The COMPASS Hadron Program

Florian Haas

Physik Department E18 - Technische Universität München

13th International Workshop on Meson Production, Properties and Interaction - MESON 2014

> supported by: Maier-Leibnitz-Labor der TU und LMU München, Cluster of Excellence: Origin and Structure of the Universe, BMBF

From QCD to Hadron Physics

[arXiv:hep-ex/0606035v2]

From QCD to Hadron Physics

[arXiv:hep-ex/0606035v2]

From QCD to Hadron Physics

[arXiv:hep-ex/0606035v2]

SFrom QCD to Hadron Physics

- Confinement
- Hadrons relevant DOF
- Dynamics of excited states?
- Models and theories
 - Quark model
 - Bag mode
 - Flux tube model
 - XPT for slope
 pions
 - Lattice QCD

From QCD to Hadron Physics

- Confinement
- Hadrons relevant DOF
- Dynamics of excited states?
- Models and theories
 - Quark model
 - Bag model
 - Flux tube model
 - XPT for slow pions
 - Lattice QCD

Dudek et al. [arXiv:1106.5515v1]

From QCD to Hadron Physics

- Confinement
- Hadrons relevant DOF
- Dynamics of excited states?
- Models and theories
 - Quark model
 - Bag model
 - Flux tube model
 - *χ_{PT}* for slow
 pions
 - Lattice QCD

The COMPASS Hadron Setup

20 1

Spectrometer and Hadron Beam

Overview

- COmmon Muon and Proton Apparatus for Structure and Spectroscopy¹
- Located at CERN SPS
- M2-beamline: high intensity π/K/p beam up to 230GeV/c
- data taking since 2002 \rightarrow up to 1 PByte/year

CEDUA NOT

Apparatus

- Two-stage magnetic spectrometer
- Large acceptance charged tracking
- Calorimetry (ECAL/HCAL)
- Kaon PID (CEDARs/RICH)

¹ [Nucl. Instr. and Meth. A 577 (2007) 455]

Light-Meson Spectroscopy

 $\pi^{-}\pi^{-}\pi^{+}$ and $\pi^{-}\pi^{0}\pi^{0}$ $\eta\pi^{-}$ and $\eta'\pi^{-}$ Status of the $J^{PC} = 1^{-+}$ Spin Exotic Partial Wave $\pi\pi$ Production at Central Rapidities

Tests of Chiral Dynamics

 3π Primakoff Production Pion Polarizability

Light-Meson Spectroscopy Isovector Mesons Diffractive Pion Dissociation

Technische Universität München

Step One: Decomposition in Spin-Parity States

Spin-Parity Decomposition for each bin of t' and m (2D)

Assumption 1: Partial waves that contribute to the same final state are fully coherent.

$$\mathcal{I}(au) \sim \left|\sum_{i} \Psi_{i}
ight|^{2}$$

• T_i : Transition amplitude $\in \mathbb{C}$ (unknown, contains information on intensity and phases)

• ψ_i : Decay amplitude $\in \mathbb{C}$ (calculable, based on a set of kinematical distributions τ)

• *i*: partial waves $J^{PC}M^{\varepsilon}\xi\pi L$ e.g. 3π : 87 waves up to spin 6 + one incoherent isotropic wave

Step One: Decomposition in Spin-Parity States

Spin-Parity Decomposition for each bin of t' and m (2D)

Assumption 2: Factorisation of production and decay vertex.

$$\mathcal{I}(\tau) \sim \left|\sum_{i} T_{i} \psi_{i}(\tau)\right|^{2}$$

- T_i : Transition amplitude $\in \mathbb{C}$ (unknown, contains information on intensity and phases)
- ψ_i : Decay amplitude $\in \mathbb{C}$ (calculable, based on a set of kinematical distributions τ)
- *i*: partial waves $J^{PC}M^{\varepsilon}\xi\pi L$ e.g. 3π : 87 waves up to spin 6 + one incoherent isotropic wave

Production and Decay

Step One: Decomposition in Spin-Parity States

Spin-Parity Decomposition for each bin of t' and m (2D)

Assumption 2: Factorisation of production and decay vertex.

$$\mathcal{I}(\tau) \sim \left|\sum_{i} T_{i} \psi_{i}(\tau)\right|^{2}$$

- T_i : Transition amplitude $\in \mathbb{C}$ (unknown, contains information on intensity and phases)
- ψ_i : Decay amplitude $\in \mathbb{C}$ (calculable, based on a set of kinematical distributions τ)
- *i*: partial waves $J^{PC}M^{\varepsilon}\xi\pi L$ e.g. 3π : 87 waves up to spin 6 + one incoherent isotropic wave

Step One: Decomposition in Spin-Parity States

Spin-Parity Decomposition for each bin of t' and m (2D)

Assumption 2: Factorisation of production and decay vertex.

$$\mathcal{I}(\tau) \sim \left|\sum_{i} T_{i} \psi_{i}(\tau)\right|^{2}$$

- T_i : Transition amplitude $\in \mathbb{C}$ (unknown, contains information on intensity and phases)
- ψ_i : Decay amplitude $\in \mathbb{C}$ (calculable, based on a set of kinematical distributions τ)
- *i*: partial waves $J^{PC}M^{\varepsilon}\xi\pi L$ e.g. 3π : 87 waves up to spin 6 + one incoherent isotropic wave

Isobar Model

Dalitz Plot $\pi_2(1670)$ region

Step One: Decomposition in Spin-Parity States

Spin-Parity Decomposition for each bin of t' and m (2D)

Assumption 2: Factorisation of production and decay vertex.

$$\mathcal{I}(\tau) \sim \left|\sum_{i} T_{i}\psi_{i}(\tau)\right|^{2}$$

• T_i : Transition amplitude $\in \mathbb{C}$ (unknown, contains information on intensity and phases)

• ψ_i : Decay amplitude $\in \mathbb{C}$ (calculable, based on a set of kinematical distributions τ)

• *i*: partial waves $J^{PC}M^{\epsilon}\xi\pi L$ e.g. 3π : 87 waves up to spin 6 + one incoherent isotropic wave

Isobar Model $\frac{\pi^{-}}{p} \xrightarrow{P^{C}M^{e}} \pi^{+}}{p} \xrightarrow{p} p$ Dalitz Plot $\pi_{2}(1670)$ region $\int_{p}^{p_{C}M^{e}} \pi^{+}}{p} \xrightarrow{p} p \xrightarrow{$

Step One: Decomposition in Spin-Parity States

Spin-Parity Decomposition for each bin of t' and m (2D)

Assumption 2: Factorisation of production and decay vertex.

$$\mathcal{I}(\tau) \sim \left| \sum_{i} T_{i} \psi_{i}(\tau) \right|^{2}$$

- T: Transition amplitude $\in \mathbb{C}(unknown, contains information on intensity and phases)$
- ψ : Decay amplitude $\in \mathbb{C}$ (calculable, based on a set of kinematical distributions τ)
- *i*: partial waves $J^{PC}M^{\varepsilon}\xi\pi L$ e.g. 3π : 87 waves up to spin 6 + one incoherent isotropic wave

- Use full information of the spin density matrix elements $T_i T_i^*(m_x, t')$
 - Intensities
 - Phases
- Parametrise the spin density matrix
 - Breit-Wigner forms
 - t'-dependent non-resonant contributions
- χ^2 fit of the spin-density submatrix

Step One: Decomposition in Spin-Parity States

Spin-Parity Decomposition for each bin of t' and m (2D)

Assumption 2: Factorisation of production and decay vertex.

$$\mathcal{I}(\tau) \sim \left| \sum_{i} T_{i} \psi_{i}(\tau) \right|^{2}$$

- T: Transition amplitude $\in \mathbb{C}(unknown, contains information on intensity and phases)$
- ψ : Decay amplitude $\in \mathbb{C}$ (calculable, based on a set of kinematical distributions τ)
- *i*: partial waves $J^{PC}M^{\varepsilon}\xi\pi L$ e.g. 3π : 87 waves up to spin 6 + one incoherent isotropic wave

- Use full information of the spin density matrix elements $T_i T_i^*(m_x, t')$
 - Intensities
 - Phases
- Parametrise the spin density matrix
 - Breit-Wigner forms
 - t'-dependent non-resonant contributions
- χ^2 fit of the spin-density submatrix

Step One: Decomposition in Spin-Parity States

Spin-Parity Decomposition for each bin of t' and m (2D)

Assumption 2: Factorisation of production and decay vertex.

$$\mathcal{I}(\tau) \sim \left| \sum_{i} T_{i} \psi_{i}(\tau) \right|^{2}$$

- T: Transition amplitude $\in \mathbb{C}(unknown, contains information on intensity and phases)$
- ψ : Decay amplitude $\in \mathbb{C}$ (calculable, based on a set of kinematical distributions τ)
- *i*: partial waves $J^{PC}M^{\varepsilon}\xi\pi L$ e.g. 3π : 87 waves up to spin 6 + one incoherent isotropic wave

- Use full information of the spin density matrix elements $T_i T_i^*(m_x, t')$
 - Intensities
 - Phases
- Parametrise the spin density matrix
 - Breit-Wigner forms
 - t'-dependent non-resonant contributions
- χ^2 fit of the spin-density submatrix

Step One: Decomposition in Spin-Parity States

Spin-Parity Decomposition for each bin of t' and m (2D)

Assumption 2: Factorisation of production and decay vertex.

$$\mathcal{I}(\tau) \sim \left| \sum_{i} T_{i} \psi_{i}(\tau) \right|^{2}$$

- T: Transition amplitude $\in \mathbb{C}(unknown, contains information on intensity and phases)$
- ψ : Decay amplitude $\in \mathbb{C}$ (calculable, based on a set of kinematical distributions τ)
- *i*: partial waves $J^{PC}M^{\varepsilon}\xi\pi L$ e.g. 3π : 87 waves up to spin 6 + one incoherent isotropic wave

- Use full information of the spin density matrix elements $T_i T_i^*(m_x, t')$
 - Intensities
 - Phases
- Parametrise the spin density matrix
 - Breit-Wigner forms
 - t'-dependent non-resonant contributions
- χ^2 fit of the spin-density submatrix

Step One: Decomposition in Spin-Parity States

Spin-Parity Decomposition for each bin of t' and m (2D)

Assumption 2: Factorisation of production and decay vertex.

$$\mathcal{I}(\tau) \sim \left| \sum_{i} T_{i} \psi_{i}(\tau) \right|^{2}$$

- *T*: Transition amplitude $\in \mathbb{C}(unknown, contains information on intensity and phases)$
- ψ : Decay amplitude $\in \mathbb{C}$ (calculable, based on a set of kinematical distributions τ)
- *i*: partial waves $J^{PC}M^{\varepsilon}\xi\pi L$ e.g. 3π : 87 waves up to spin 6 + one incoherent isotropic wave

- Use full information of the spin density matrix elements $T_i T_i^*(m_x, t')$
 - Intensities
 - Phases
- Parametrise the spin density matrix
 - Breit-Wigner forms
 - t'-dependent non-resonant contributions
- χ^2 fit of the spin-density submatrix

Partial-wave analysis of

$$\pi^{-} + \rho \rightarrow \pi^{-}\pi^{-}\pi^{+} + \rho$$
$$\pi^{-} + \rho \rightarrow \pi^{-}\pi^{0}\pi^{0} + \rho$$

 $\bigotimes \pi^{-} p \rightarrow \pi^{-} \pi^{-} \pi^{+} p \text{ (2008)}$ Intensities of dominant J^{PC} states

 $\pi^- \rho \rightarrow (3\pi)^- \rho$ (2008) Intensities of dominant J^{PC} states

Technische Universität München

$\bigotimes \operatorname{Anew}_{1^{++}0^{+}f_{0}(980)\pi P} \operatorname{Anew}_{\pi P}$

A new Axialvector Resonance? $1^{++}0^{+}f_{0}(980)\pi P$

Partial-wave analysis of

$$\pi^- + p \rightarrow \eta \pi + p$$

 $\pi^- + p \rightarrow \eta' \pi + p$

omparison
$$\pi^- + p \rightarrow \eta' \pi + p$$
 vs $\pi^- + p \rightarrow \eta \pi + p$ (2008)

Scaling: Adjustment for branching and phase space

Even-*L* waves have very similar intensity distributions in $\eta\pi$ and $\eta'\pi$ (after correction for phase-space effects) over the whole mass range.

Odd-*L* waves, in particular the P wave, are suppressed in $\eta\pi$ by a factor 5 to 10, again over the whole mass range.

Status of the $J^{PC} = 1^{-+}$ Spin Exotic Partial Wave

Exotic Signatures

- Isospin exotics: "forbidden" decays
- Spin exotics: $J^{PC} = 0^{--}, 0^{+-}, 1^{-+}, 2^{+-}...$ forbidden in $q\bar{q}$
- $\bullet\,$ Proof of existence \rightarrow strong hint for physics beyond the quark model

COMPASS (2004): π^{-} Pb $\rightarrow \pi^{-}\pi^{+}\pi^{-}$ Pb \sim 400 000 events

Exotic Signatures

- Isospin exotics: "forbidden" decays
- Spin exotics: $J^{PC} = 0^{--}, 0^{+-}, 1^{-+}, 2^{+-}...$ forbidden in $q\bar{q}$
- $\bullet\,$ Proof of existence \rightarrow strong hint for physics beyond the quark model

COMPASS (2004): π^{-} Pb $\rightarrow \pi^{-}\pi^{+}\pi^{-}$ Pb \sim 400 000 events

Spin Exotic $\pi_1(1600)$

- Significant 1⁻⁺ amplitude consistent with resonance at $\sim 1.7\,{\rm GeV/c^2}$
- No leakage observed (< 5%)
- BW for $\pi_1(1600)$ + background: $M = (1.660 \pm 0.010 \stackrel{+0.000}{_{-0.064}}) \text{ GeV/c}^2$ $\Gamma = (0.269 \pm 0.021 \stackrel{+0.042}{_{-0.064}}) \text{ GeV/c}^2$

 $\pi^- \rho \rightarrow \pi^- \pi^+ \pi^- \rho (2008)$ The spin exotic $J^{PC} = 1^{-+} \rho \pi P$ -wave

Intensity

Comparison
$$\pi^- p \to \pi^- \pi^- \pi^+ p$$
 vs $\pi^- p \to \pi^- \pi^0 \pi^0 p$ (2008)
The spin exotic $J^{PC} = 1^{-+} \rho \pi P$ -wave

Comparison
$$\pi^- p \to \pi^- \pi^- \pi^+ p$$
 vs $\pi^- p \to \pi^- \pi^0 \pi^0 p$ (2008)
The spin exotic $J^{PC} = \mathbf{1}^{-+} \rho \pi P$ -wave

Non-Resonant Production

- $\bullet\,$ Additional production mechanism for the same final state $\to\,$ non-resonant contribution
- An incident beam pion dissociates into a ρ or f₂ and a virtual π. The virtual π scatters diffractively from the target proton (via Pomeron) into a real state.

Amplitude parametrisation:

$$\Psi(M_{\pi\pi}, t_{\pi}, t) = \frac{A_{\pi\pi}(M_{\pi\pi}, t_{\pi})A_{\pi\rho}(s_{\pi\rho}, t)}{m_{\pi}^2 - t_{\pi}}$$

• $A_{\pi\pi}$ scattering amplitude through the ρ or/and f_2

• $A_{\pi\rho} \pi^- p$ elastic scattering amplitude

Non-Resonant Production

- $\bullet\,$ Additional production mechanism for the same final state $\rightarrow\,$ non-resonant contribution
- An incident beam pion dissociates into a ρ or f₂ and a virtual π. The virtual π scatters diffractively from the target proton (via Pomeron) into a real state.

Amplitude parametrisation:

$$\Psi(M_{\pi\pi}, t_{\pi}, t) = \frac{A_{\pi\pi}(M_{\pi\pi}, t_{\pi})A_{\pi\rho}(s_{\pi\rho}, t)}{m_{\pi}^2 - t_{\pi}}$$

• $A_{\pi\pi}$ scattering amplitude through the ρ or/and f_2

• $A_{\pi p} \pi^- p$ elastic scattering amplitude

Non-Resonant Production

- $\bullet\,$ Additional production mechanism for the same final state $\rightarrow\,$ non-resonant contribution
- An incident beam pion dissociates into a ρ or f₂ and a virtual π. The virtual π scatters diffractively from the target proton (via Pomeron) into a real state.

• Amplitude parametrisation:

$$\Psi(M_{\pi\pi}, t_{\pi}, t) = \frac{A_{\pi\pi}(M_{\pi\pi}, t_{\pi})A_{\pi\rho}(s_{\pi\rho}, t)}{m_{\pi}^2 - t_{\pi}}$$

- $A_{\pi\pi}$ scattering amplitude through the ρ or/and f_2
- $A_{\pi p} \pi^- p$ elastic scattering amplitude

- Generate MC data distributed according to Deck amplitude
- Fit this data with the same model in bins of t' and $m_{3\pi}$
- Investigate the contributions of the Deck intensity in the single waves
- Caveat: interference of the simulated Deck amplitude with diffractive production not taken into account

 $\bigotimes \pi^{-} \boldsymbol{\rho} \to \pi^{-} \pi^{+} \pi^{-} \boldsymbol{\rho} \text{ (2008)}$ selected t' bins, Deck overlaid

Technische Universität München

Deck contribution suppressed at larger t'

Analysis of *t*'-dependencies necessary in order to understand the underlying production processes.

Technische Universität München

Isoscalar Scalar Mesons Meson Production at Central Rapidities in pp Scattering

ПП $p
ho
ho
ho
ho
ho_{
m fast} \pi^+ \pi^- +
ho_{
m slow}$ Amplitude Analysis of $\pi^+ \pi^-$ System – Physical Solution after Disambiguation Technische Universität München

$p p o p_{ m fast} K^+ K^- + \overline{p_{ m slow}}_{ m Amplitude Analysis of K^+ K^-}$ System – Fit of the Mass Dependence

Tests of Chiral Dynamics

Primakoff 3π Spectral Function from $\chi PT_{Technische Universität Muncher PRL 108, 192001 (2012)}$

- Heavy nucleus acts as a quasi-real photon source
- Chiral regime (low masses, t' < 0.001(GeV/c)²) → fraction of final state events photoproduced
- Analysis ansatz: χ PT amplitude included in PWA

Primakoff 3π Spectral Function from $\chi PT_{Technische Universität Muncher PRL 108, 192001 (2012)}$

- Heavy nucleus acts as a quasi-real photon source
- Chiral regime (low masses, t' < 0.001(GeV/c)²) → fraction of final state events photoproduced

• Analysis ansatz: χ PT amplitude included in PWA

Primakoff 3π Spectral Function from $\chi PT_{Technische Universität Muncher PRL 108, 192001 (2012)}$

- Heavy nucleus acts as a quasi-real photon source
- Chiral regime (low masses, t' < 0.001(GeV/c)²) → fraction of final state events photoproduced
- Analysis ansatz: χ PT amplitude included in PWA
- $\Rightarrow \gamma \pi^- \rightarrow \pi^- \pi^+ \pi^-$ absolute cross section

Primakoff Compton Reaction

$$\gamma^{(*)}\pi o \pi\gamma$$

tiny extrapolation $\gamma^* o \gamma$ $\mathcal{O}(10^{-3}m_{\pi}^2)$

Conclusions

- COMPASS 2008/2009: large data sets in
 - diffractive $\pi^-/K^-/p$ dissociation (up to 2 orders of magnitude improvement)
- Meson Spectroscopy
 - $\pi^{-}\pi^{+}\pi^{-}, \pi^{-}\pi^{0}\pi^{0}, \eta\pi^{-}, \eta'\pi^{-}, K^{-}\pi^{+}\pi^{-}, 5\pi, \pi^{-}\pi^{+}_{isobar}$
 - Central production in pp and πp
- Baryon Spectroscopy
 - $p\pi^{0}, p\pi^{+}\pi^{-}, pK^{+}K^{-}, p\omega, ...$
- Chiral dynamics:
 - 3*m*-amplitude
 - Pion polarizability

Outlook – Deisobared Fit of the $\pi^-\pi^+\pi^-$ Final State

Idea: Reducing the model systematics by a simultaneous fit of the 2π subsystem and the 3π final state

Outlook – Deisobared Fit of the $\pi^-\pi^+\pi^-$ Final State

Idea: Reducing the model systematics by a simultaneous fit of the 2π subsystem and the 3π final state

Example: 1⁺⁺ partial waves decaying via scalar isobars

