

CLAS Results on Meson Spectroscopy

Diane Schott (GW) On behalf of the CLAS Collaboration and the Jlab Physics Analysis Center (JPAC)

The CLAS Detector

The CLAS Detector

Associated Groups

- Jlab Physics Analysis Center
 - Provide theoretical support, codes and guidance to experimental collaborations interested in hadron spectroscopy throughout the world, especially at JLab: Hall B (CLAS & CLAS12) and D (GlueX)
- Light Meson Decay Group, PWA Working Group, Hadron Spectroscopy Center

To coordinate collaboration and exchanges

JPAC: motivation

- A complete understanding of the hadron spectrum and discovering new resonances
- For: GlueX, CLAS12, COMPASS, LHCb, BES-III,VEPP, PANDA, ...

JPAC at work

- Close collaboration with experimentalists
- Experimentalist provide events (four-vectors in the detector) and MC acceptance. Both will be publicly available (as DOE requires)
- Theorists provide amplitudes (theorist outside JPAC are welcomed). Codes available to the community
- We (theorists and experimentalists) fit theory corrected by acceptance to the actual data through a likelihood function (four-vectors and particle identification is the input)
- \Rightarrow Physics

Outline

- Recent results
 - Cross-section
 - $\gamma D \rightarrow p\pi^{-}(p)$
 - $\gamma D \rightarrow K^+ \Sigma^* (1385)^-(p)$
 - $\gamma D \rightarrow K^*(892)^0 \Lambda(p)$
 - $\gamma p \rightarrow p \omega \rightarrow p \pi^+ \pi^- \pi^0$
 - Amplitude Analysis
 - ω→π⁺π⁻π⁰
 - η→π⁺π⁻π⁰
 - үр->рК+К-

– Dark Photon Search

Quasi-free Cross Section Measurements at CLAS: $\gamma D \rightarrow p\pi^{-}(p)$ $\gamma D \rightarrow K^{+}\Sigma^{*}(1385)^{-}(p)$ $\gamma D \rightarrow K^{*}(892)^{0}\Lambda(p)$

Paul Mattione, Carnegie Mellon University for the CLAS Collaboration supported by the DOE Office of Science

N* Resonance Spectrum (2012)

- Predicted N* spectrum
 (Capstick, Isgur) ^[1]
 - * Quark model
- ★ PDG^[3] changes since 2010:
 - 4 new PDG resonances (vertical bars)
 - 2 states upgraded to ***:
 N(1900)[3/2]⁺, N(1875)[3/2]⁻
- Most searches:
 - Proton targets, non-strange channels (e.g. πN)

Legend

Black: "Established" (4*, 3*)^[3] Blue: Inconclusive (2*, 1*)^[3] Red: Unobserved^[3]

Searching for N* Resonances

- ★ "Missing" N* resonances [1]
 - * Wide, overlapping
 - * Correlated quark-pair? [4]
- ★ N* decays: KY, K*Y, KY*
 - * Couplings sizable vs. $N\pi$ ^[3]
 - * Sparse γn data vs. γp
 - * Amplitudes (isospin)
- ★ No known $\gamma n \rightarrow K^*(892)^0 \Lambda$ cross section measurements
- ★ LEPS γn → K⁺Σ*(1385)⁻ data limited to low-θ^[6]

Legend

Black: "Established" (4*, 3*)^[3] Blue: Inconclusive (2*, 1*)^[3] Red: Unobserved ^[3]

Orange: $\gamma N \rightarrow K^*(892) \land$ Violet: $\gamma N \rightarrow K\Sigma^*(1385)$ ^[5]

$\gamma D \rightarrow p\pi^{-}(p)$ Cross Section

- CLAS g13: Preliminary, high statistics: ~300 million events in ~9000 bins:
 - 10- & 20-MeV-wide bins from 0.56 < E_v (GeV) < 2.52
 - Significant increase in statistics: CLAS g10^[11] had ~3000 bins
- Compared to CLAS g10^[11], SAID CM12^[12], BnGa12-1^[13]
 - Statistical uncertainties only (g10 pre-FSI correction)

$\gamma D \rightarrow p\pi^{-}(p)$ Cross Section

- Overall good matching between g10 & g13, need more acceptance studies
- Data will improve:
 - Understanding of N* couplings to neutron in πN
 - Understanding of rescattering: working with Igor Strakovsky (GWU)

$\gamma D \rightarrow K^+\Sigma^*(1385)^-(p)$ Cross Section

- Data: LEPS^[6], Preliminary CLAS g13, Oh *et. al* model^[14]:
 - CLAS g13: ~100000 events, no systematic errors, ~ -0.5 < $\cos(\theta)$ < 0.75
 - Oh, et. al model: Effective Lagrangians

• Dominated by t-channel K⁺ and K^{*+}, some N^{*}'s and Δ^{*} 's included

$\gamma D \rightarrow K^+\Sigma^*(1385)^-(p)$ Cross Section

- * t-channel dominated
- * g13 & LEPS close, model significantly lower
 - * Disagreement with prediction: perhaps t-channel modeling

$\gamma D \rightarrow K^*(892)^0 \Lambda(p)$ Cross Section

- * Data: Preliminary CLAS g13 (~17000 events, no systematic errors)
- * S.-H. Kim, et. al model^[15]: Effective Lagrangians
 - ★ K⁰ t-channel exchange dominates, N[3/2-](2080) is dominant N*

$\gamma D \rightarrow K^*(892)^0 \Lambda(p)$ Cross Section

- t-channel dominated
 - Disagreement with prediction: perhaps t-channel modeling
 - Possible small $K^*(892)^0\Sigma^0$ background leakage, need to investigate

$\gamma D \rightarrow K^*(892)^0 \Lambda(p) \text{ vs. } \gamma p \rightarrow K^+ \Lambda$

- ~Comparison vs. ground state ^[16] ($\gamma D \rightarrow K^0 \Lambda(p)$ being analyzed):
 - Similar at Mid-θ
- Rescattering through πN : ~20% effect on KA ^[17]
 - K*Λ sizable vs. KΛ: N* coupled-channels analyses

$\gamma D \rightarrow K^+\Sigma^*(1385)^-(p) \text{ vs. } \gamma D \rightarrow K^+\Sigma^-(p)$

- Scale comparison vs. ground state
 - Similar scale in most regions
 - KΣ*(1385): N* coupled-channels analyses

Summary

- N* spectrum: Strong force and hadronic structure
 - Role of quark correlations: limit N* spectrum
 - Search in KY, K*Y, and KY* channels
- Preliminary quasi-free cross sections:
 - $-\gamma D \rightarrow p\pi^{-}(p), \gamma D \rightarrow K^{*}(892)^{0} \wedge (p), \& \gamma D \rightarrow K^{+}\Sigma^{*}(1385)^{-}(p)$
 - N* couplings, greater understanding of interactions
 - High-statistics $\gamma D \rightarrow p\pi^{-}(p)$ data: study rescattering
 - K*Y & KY* sizable vs. KY: include in coupled-channels analyses
- These results will be published after systematic studies are performed, and will contribute to the search for the N* resonances.

N* states in $\gamma p \rightarrow p \omega \rightarrow p \pi^+ \pi^- \pi^0$?

$$\begin{split} \mathcal{I}(\sqrt{s},\cos\theta^{\phi}_{\rm c.m.}) ~\sim~ \frac{1}{2}(1-\rho^{0}_{00}) + \frac{1}{2}(3\rho^{0}_{00}-1)\cos^{2}\zeta \\ -\sqrt{2}Re\rho^{0}_{10}\sin2\zeta\cos\varphi \\ -\rho^{0}_{1-1}\cos2\varphi, \end{split}$$

• Very precise cross sections in W, $\cos\theta_{\omega}$. From ω decays => SDME $\rho_{00,}^{0} \rho_{1-1,}^{0} \rho_{10}^{0}$, shown in blue - blue shades.

(ω data not yet included in coupled-channel amplitude analyses, in preparation by several groups.)

W=1.7 – 2.4 GeV, Δ W=10 MeV bins

M. Williams, et al. (CLAS), Phys. Rev. C80:065209, 2009

N* states in $\gamma p \rightarrow p \omega \rightarrow p \pi^+ \pi^- \pi^0$

 $\Delta \phi$ (radians)

M. Williams, et al. (CLAS), Phys.Rev. C80 (2009) 065208

 The data are used as input to a single channel eventbased, energy independent partial wave analysis (the first ever for baryons).

 ω photoproduction is dominated by the well known
 F₁₅(1680) and G₁₇(2190), and the "missing" ** F₁₅(2000).

N* states in $\gamma p \rightarrow p \omega \rightarrow p \pi^+ \pi^- \pi^0$

- Using JPAC amplitudes to fit $\omega \rightarrow \pi^+\pi^-\pi^0$
 - Theory: I. Danilkin @JLab, P. Guo @IU
 - Experimental support: A. Celentano @INFN, B.
 Vernarsky @CMU
- Ongoing collaboration between JPAC and CLAS
 - Initial test channels for 2 & 3 body interaction amplitudes
 - η to 3π , ω to 3π , pK^+K^-

- Isobar Approximation
- -> violates unitarity

3 Body Amplitudes

- Including with Isobar Approximation
- Rescattering effects
 - Khuri-Treiman equations
- Amplitudes from dispersive integrals
 - Restoration of unitarity

η→π⁺π⁻π⁰ Dalitz decay analysis

- Theory: P. Guo @IU
- Experimental support: D. Schott @GW, M. Kunkel @ODU, LMD Group

First look:

Initial test fit using: 2-body decay amplitudes

Plans

- Take the results of the 2-body and 3body fits to estimate the 3-body contribution
 - The 3-body amplitude includes the 2-body, so by comparing the 2 sets of fits, one can extract the 3-body contribution
- Investigate possible background minimization
 - Look at sidebands of the $\boldsymbol{\eta}$
 - Event weights
- Analyze g11 data to compare to g12 results

FIG. 2: (a) Naive Isobar model. (b) Three-body rescattering effect.

үр→рК⁺К⁻

- Theory: M. Shi @JLab, V. Mathieu @IU, C. Ramirez @JLab, R. Workman @GW, A.
 Szczepaniak @IU
- Experimental support: D. Schott, PWA Working Group

Summary

- Amplitude analysis can be performed in many ways. JPAC is trying a different approach.
- Stay tuned!

Dark Photon Search

- The following work is done primarily by the ODU group at CLAS:
 - M. Kunkel and M. Amaryan

STATISTICS

DARK PHOTON UPPER LIMITS

Figure 8: Summary of the 90% CL upper limits for the mixing parameter e^2 from WASAat-COSY (red solid line) compared to SINDRUM $\pi^0 \to e^+e^-\gamma$ [34] (dotted line) and recent combined KLOE $\phi \to \eta e^+e^-$ [43] (dashed dotted) upper limits. The long respectively short dashed lines (and the corresponding hatched areas) are the upper limits derived from the muon and the electron g-2 [29]. In addition the gray area represents the $\pm 2\sigma$ preferred band around the present value of the muon g-2.

Summary

- Recent results
 - Cross-section
 - $\gamma D \rightarrow p\pi^{-}(p)$
 - $\gamma D \rightarrow K^+ \Sigma^* (1385)^-(p)$
 - $\gamma D \rightarrow K^*(892)^0 \Lambda(p)$
 - Are expecting final results soon
 - $\gamma p \rightarrow p \omega \rightarrow p \pi^+ \pi^- \pi^0$
 - Amplitude Analysis
 - $\omega \rightarrow \pi^+ \pi^- \pi^0$
 - η→π⁺π⁻π⁰

- γp→pK⁺K⁻
 - Collaboration between
 JPAC and CLAS is
 ramping up and will
 bring results soon
- Dark Photon Search
 - Search for dark photons possible at CLAS using the high statistics data set.
 - Better limits on parameter space.