0.038	0.007
$\delta_{\perp}^{''}$								1.000	0.081
$\delta_{\!\perp} - \delta_{\!S}$									1.000