Meson2014@Krakow, May 31, 2014

K-pp search experiments at J-PARC

Tomofumi NAGAE (Kyoto University), for J-PARC E15 & E27 collaborations

J-PARC E15 Collaboration

S. Ajimura^a, G. Beer^b, H. Bhang^c, M. Bragadireanu^e, P. Buehler^f, L. Busso^{g,h}, M. Cargnelli^f, S. Choi^c, C. Curceanu^d, S. Enomotoⁱ, D. Faso^{g,h}, H. Fujioka^j, Y. Fujiwara^k, T. Fukuda^l, C. Guaraldo^d, T. Hashimoto^k, R. S. Hayano^k, T. Hiraiwa^a, M. Iio^o, M. Iliescu^d, K. Inoueⁱ, Y. Ishiguro^j, T. Ishikawa^k, S. Ishimoto^o, T. Ishiwatari^f, K. Itahashiⁿ, M. Iwai^o, M. Iwasaki^{m,n*}, Y. Katoⁿ, S. Kawasakiⁱ, P. Kienle^p, H. Kou^m, Y. Maⁿ, J. Marton^f, Y. Matsuda^q, Y. Mizoi^l, O. Morra^g, T. Nagae^{i[§]}, H. Noumi^a, H. Ohnishiⁿ, S. Okadaⁿ, H. Outaⁿ, K. Piscicchia^d, M. Poli Lener^d, A. Romero Vidal^d, Y. Sada^j, A. Sakaguchiⁱ, F. Sakumaⁿ, M. Satoⁿ, A. Scordo^d, M. Sekimoto^o, H. Shi^k, D. Sirghi^{d,e}, F. Sirghi^{d,e}, K. Suzuki^f, S. Suzuki^o, T. Suzuki^k, K. Tanida^c, H. Tatsuno^d, M. Tokuda^m, D. Tomonoⁿ, A. Toyoda^o, K. Tsukada^r, O. Vazquez Doce^{d,s}, E. Widmann^f, B. K. Weunschek^f, T. Yamagaⁱ, T. Yamazaki^{k,n}, H. Yim^t, Q. Zhangⁿ, and J. Zmeskal^f

- (a) Research Center for Nuclear Physics (RCNP), Osaka University, Osaka, 567-0047, Japan •
- (b) Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6, Canada ᡟ
- (c) Department of Physics, Seoul National University, Seoul, 151–742, South Korea 💌
- (d) Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy 🛽
- (e) National Institute of Physics and Nuclear Engineering IFIN HH, Romania 📕
- (f) Stefan-Meyer-Institut für subatomare Physik, A-1090 Vienna, Austria 💳
- (g) INFN Sezione di Torino, Torino, Italy
- (h) Dipartimento di Fisica Generale, Universita' di Torino, Torino, Italy
- (i) Department of Physics, Osaka University, Osaka, 560-0043, Japan •
- (j) Department of Physics, Kyoto University, Kyoto, 606-8502, Japan •
- (k) Department of Physics, The University of Tokyo, Tokyo, 113-0033, Japan •
- (I) Laboratory of Physics, Osaka Electro-Communication University, Osaka, 572-8530, Japan •
- (m) Department of Physics, Tokyo Institute of Technology, Tokyo, 152-8551, Japan •
- (n) RIKEN Nishina Center, RIKEN, Wako, 351-0198, Japan 🔹
- (o) High Energy Accelerator Research Organization (KEK), Tsukuba, 305–0801, Japan •
- (p) Technische Universität München, D-85748, Garching, Germany 💳
- (q) Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan •
- (r) Department of Physics, Tohoku University, Sendai, 980-8578, Japan •
- (s) Excellence Cluster Universe, Technische Universität München, D-85748, Garching, Germany 💳
- (t) Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 139–706, South Korea 💌
- (*) Spokesperson

(\$) Co-Spokesperson

J-PARC E27 Collaboration

Yudai Ichikawa^{1,2}, Tomofumi Nagae¹, Hyoungchan Bhang³, Stefania Bufalino⁴, Hiroyuki Ekawa^{1,2}, Petr Evtoukhovitch⁵, Alessandro Feliciello⁴, Hiroyuki Fujioka¹, Shoichi Hasegawa², Shuhei Hayakawa⁶, Ryotaro Honda⁷, Kenji Hosomi², Kenichi Imai², Shigeru Ishimoto⁸, Changwoo Joo³, Shunsuke Kanatsuki¹, Ryuta Kiuchi², Takeshi Koike⁷, Harphool Kumawat⁹, Yuki Matsumoto⁷, Koji Miwa⁷, Manabu Moritsu¹⁰, Megumi Naruki¹, Masayuki Niiyama¹, Yuki Nozawa¹, Ryota Ota⁶, Atsushi Sakaguchi⁶, Hiroyuki Sako², Valentin Samoilov⁵, Susumu Sato², Kotaro Shirotori¹⁰, Hitoshi Sugimura², Shoji Suzuki⁸, Toshiyuki Takahashi⁸, Tomonori Takahashi¹¹, Hirokazu Tamura⁷, Toshiyuki Tanaka⁶, Kiyoshi Tanida³, Atsushi Tokiyasu¹⁰, Zviadi Tsamalaidze⁵, Bidyut Roy⁹, Mifuyu Ukai⁷, Takeshi Yamamoto⁷ and Seongbae Yang³

¹Department of Physics, Kyoto University, Kyoto 606-8502, Japan
²ASRC, Japan Atomic Energy Agency, Ibaraki 319-1195, Japan
³Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea
⁴INFN, Istituto Nazionale di Fisica Nucleare, Sez. di Torino, I-10125 Torino, Italy
⁵Joint Institute for Nuclear Research, Dubna, Moscow Region 141980, Russia
⁶Department of Physics, Osaka University, Toyonaka 560-0043, Japan
⁷Department of Physics, Tohoku University, Sendai 980-8578, Japan
⁸High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan
⁹Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai, India
¹⁰Research Center for Nuclear Physics, Osaka 567-0047, Japan
¹¹RIKEN, Saitama 351-0198, Japan

Contents-

- Introduction of "K-pp"
- E15 experiment : ³He(K⁻,n)"K⁻pp" at 1 GeV/c
- = E27 experiment : $d(\pi^+, K^+)$ "K-pp" at 1.69 GeV/c
- Summary

New type of Strange matter

Strange Mesons (K, K⁻) in nuclei

• \overline{KN} : attraction in Isospin=0

- Kaonic hydrogen X-ray ; SIDDHARTA,
 M.Bazzi et al., NPA 881 (2012) 88-97.
- Low-energy scattering measurements
- Λ (1405) below the K⁻p threshold
- *K*-*pp* : Y=1, I=1/2, J^π=0⁻

Experiments on K-pp

First evidence of *K*-pp with ⁶Li+⁷Li+¹²C
 by FINUDA M. Agnello et al., PRL94, (2005) 212303
 B=115+6/-5+3/-4 MeV
 F= 67+14/-11+2/-3 MeV

■ Γ= 118±8±10 MeV

T. Yamazaki et al., PRL 104 (2010) 132502. P. Kienle et al., Eur. Phys. J. A 48 (2012) 183.

θ

Theoretical work on K-pp K-pp does exist !!

...but maybe broad (consistent with EXPs)

(MeV)	ATMS Yamazaki & Akaishi, PLB535 (2002) 70.	Faddeev Shevchenko, Gal, Mares, PRL98 (2007) 082301.	Faddeev Ikeda & Sato, PRC79 (2009) 035201.	Variational Wycech & Green, PRC79 (2009) 014001.	Faddeev, Maeda, Akaishi, Yamazaki, Proc. Jpn. Acad., B, 89 (2013) 418.	Variational Dote, Hyodo, Weise, PRC79 (2009) 014003.	Faddeev Ikeda, Kamano, Sato, PTP124 (2010) 533.	Faddeev Barnea, Gal, Liverts, PLB 712 (2012) 132.
В	48	50-70	60-95	40-80	51.5	17-23	9-16	16
	61	90-110	45-80	40-85	61	40-70	34-46	41

- FSI effects ? ; V.K. Magas et al., PRC 74 (2006) 025206.
- Λ*N bound state ?; T. Uchino et al., NPA 868-869 (2011) 53.

K-pp Searches at J-PARC

■ E15 : ³He(K,n/p)"K pp", "K pp"→Λp, Σ⁰p at 1 GeV/c

- K"n"→n+"K", "K"+"pp"→Kpp
- Exclusive measurement
 - $K p p \rightarrow \Lambda p, \Sigma^0 p$
- Isospin dependence
- E27 : $d(\pi^+, K^+)$ with proton(s) coin. at 1.69 GeV/c
 - Λ (1405) as a doorway; π^+ "n" $\rightarrow K^+ \Lambda^*$ (1405), $\Lambda^* p \rightarrow K^- pp$
 - Semi-exclusive
 - $K pp \rightarrow p+Y$, p+p+π+(γ, π)

E15 Experiment Y. Sada on June 2 (A3) in-flight ³He(K⁻, n) reaction & its exclusive measurement → Search for KNN bound states both via formation & Decay

J-PARC K1.8BR spectrometer

beam dump

beam sweeping magnet

liquid ³He-target system

CDS.

1111

beam line spectrometer

charge veto counter proton counter

neutron counter

Neutron Counter Trajectory of the neutron Trajectory of the beam center Trajectory of the beam center

K. Agari et. al., PTEP 2012, 02B011

Semi-inclusive ³He(K⁻,n)X M.M. spectrum

Exclusive ³He(K⁻,/\p)n events

• $K^{-3}He \rightarrow \Lambda(\Sigma^{0})$ pn events are exclusively identified ~ 190 events

• Σ^0 pn contamination ~ 20%

³He(K⁻, \p)n; Dalitz plot

³He(K⁻,/\p)n ; Invariant mass

Total CS :~200µb (assuming phase-space distrib.)
 (~ 0.1% of total cross section of K⁻³He)

E15 Summary

- K⁻³He reaction at 1 GeV/c : 4-days data taking was successful.
 - Excess below the K⁻pp threshold in (K⁻,n) spectrum.
 - ³He(K⁻, Ap)n exclusive process (3-nucleon abs.?) was observed.

Next physics data taking in 2015 : 10 times more data !

Range Counter System for E27

- 5 layers (1+2+2+5+2cm) of plastic scinti.
- 39 122 deg. (L+R)
- **5**0 cm TOF

One-proton tagging

Quasifree Y productions

$\pi^+ d \rightarrow K^+ \Sigma \pi p_s$ h pmom h pmom Entries 11959 Entries 26304 [¹⁸⁰] [∞]₄ 0.2149 Mean x 6¹⁸⁰ Mean x 0.4911 Mean y 72.61 Mean y 56.73 RMS x 0.2568 RMS x 0.1547 RMS y 57.32 RMS y 43.86 140 140 . **Λp decay** 120 120 range counter 100 100 80 80 20% 60 h 60 **40** 40 20 20 °0 °0 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.9 0.9 0.1 0.4 0.5 0.7 0.8 0.2 0.3 0.6 proton momentum [GeV/c] proton momentum [GeV/c]

Non-mesonic decay from K-pp

Particle Identification in Range Counter

p(π+,K+)1.69 GeV/c

- Σ^+ production
 - $\Delta M = 3.2 MeV(FWHM)$
 - Mass = 1188.92MeV
- Σ⁺(1385) production
- Yπ production

$p(\pi^+, K^+)\Sigma^+$ @1.69 GeV/c

p(π+,K+)1.69 GeV/c

- Σ⁺ production
 - $\Delta M = 3.2 MeV(FWHM)$
 - Mass = 1188.92MeV
- Σ⁺(1385) production
- Yπ production

$p(\pi^+, K^+)\Sigma^+$ @1.69 GeV/c

$\Sigma N \rightarrow \Lambda N cusp$

- Peak at 2130.5±0.4±0.8 MeV
- Width = 5.4±0.8+0.3/-0.7 MeV

$\Sigma N \rightarrow \Lambda N cusp$

- Peak at 2130.5±0.4±0.8 MeV
- Width = 5.4±0.8+0.3/-0.7 MeV

Coincidence study

Pion Coincidence Rate

R_{π} = (Pion coincidence spectrum)/(Inclusive spectrum)

R $_{\pi} \propto (\pi \text{ emission BR}) \times (\pi \text{ detection efficiency})$

Proton Coincidence Rate

Proton Coincidence Rate

Hyperon mass with two protons • $d(\pi^+,K^+)K^-pp; K^-pp \rightarrow Y+p, Y \rightarrow \pi+p(+\gamma+\pi)$

• $M_Y^2 = (E_{\pi} + M_d - E_{K} - E_p)^2 - (p_{\pi} - p_{K} - p_p)^2$

Hyperon mass with two protons • $d(\pi^+,K^+)K^-pp; K^-pp \rightarrow Y+p, Y \rightarrow \pi+p(+\gamma+\pi)$

• $M_Y^2 = (E_{\pi} + M_d - E_{K} - E_p)^2 - (p_{\pi} - p_{K} - p_p)^2$

E15: 4-days data taking

- E15 : 4-days data taking
 - ³He(K⁻,n) missing mass spectrum
 - Excess below the K+p+p threshold
 - ³He(K⁻, Λp)n exclusive measurement
 - S-nucleon absorption ?
 - 10 times more data in 2015

- E15 : 4-days data taking
 - ³He(K⁻,n) missing mass spectrum
 - Excess below the K+p+p threshold
 - ³He(K⁻, Λp)n exclusive measurement
 - S-nucleon absorption ?
 - 10 times more data in 2015
- E27 : A pilot run of ~10 days

- E15 : 4-days data taking
 - ³He(K⁻,n) missing mass spectrum
 - Excess below the K+p+p threshold
 - ³He(K⁻, Λp)n exclusive measurement
 - S-nucleon absorption ?
 - 10 times more data in 2015
- E27 : A pilot run of ~10 days
 - d(π⁺,K⁺) missing mass spectrum at 1.69 GeV/c

- E15 : 4-days data taking
 - ³He(K⁻,n) missing mass spectrum
 - Excess below the K+p+p threshold
 - ³He(K⁻, Λp)n exclusive measurement
 - S-nucleon absorption ?
 - 10 times more data in 2015
- E27 : A pilot run of ~10 days
 - d(π⁺,K⁺) missing mass spectrum at 1.69 GeV/c
 - threshold cusp at 2.13 GeV/c²

- E15 : 4-days data taking
 - ³He(K⁻,n) missing mass spectrum
 - Excess below the K+p+p threshold
 - ³He(K⁻, Λp)n exclusive measurement
 - S-nucleon absorption ?
 - 10 times more data in 2015
- E27 : A pilot run of ~10 days
 - d(π⁺,K⁺) missing mass spectrum at 1.69 GeV/c
 - threshold cusp at 2.13 GeV/c²
 - mass shift of ~30 MeV in Y* region

- E15 : 4-days data taking
 - ³He(K⁻,n) missing mass spectrum
 - Excess below the K+p+p threshold
 - ³He(K⁻, Λp)n exclusive measurement
 - S-nucleon absorption ?
 - 10 times more data in 2015
- E27 : A pilot run of ~10 days
 - d(π⁺,K⁺) missing mass spectrum at 1.69 GeV/c
 - threshold cusp at 2.13 GeV/c²
 - mass shift of ~30 MeV in Y* region
 - proton coincidence

- E15 : 4-days data taking
 - ³He(K⁻,n) missing mass spectrum
 - Excess below the K+p+p threshold
 - ³He(K⁻, Λp)n exclusive measurement
 - S-nucleon absorption ?
 - 10 times more data in 2015
- E27 : A pilot run of ~10 days
 - d(π⁺,K⁺) missing mass spectrum at 1.69 GeV/c
 - threshold cusp at 2.13 GeV/c²
 - mass shift of ~30 MeV in Y* region
 - proton coincidence
 - an enhancement of "K-pp"-like structure

- E15 : 4-days data taking
 - ³He(K⁻,n) missing mass spectrum
 - Excess below the K+p+p threshold
 - ³He(K⁻, Λp)n exclusive measurement
 - S-nucleon absorption ?
 - 10 times more data in 2015
- E27 : A pilot run of ~10 days
 - d(π⁺,K⁺) missing mass spectrum at 1.69 GeV/c
 - threshold cusp at 2.13 GeV/c²
 - mass shift of ~30 MeV in Y* region
 - proton coincidence
 - an enhancement of "K-pp"-like structure
 - BR : Λρ, Σ⁰ρ, πΥΝ ~ 1 : 1 : 0.1