

Kraków Poland – 29th May - 3rd June 2014

B decays with leptons: powerful probes of New Physics with BaBar data

M.Rotondo

Marcello Rotondo

I.N.F.N. Padova

B decays into leptons

- B semileptonic decays allows a clean extraction of $|V_{ub}|$ and $|V_{cb}|$ that are crucial SM inputs to the CKM fits:
 - $B \rightarrow D^{(*)} \ell \nu, B \rightarrow \pi \ell \nu$

B decays into leptons

• B semileptonic decays allows a clean extraction of $|V_{ub}|$ and $|V_{cb}|$ that are crucial SM inputs to the CKM fits:

b

- $B \rightarrow D^{(*)} \ell \nu, B \rightarrow \pi \ell \nu$

 Direct search in FCNC processes (forbidden at tree level):

$$- B \rightarrow X_{s} \ell^{+} \ell^{-}$$

B decays into leptons

- B semileptonic decays allows a clean extraction of $|V_{ub}|$ and $|V_{cb}|$ that are crucial SM inputs to the CKM fits:
 - $B \rightarrow D^{(*)} \ell \nu, B \rightarrow \pi \ell \nu$

- Direct search in FCNC processes (forbidden at tree level):
 - $B \rightarrow X_s \ell^+ \ell^-$

- Processes strongly suppressed in the SM
 - Lepton Number Violating processes: $B \rightarrow X \ell^+ \ell'^+$
- Leptonic and Semileptonic decay in heavy lepton sensitive to NP couplings to heavy leptons:

b

-
$$B \rightarrow \tau v$$
 and $B \rightarrow D^{(*)} \tau v$

 $B \rightarrow X_{s} \ell^{+} \ell^{-}$

 "Measurement of the B→X_sℓ+ℓ⁻ branching fraction and search for direct CP violation from a sum of exclusive final states"

• Phys. Rev. Lett. 112, 211802 (2014)

Nucl.Phys.B802,40 (2008) Phys.Rev.D 54,882

- Sensitive to NP effects in photon, vector and axial-vector coupling
 - FCNC process forbidden at tree level: BF~10⁻⁶
 - NP enter at the SM level
- $1 < q^2 < 6 \text{ GeV}^2 \rightarrow BR_{SM} = (1.59 \pm 0.11) \cdot 10^{-6}$
- $q^2 > 14.4 \text{ GeV}^{2:} \rightarrow BR_{SM} = (0.24 \pm 0.07) \cdot 10^{-6}$
- Direct CP violation: SM predicts A_{CP}<< 1% in exclusive and inclusive transitions
- Large extend complementary to $B_s \rightarrow \mu^+ \mu^- b$

- Decay amplitudes expressed using OPE in terms of perturbatively calculable effective coefficients:
 - Short distance Wilson coefficients: C_7^{eff} , C_9^{eff} , C_{10}^{eff}
 - Theoretical uncertainties: ~7-30% (in different q² regions)

$B \rightarrow X_{s} \ell^{+} \ell^{-}$

- Measurement performed using a sum of 20 fully reconstructed modes
 - 0 pions: K⁺, K_s

- *l*=e/μ

- 1 pion: K⁺π⁰, K⁺π⁻, K_sπ⁺, K_σπ⁰ < - -
- 2 pions: K⁺π⁻π⁰, K⁺π⁻π⁻, K_sπ⁺π⁰, K_sπ⁺π⁻

Not used in the A_{CP} measurement

- Reconstructed states account for 70% of inclusive rate: extrapolation to total rate from MC
- B decays to J/ψ (ψ') have same final state particles: explicit mass vetoes applied: vetoed events make excellent control sample

$B \rightarrow X_{s} \ell^{+} \ell^{-}$

• Yields extracted in various $q^2 \& M_x$ bins by 2D (m_{ES}, L_R) fit

•
$$m_{ES} = \sqrt{E_{beam}^{*2} - p_B^{*2}}$$
 $\Delta E = E_B^* - E_{beam}^*$

 BB combinatorial background using a Likelihood Ratio (LR) defined from outputs of eights BDTs exploiting kinematical and topological quantities

 $B \rightarrow X_s \ell^+ \ell^-$

 Observed BR scaled to full rate based on simulation

$$BR = (6.73 \begin{array}{c} +0.70 \\ -0.64 \end{array} \begin{array}{c} +0.34 \\ \pm 0.50 \end{array}) \cdot 10^{-6}$$

 $BR_{SM} = (4.6 \pm 0.8) \cdot 10^{-6}$

Huber et al. NPB802,40 (2008)

• I: 1 < q² < 6 GeV²

 $BR = (1.60^{+0.44}_{-0.39} + 0.17_{-0.13} \pm 0.18) \cdot 10^{-6}$

 $BR_{SM} = (1.59 \pm 0.11) \cdot 10^{-6}$

• II: q² above $\psi(2S)$ BR = (0.57^{+0.16}_{-0.15} +0.03/+0.0) $\cdot 10^{-6}$ BD = - (0.25 + 0.07) $\cdot 10^{-6}$

$B \rightarrow K \pi \ell^+ \ell^- \& B \rightarrow X_s \ell^+ \ell^-$

• LHCb measurement of observables free from FF contributions. One observable is not in agreement with SM

PRL111,191801(2013)

• Global fits to recent $b \rightarrow sll$ and $b \rightarrow s\gamma$ data favor decreased value of Wilson coefficient C_{9:}: indication of NP?

JHEP1305,043 (2013), PRD88,074002(2013)

- This leads to a reduced value of inclusive $B(B \rightarrow X_s \ell^+ \ell^-)$
- However, our measurement of BF at highq² does not support this hypothesis

 $B \rightarrow X \ell^+ \ell'^+$

• "Search for lepton-number violating $B^+ \rightarrow X \ell^+ \ell^{+}$ decays"

• Phys.Rev.D (RC) 89, 011102 (2014)

$B \rightarrow X \ell^+ \ell'^+$

- Lepton-Number Violation (LNV) holds in low-energy collisions and decays
- Neutrino oscillations suggests lepton number may not be conserved
 - If neutrino are of Majorana type, LNV become possible

 Many NP models predicts LNV in B meson decays at rates detectable from present existing data: BaBar/Belle and LHCb

> Klinkhamer, Manton PRD 30, 2212 (1984) Atre, Han, Pascali, Zhang JHEP 05, 030 (2009) Davidson, Nardi, Nir Phys.Rep.466, 105 (2008)

$B \rightarrow X \ell^+ \ell^{_{'+}}$

- Search done in 11 B decay modes $\begin{array}{l} B^{+} \rightarrow \rho^{-} (\rightarrow \pi \pi^{0}) \ l^{+} \ l^{'+} \\ B^{+} \rightarrow K^{*-} (\rightarrow K^{0}_{\ S} \pi \text{ and } \rightarrow K^{-} \pi^{0}) \ l^{+} \ l^{'+} \\ B^{+} \rightarrow D^{-} (\rightarrow K^{-} \pi \pi^{+}) \ l^{+} \ l^{'+} \\ B^{+} \rightarrow K^{-} \ e^{+} \mu^{+}, \ \pi \ e^{+} \mu^{+} \\ (\ell^{+}, \ \ell^{+} = e^{+}, \mu^{+}) \end{array}$
- Events selection requires 4 or more charged tracks (at least two leptons)
- Background (continuum and BB) using a BDT with many event-shape discriminating variables
- Signal extracted from a m_{ES}, ∆E and BDT output

$B \rightarrow X \ell^+ \ell^{+}$

- No significant yields found:
 - BF upper limits in the range 1.2·10⁻⁷ 26·10⁻⁷ @90% C.L.
 - Limits are an order of magnitude more stringent than previous best results for modes with ρ, π and K

$B \rightarrow \tau v_{\tau}$

• "Evidence of decays with hadronic B tags"

PRD(RC) 88, 031102 (2013)

- After the great success of the CKM mechanism:
 - Unitarity Triangle from Tree Level processes and loop-induced processes are in agreement (a few discrepancies still present between sin 2β and |V_{ub}|)
 - It is true that FCNC processes are highly sensitive to NP but the Tree Level process are very good to constrain some kinds of NP

Analysis of $B \rightarrow \tau v_{\tau}$

Theoretically very clean and a sensitive probe of physics beyond the SM:

Experimentally difficult:

- helicity suppression+V_{ub} \rightarrow BF(τ)~10⁻⁴
- tau lepton in the final state
- Only one observables: the Branching Fraction

Events Reconstruction

- The experimental signature is weak due to the presence of many v's in the final states
- Two B in the Y decay: $e^+e^- \rightarrow Y(4S) \rightarrow BB$
 - Fully reconstruct one B in hadronic decay modes (with a D, D*, D_s or a J/ψ)
 - The rest comes from the other B (B^{recoil})
- Tag efficiency ~ 0.2-0.4%
- $ec{p}_{B^{ ext{recoil}}} = -ec{p}_{B^{ ext{tag}}}$
 - The signal is extracted from the residual energy visible in the Calorimeter

$$E_{
m Extra} = \sum E_{m \gamma}$$

unused γ

Results: $B \rightarrow \tau v_{\tau}$

- Fit together $\tau \rightarrow evv, \tau \rightarrow \mu vv, \tau \rightarrow \pi v, \tau \rightarrow \rho v$
- Combined result, compatible with BaBar-Semileptonic Tag result

$B \rightarrow D^{(*)} \tau v_{\tau}$

• "Evidence of an excess over the SM prediction"

Phys. Rev. Lett. 109, 101802 (2012) Phys. Rev. D 88, 072012 (2013)

B \rightarrow D^(*) τ v_τ: Yields Extraction

- It is not a rare decay: BF~1-2%
- 3 body decay: not only the BF, many other observables can be sensitive to NP

 Spin-0 Higgs does not couple to all helicity states: D and D* are affected differently

$$\mathcal{R}(D^{(*)}) \equiv \frac{\mathcal{B}(B \to D^{(*)} \tau \nu)}{\mathcal{B}(B \to D^{(*)} \ell \nu)}$$

Normalization

M.Rotondo

Several experimental and theoretical uncertainties cancel in ratio

- D reconstruction/Particle ID...

$B \rightarrow D^{(*)} \tau v_{\tau}$: Yields Extraction

- Many neutrinos in the final state:
 - Reconstruct the hadronic B_{tag}
- Use only leptonic τ decays:
 - Similar to normalization decay
- Simultaneous un-binned M.L. Fit
 - 4 signal samples $D^0\ell$, $D^{*0}\ell$, $D^{*\ell}\ell$, $D^{*\ell}\ell$
 - 4 $D^{(*)}\pi^0 \ell v$ Control samples
 - 2 dimensional distributions:

$$m_{miss}^2 = (p_{e+e} - p_{tag} - p_{D(*)} - p_{\ell})^2$$

 p_{ℓ} in the B_{sig} rest-frame

- Fitted Yields
 - 4 $D^{(*)}tn + 4 D^{(*)}tn + 4 D^{**}tn$

M.Rotondo

$B \rightarrow D^{(*)} \tau v_{\tau}$: Fit results

 $D^0\ell$

D*00

 $D^+\ell$

D*+/

- $B^0 \rightarrow D(*)$ and $B^+ \rightarrow D(*)$ modes observed with more than 5 sigmas
- Results between B⁰ and B⁺ consistent
- Largest systematics due to background PDFs
- Statistical uncertainty dominates

 $\mathcal{R}(D) = 0.440 \pm 0.058 \pm 0.042$ $\mathcal{R}(D^*) = 0.332 \pm 0.024 \pm 0.018$

SM Predictions of R(D) and R(D*) [*] Kaminik Mescia 2008 Fajfer et al 2012

M.Rotondo

Implication for 2HDM

Differential decay rate in the SM

A charged Higgs (**Type-II 2HDM**) of spin 0 coupling with the τ will affects H_{ot}

Summary

- Interesting measurements are still coming from BaBar
- Recent measurements of Inclusive $B \rightarrow X_s \ell^+ \ell^-$ continue to constrain NP models
- No evidence of NP found in LNV processes $B \rightarrow X \ell^+ \ell'^+$
- $B \rightarrow D^{(*)} \tau v_{\tau}$: not in agreement with SM prediction
 - If confirmed by Belle: look at polarization with τ → πν, D* angular distribution, FB asymmetries, Triple Products...
 - Rich physics program for LHCb and Belle-II
- $B \rightarrow \tau v_{\tau}$: reached the B-factories limits
 - Status is cloudy
 - But will be explored with high precision at Belle-II

M.Rotondo

$B \rightarrow X_s \ell^+ \ell^-$ partial BF .vs. Mx

$B \rightarrow X_s \ell^+ \ell^- CP$ violation

$$A_{CP} = \frac{BF(B) - BF(\overline{B})}{BF(B) + BF(\overline{B})}$$

- Sample divided according to lepton kind and B flavor
 - Inferred from K/ π charges
- No model-dependent extrapolation of signal rates performed

$$A_{CP} = 0.04 \pm 0.11_{\text{stat}} \pm 0.01_{\text{syst}}$$

In agreement with SM predictions

Phys.Rev.D 54,882

Results: $B \rightarrow \tau v_{\tau}$

- Fit together $\tau \rightarrow evv$, $\tau \rightarrow \mu vv$, $\tau \rightarrow \pi v$, $\tau \rightarrow \rho v$
- Combined result, compatible with BaBar-Semileptonic result

M.Rotondo

Experimental Results on $B \rightarrow \tau v_{\tau}$

Exclusion region for 2HDM-II

Using both D – D* results: Type II 2HDM excluded at 99.8% C.L.

U. Haisch, arXiv:0805.2141

M.Rotondo