Electromagnetic Calorimeter for HADES Experiment

P. Rodríguez-Ramos,^{a,j,1}L. Chlad,^{a,k} O. Svoboda,^a C. Blume,^b W. Czyžycki,^c E. Epple,^d L. Fabbietti,^d T. Galatyuk,^e M. Golubeva,^f F. Guber,^f S. Hlaváč,^g A. Ivashkin,^f M. Kajetanowic,^h B. Kardan,^b W. Koenig,ⁱ A. Kugler,^a K. Lapidus,^d E. Lisowski,^c J. Pietraszko,ⁱ A. Reshetin,[†]A. Rost,[®] P. Salabura,^h Y.G. Sobolev,[®] P. Tlusty[®] and M. Traxlerⁱ

CZECH TECHNICAL ^aNuclear Physics Institute, Academy of Sciences of the Czech Republic, Rez, Czech Republic, Institute for Nuclear Sciences of the Czech Republic, Rez, Czech Republic, Institute for Nuclear Sciences, Bratislava, Stechnische Universität Darmstadt, Darmstadt, Germany. ^fInstitute for Nuclear Poland.^dExcellence Cluster "Origin and Structure of the Universe" Technische Universität München, Garching, Germany. ^eTechnische Universität Darmstadt, Darmstadt, Germany. ^fInstitute for Nuclear Sciences, Bratislava, Slovakia. ^hSmoluchowski Institute of Physics, Jagiellonian University of Krakow, Research, Russian Academy of Sciences, Moscow, Russia. ^gInstitute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia. ^hSmoluchowski Institute of Physics, Jagiellonian University of Krakow, Research, Russian Academy of Sciences, Moscow, Russia. ^gInstitute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia. ^hSmoluchowski Institute of Physics, Jagiellonian University of Krakow, Russian Academy of Sciences, Moscow, Russia. ^gInstitute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia. ^hSmoluchowski Institute of Physics, Jagiellonian University of Krakow, Russian Academy of Sciences, Moscow, Russia. ^gInstitute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia. ^hSmoluchowski Institute of Physics, Jagiellonian University of Krakow, Russian Academy of Sciences, Bratislava, Slovakia. ^hSmoluchowski Institute of Physics, Jagiellonian University, Prague, Faculty of Nuclear Sciences and Physical Engineering, Prague, Faculty of Nuclear S Cracow, Poland. ⁱGSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany. ⁱCzech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Prague, Czech Republic.^kFaculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic.

Motivation

Energy leakage into neighbour module inclined by 6° and 12° with respect to the longitundinal axis

Rotated by 6°

Rotated by 12°

Comparision of pulse shapes

ECAL detector

HADES setup

- installed at GSI SIS 18
- six identical sectors
- almost full azimuthal angle
- polar angle 18° 85°
- high rate counting
- planned for new accelerator SIS 100 • 978 modules of lead glass+ photomultiplier • polar angle 12° - 45° • novel electronics for read out

ECAL module

- totally needed 978 pieces
- lead glass on loan from end cap calorimeter of OPAL experiment
- lead glass type: CEREN 25
- dimensions 92x92x420 mm
- wrapped in TYVEK paper
- brass can 0.45 mm thick

Glass properties:

- density: 4.06 g/cm³
- radiation length (X₀): 2.51 cm
- refractive index: 1.708 (at 400 nm)
- Molière radius: 3.6 cm

LED light system:

HADES

- LED based system is developed for calibration and stability monitoring
 - of ECAL modules

Test with Photon Beam at Mainz

• Slow path: signal

Energy leakage into neighbour module paralel with the beam

Totally needed 978 pieces.

The 600 1.5" EMI photomultipliers from MIRAC experiment (WA98 hadron calorimeter) were tested and are ready to use.

Relative energy resolution

- integrated for amplitude measurement
- Integrate input signal with a capacitor
- Discharge via a current source and measure time of discharge -fast crossing of zero
- Differential LVDS output
- Discriminator threshold for each channel via slow control lines
- TDC done by TRBv3 board
- Control via SPI:
- Temperature, input status, edge count, id, non-volatile memory, insystem programmable
- Amplitude measurement with ADC on TRBv2 Shower-Addon Board

TDC on TRBv2

- Threshold-settings for each of 8 channels
- Different shaping time and gain were tested and modified at GSI Darmstadt to optimize energy resolution
- Energy resolution with pulser: 0.6% at 100 ps time precision
- Energy resolution with LED-**PMT signal: 3.6%** at 150 ps time precision

Relative energy resolution on gamma beam-1.5" EMI

Relative energy resolution on gamma beam-3" Hamamatsu

Conclusions & Results

Measured with CAEN ADC, signal shaped by MA8000 shaper.

Energy resolution was studied to be able to decide which size of photomultiplier is the most suitable in terms of physical and economic point of view.

Resolution of modules with a photomultiplier with 1" PMT is significantly worse than that one with 1.5" and 3" diameter, and is not suitable for our purpose

Measurements done with standard CAEN ADC are in a good agreement with the measurements done with the two new front-end boards.

Measurements with rotated modules confirmed the results of our simulations, namely that we are able with a good precission to recover particles hitting more than one module or placed close to module border.

Contacts: ¹ramos@ujf.cas.cz Work supported by GSI, HIC for FAIR, EMMI Supported: and Czech MSMT LG 12007, GACR 13-067595 and AS CR M100481202 grants

Acknowledgment:

We would like to express special thanks to A. Neiser, P. Ott, P. Otte, A. Thomas, P. Skott from Institut für Kernphysik, Johannes Gutenberg-Universität, Mainz, Germany, for their help with the measurements and to the staff of the MAMI facility for providing excellent beam conditions.

