

field of meson physics

Rui Wang University of New Mexico

On behalf of ATLAS collaboration

13th International Workshop on Meson Production, Properties and Interaction KRAKÓW, POLAND, 29th May - 3rd June 2014

outline

- Introduction of ATLAS
- Recent analysis
 - Light meson production
 - Charmonium and bottomonium
 - Searching for New physics
 - Other results
- Summary and outlook

ATLAS detector

Inner Detector (|n|<2.5, 2T Solenoid Magnet)

- PIX, SCT, TRT
- p_T resolution: $\sigma(p_T)/p_T = 3.8 \times 10^{-4} p_T$ (GeV) $\oplus 1.5\%$
- Impact parameter resolution: 15 μm transverse.

Calorimeter

Lar EM

Muon Spectrometer

- Toroidal Magnet (~ 0.5 T)
- Hadronic Triggering ($|\eta| < 2.4$), presiced tracking ($|\eta| < 2.7$)

Total 26.4 fb⁻¹ recorded

Trigger

- Muon System and Calorimeters.
- Single-muon and di-muon triggers.

Meson 2014, June 3rd, 2014 Rui Wang, University of New Mexico

φ(1020) production cross section

- pQCD -> physics in high momentum transfer.
- Model? -> soft interactions at lower momentum transfers.

ф->КК

- Measurement at a soft scale Q~1 GeV.
- Produced both in hard scatter of *pp* interaction, as well as in hadronisation

-> tune phenomenological fragmentation models.

- Sensitive to s-quark and low-x gluon densities.
- 500MeV < p_τ(φ) < 1200MeV, |y(φ)|<0.8
- 2010 7TeV data, 383 μb⁻¹
- BR = $(48.9 \pm 0.5)\%$
- p_T(K) > 230MeV, p(K) < 800MeV

Meson 2014, June 3rd, 2014

φ (1020) production cross section

p_T(K)>230MeV cut -> increase below 700MeV • PYTHIA 6 DW and EPOS-LHC tune-> good

- PYTHIA6 MC09 tune -> slightly overestimate
- Herwig++ -> good for $p_T < 700$ MeV and |y| > 0.6, underestimated for $p_T > 700$ MeV and |y| < 0.6.
- PYTHIA6 Perugia0 tune -> underestimates by ~ a factor of 2.
- PYTHIA8 A2 tunes -> different pdf gives similar predictions, underestimates by ~ a factor of 2.

Charmonium spectrum

Charmonium Spectrum below $D\bar{D}$ threshold.

- Prompt production: directly from pp collision or from the decay of heavier states.
 - Prompt $\psi(2S)$ only from direct pp collsision.
- Non-prompt production: from b hadron decays.

$W + J/\psi$ associated production

details in Stefanos Leontsinis's talk

- Offers new tests at the perturbative / non-perturbative QCD boundary.
- Important test on the relative contribution of color singlet (CS) and color octet (CO) predictions for the $q\bar{q}$ production.

Color singlet

Color octet

$W \rightarrow \mu v + prompt J/\psi \rightarrow \mu \mu$

- 2011 7TeV data, 4.5 fb⁻¹
- Single parton scattering (SPS)
- Double parton scattering (DPS)
- Background contributions
 - Pileup, Z+jets, tt, W+b, $B_c \rightarrow J/\psi + \mu v + X$, QCD jets.

$W + J/\psi$ associated production

- A unbinned simultaneous maximum likelihood fit is used to extract prompt J/ ψ events.
- Then $m_{T}(W)$ is fit to separate the QCD multi-jet background.

Yields from two-dimensional fit			
Process	Barrel	Endcap	Total
Prompt J/ψ	$10.0^{+4.7}_{-4.0}$	$19.2^{+5.8}_{-5.1}$	$29.2^{+7.5}_{-6.5}(*)$
Non-prompt J/ψ	$27.9^{+6.5}_{-5.8}$	$13.9^{+5.3}_{-4.5}$	$41.8^{+8.4}_{-7.3}$
Prompt background	$20.4^{+5.9}_{-5.1}$	$18.8^{+6.3}_{-5.3}$	$39.2^{+8.6}_{-7.3}$
Non-prompt background	$19.8^{+5.8}_{-4.9}$	$19.2^{+6.1}_{-5.1}$	$39.0^{+8.4}_{-7.1}$
<i>p</i> -value	8.0×10^{-3}	1.4×10^{-6}	2.1×10^{-7}
Significance (σ)	2.4	4.7	5.1

(*) of which 1.8 ± 0.2 originate from pileup

$W + J/\psi$ associated production

- This process is dominated by CS production.
- Due to the large uncertainties SPS prediction (LO CS + NLO CO) are compatible with results at the 2σ level.

 $R_{J/\psi}^{\text{DPS sub}} = (78 \pm 32 \pm 22^{+41}_{-25}) \times 10^{-8}$

χ_{c1} and χ_{c2} production

 $\chi_{cJ} \rightarrow J/\psi(\mu\mu)\gamma(ee).$

- 2011 7TeV data, 4.5 fb⁻¹.
- Br($\chi_{c0} \rightarrow J/\psi\gamma$) = 1.17%,

Br($\chi_{c1} \rightarrow J/\psi\gamma$) = 34.4%, Br($\chi_{c2} \rightarrow J/\psi\gamma$) = 19.5%

- Reconstruction of the soft *γ* (> 1.5GeV).
- $10 < p_{\tau}(J/\psi) < 30 \text{ GeV}, |y|(J/\psi) < 0.75$
- $\Delta m = m(\mu\mu\gamma) m(\mu\mu)$ distribution separates the χ_{cJ} states.

χ_{c1} and χ_{c2} production

- NRQCD: good
- LO CSM: underestimate.
- The k_{τ} factorization: overestimate.

Non-prompt χ_{cJ}

FONLL: good

NRQCD, tuned to the Tevatron J/ψ and $\psi(2S)$.

χ_{c1} and χ_{c2} production

Prompt χ_{cJ}

- Fraction of prompt J/ ψ produced in χ_c feed-down, R_{χ_c}
- The ratio of the χ_{c2} cross section to the χ_{c1} cross section

Non-prompt χ_{cJ}

• The ratio of the χ_{c2} cross section to the χ_{c1} cross section

NRQCD, tuned to the Tevatron J/ ψ and ψ (2S)

Meson 2014, June 3rd, 2014

$\Psi(2S)$ production

$\Psi(2S)$ production

• FONLL shows better agreement than NLO, but both overestimate at high pT.

Meson 2014, June 3rd, 2014

Rui Wang, University of New Mexico

- Complement of charmonium system studies due to larger mass, allowing more dependable theoretical calculations.
- Improve the theoretical description due to different processes dominated in this regime and the impact of spin-alignment uncertainties are mitigated.
- Direct Υ: produced directly in *pp* collisions or from decay of an excited state (feed-down contribution).
 250^{×10³}/₂₅₀

$\Upsilon(nS) \rightarrow \mu\mu$

- 2011 7TeV data, 1.8 fb⁻¹
- p_T<70 GeV, |y| < 2.25
- In high p_T range, contribution from associated Y+ bb production may play a more important role than in the low p_T range.
- The impact of the dependence of the production cross section on the spin-alignment of the is relatively small.

NNLO* CSM (no feed-down) fit data well in the moderate p_T region, but underestimate in the high p_T region.

CEM matches data better in the high p_T region. Underestimate the rate and have problems in modeling the shape of the spectrum, particularly at lower pT.

State	Integrated cross section (nb)
$egin{array}{l} \Upsilon(1\mathrm{S}) \ \Upsilon(2\mathrm{S}) \ \Upsilon(3\mathrm{S}) \end{array}$	$8.01 \pm 0.02 \pm 0.36 \pm 0.31$ nb $2.05 \pm 0.01 \pm 0.12 \pm 0.08$ nb $0.92 \pm 0.01 \pm 0.07 \pm 0.04$ nb

- Contributions from feed-down vary between the 1S, 2S and 3S states
- Changing presence of various kinematically-allowed decays and influence the inclusive production rate.
- Study of the production ratios as a function of kinematic variables provides an indirect but precise measure of these feed-down contributions.

- Constant in the 0 < pT < 5GeV interval at ~20% for the 2S and ~7% for the 3S.
- At higher pT a significant and steady rise due to the feed-down contributions, in agreement with CMS.
- At larger pT (30 40GeV), direct production dominates over contributions from the decays of excited states.

Meson 2014, June 3rd, 2014 Rui Wang,

- Contributions from feed-down vary between the 1S, 2S and 3S states
- Changing presence of various kinematically-allowed decays and influence the inclusive production rate.
- Study of the production ratios as a function of kinematic variables provides an indirect but precise measure of these feed-down contributions.

- Constant in the 0 < pT < 5GeV interval at ~20% for the 2S and ~7% for the 3S.
- At higher pT a significant and steady rise due to the feed-down contributions, in agreement with CMS.
- At larger pT (30 40GeV), direct production dominates over contributions from the decays of excited states.

Meson 2014, June 3rd, 2014 Rui Wan

- Contributions from feed-down vary between the 1S, 2S and 3S states
- Changing presence of various kinematically-allowed decays and influence the inclusive production rate.
- Study of the production ratios as a function of kinematic variables provides an indirect but precise measure of these feed-down contributions.

- Constant in the 0 < pT < 5GeV interval at ~20% for the 2S and ~7% for the 3S.
- At higher pT a significant and steady rise due to the feed-down contributions, in agreement with CMS.
- At larger pT (30 40GeV), direct production dominates over contributions from the decays of excited states.

Meson 2014, June 3rd, 2014 Rui W

Observation of a New χ_b State

- b quarkonium $\chi_b(1P)$, $\chi_b(2P)$ states have been observed through the radiactive decay modes
- The $\chi_b(3P)$ has not been observed before
 - Predicted mass: ~10.52 GeV
 - Hyperfine splitting: 10-20MeV
 - $\chi_b(3P) \rightarrow Y(1S,2S)\gamma$
- $\chi_{b}(nP) \rightarrow Y(1S,2S)\gamma$. 2011 7TeV data, 4.4 fb⁻¹.

The asymmetric mass window for Y(2S) -> reduce contamination from the Y(3S) peak and continuum background contributions.

Meson 2014, June 3rd, 2014

Rui Wang, University of New Mexico

Observed bottomonium radiative decays in ATLAS, $L = 4.4 \text{ fb}^{1}$

Observation of a New χ_b State

Meson 2014, June 3rd, 2014

Rui Wang, University of New Mexico

Angular analysis of $B_d \rightarrow K^{*0}\mu^+\mu^-$

Angular distributions of the 4-particle final state are sensitive to physics beyond the SM. AFB and FL are extracted from the two distributions depend on q^2 , $cos\theta_L$ and $cos\theta_K$.

$$\frac{1}{\Gamma} \frac{d^2 \Gamma}{dq^2 d \cos \theta_L} = \frac{3}{4} F_L(q^2) \left(1 - \cos^2 \theta_L\right) + \frac{3}{8} \left(1 - F_L(q^2)\right) \left(1 + \cos^2 \theta_L\right) + A_{FB}(q^2) \cos \theta_L$$

 $\frac{1}{\Gamma} \frac{\mathrm{d}^2 \Gamma}{\mathrm{d}q^2 \mathrm{d}\cos\theta_K} = \frac{3}{2} F_L(q^2) \cos^2\theta_K + \frac{3}{4} \left(1 - F_L(q^2)\right) \left(1 - \cos^2\theta_K\right)$

- A_{FB}: muons forward-backward asymmetry.
- F_L: fraction of longitudinal polarization.

$B_d \rightarrow K^{*0} \mu^+ \mu^-$

- 2011 7 TeV data, 4.9 fb⁻¹.
- Sequential unbinned maximum likelihood fit.
 - Fit the invariant Kπμμ mass distribution -> fix the signal and background yield.
 - The angular distributions are fitted.
 - No significant bias introduced.

 $\cos\theta_{1}$

22

cos0,

Meson 2014, June 3rd, 2014

Rui Wang, University of New Mexico

Angular analysis of $B_d \rightarrow K^{*0}\mu^+\mu^-$

The full q² range is defined as the three continuous intervals obtained by removing the J/ ψ and ψ (2S) regions.

- The SM theoretical predictions calculated for limit of small vector meson energy and for the limit of large vector meson energy, no expectation is given for the central q² region.
- ATLAS mainly strength at large q².
- AFB and FL are compatible with SM or other measurements.

Angular analysis of $B_s \rightarrow J/\psi \phi$

details in Jaroslav Guenther's talk

- Sensitive to new physics beyond the SM.
- CP violation occurs due to interference between direct decays and decays occurring through $B^{0}_{s} - B^{0}_{s}$ mixing.
- Flavour tagging (opposite-side tagging OST) was used to reconstruct the initial states.
- The CP states are separated statistically through the time dependence of the decay and angular correlations amongst the final state particles.
- The number of signal B_s⁰ meson candidates extracted from the fits was 22670 + 150.

cos(w

Angular analysis of $B_s \rightarrow J/\psi \phi$

Likelihood contours (68%, 90% and 95%) in $\phi_{\rm s}$ - $\Delta\Gamma_{\rm s}$ plane compared to SM predictions.

- Results of width difference and CP violating weak phase compatible with SM:
 - $\phi_s^{SM} \approx -2\theta_s = -0.0368 \pm 0.0018$, where $\theta_s = arg[-(V_{ts} V_{tb}^*)/(V_{cs} V_{cb}^*)]$
 - $\Delta \Gamma_s^{SM} = \Gamma_L \Gamma_H = 0.087 \pm 0.021 \text{ ps}^{-1}$

details in Jaroslav Guenther's talk

W⁺, H⁺

Z⁰.H⁰.h

Search for B^0 , $\rightarrow \mu\mu$

Flavour Changing Neutral Currents (FCNC) are highly suppressed in the SM.

- SM predicted branching fraction: $(3.5+/-0.3)*10^{-9}$ b \overline{t}
- LHCb result: (2.9 +/- 1.1) * 10⁻⁹
- CMS result: (3.0 +/- 1.0) * 10⁻⁹

Measured with respect to a prominent reference decay $(B^+ - J/\psi K^+)$.

• Single Event Sensitivity (SES) would yield one observed signal event in the data sample.

SES = BR($B^{\pm} \to J/\psi K^{\pm} \to \mu^{+}\mu^{-}K^{\pm}$) $\times \frac{f_{u}}{f_{s}} \times \frac{N_{\mu^{+}\mu^{-}}}{N_{J/\psi K^{\pm}}} \times \frac{A_{J/\psi K^{\pm}}}{A_{\mu^{+}\mu^{-}}} \frac{\epsilon_{J/\psi K^{\pm}}}{\epsilon_{\mu^{+}\mu^{-}}} = (2.07 \pm 0.26) \cdot 10^{-9}$

Number of background expected: 6.75 Observed CLs Number of signal observed: 6 Expected CLs - Median Expected CLs $\pm 1\sigma$ Events / 60 MeV Expected CLs \pm 2 σ 10-1 10-ATLAS Preliminary s = 7 TeV $L dt = 4.9 \text{ fb}^{-1}$ Data 8 - $B_s \rightarrow \mu^+\mu^-$ MC (10x) **Optimized search window** 10-2 ATLAS s = 7 TeV _dt = 2.4 fb⁻¹ 2 $BR(B_s^0 \to \mu^+ \mu^-) = N_{\mu^+ \mu^-} \times SES$ Expected limit: < 1.6·10⁻⁸ @ 95% CL 5200 5400 5600 5800 4800 5000 Measured limit: < 1.5.10⁻⁸ @ 95% CL m_{uu} [MeV] $BR(B^{0}_{2} \rightarrow \mu^{+}\mu^{-})[10^{-8}]$

SM: arXiv:1208.0934, LHCb: arXiv:1307.5024v2, CMS: arXiv:1307.5025.

Meson 2014, June 3rd, 2014 Rui Wang, University of New Mexico

 W^+, \tilde{X}^0

 W^{-}, \tilde{X}^{0}

t,c, u 🗼 d̃

B⁺ production cross-section and B_c observation

$B^{+} > J/\psi(\mu^{+}\mu^{-})K^{+}$

- Early 2011 data, 2.4fb⁻¹ at
- $9 \text{GeV} < p_{T}(B^{+}) < 120 \text{ GeV},$ |y(B⁺)|<2.25
- Compatible to theoretical predictions

ATLAS

- 2011 7TeV data, 4.3fb⁻¹.
- $PDG(B_c) = 6274.5 \pm 1.8 \text{ MeV}$

20

30 40 100

p_{_}[GeV]

Meson 2014, June 3rd, 2014

Summary and outlook

Measurements at ATLAS:

- Light meson production (φ(1020)).
- Charmonium and bottonium (W + prompt J/ ψ , χ_c , ψ (2S), Y(nS) production and χ_b (3P) observation).
- Search for new physics (Angular analysis of $B_d \rightarrow K^{*0}\mu^+\mu^-$ and $B_s \rightarrow J/\psi\phi$, searching for $B_s \rightarrow \mu^+\mu^-$).
- Other measurements (B⁺ production, B_c observation).

Outlook

- Many measurement using 8 TeV data are ongoing.
- New Pixel layer installed -> better tracking.
- Improvement in trigger system.
- Increased precision can be expected.

Backup

Reference

- $\phi(1020)$ meson production (submitted to EPJC, <u>arXiv:1402.6162</u>)
- W+J/ψ production (JHEP 04 (2014) 172 arXiv:1401.2831, details in Stefanos Leontsinis's talk)
- χ_c production (submitted to JHEP <u>arXiv:1404.7035</u>)
- ψ(2S) production (<u>ATLAS-CONF-2013-094</u>)
- Υ(nS) production x-section and ratios (*Phys. Rev. D* 87 (2013) 052004 arXiv:1211.7255)
- B⁺ production (*JHEP 10 (2013) 042 arXiv:1307.0126*)
- χ_b(3P) observation (*Phys. Rev. Lett.* 108 (2012) 152001 *arXiv:*1112.5154)
- B_c observation (<u>ATLAS-CONF-2012-028</u>)
- Angular analysis of $B_d \rightarrow K^{*0}\mu^+\mu^-$ (<u>ATLAS-CONF-2013-038</u>)
- Angular analysis of $B_s \rightarrow J/\psi \varphi$ (*Phys. Lett. B713 (2012) 180-196 arXiv:1204.0735*, details in Jaroslav Guenther's talk)
- Searching for $B_s \rightarrow \mu^+ \mu^-$ (<u>ATLAS-CONF-2013-076</u>, details in Jaroslav Guenther's talk)

B physics triggers

- ATLAS has 3-level trigger system (L1 hardware, L2 and Event Filter (EF) High level trigger (HLT))
- Dedicated B-physics triggers are based on both single muons and di-muons with different thresholds and mass ranges.
- Topological triggers process two L1 muon and refine results in the HLT with a good vertex fit and mass cut.

Тороlоду	Mass window
Jpsimumu	2.5-4.3GeV
Upsimumu	8-12 GeV
Bmumu	4-8.3 GeV

 TrigDiMuon triggers require one L1 muon and then search for a second muon in inner detector tracks. https://twiki.cern.ch/twiki/bin/view/AtlasPublic/BPhysPubl icResults#Stand_alone_plots

φ (1020) production cross section

- The MC09 and Perugia0 tunes use a p_T -ordered parton shower model with MPI and the initial state shower interleaved in a common sequence of decreasing p_T .
- For the PYTHIA8 A2 tunes, the final-state showers are also interleaved in this way.
- The DW tune utilises the older virtuality-ordered parton shower which is not interleaved with MPI.
- Herwig++ version 2.5.1 is used with the UE7-2 tune. Herwig++ is also a general purpose generator but differs from PYTHIA in that it uses a cluster hadronisation model and an angular ordered parton shower. Herwig++ contains a tunable eikonalised MPI model which assumes independence between separate scatters in the event.
- EPOS 1.99 v2965 is used with the EPOS-LHC tune. EPOS contains a parametrised approximation of the hydrodynamic evolution of initial states using a parton based Gribov-Regge theory which has been tuned to LHC data.

The muon reconstruction in ATLAS makes use of two sub-detectors: the Inner Detector (ID) and the Muon Spectrometer (MS).

- *Combined muons*: a stand-alone MS track (|η| < 2.5) matched with an ID track.
- *Tagged muons*: ID tracks
 extrapolated to the MS and matched
 to at least one of MS hits.

Meson 2014, June 3rd, 2014

Rui Wang, University of New Mexico