EM Form Factors and OLYMPUS

Michael Kohl <kohlm@jlab.org> *

Hampton University, Hampton, VA 23668 Jefferson Laboratory, Newport News, VA 23606

*** Supported by NSF grants PHY-0855473, 0959521, and 1207672, and by DOE Early Career Award DE-SC0003884**

Outline

- **Proton form factors in the context of one-photon exchange (OPE)**
- **The limit of OPE or:**
	- **What is G_E^p?**
	- **What is the nature of lepton scattering?**
- **Two-photon exchange (TPE): New observables**
- **Current and future experiments to probe TPE → OLYMPUS & more**

OLYMPUS @ DESY

Nucleon elastic form factors …

- **Fundamental quantities**
- **Defined in context of single-photon exchange**
- **Describe internal structure of the nucleons**
- **Related to spatial distribution of charge and magnetism**
- **Rigorous tests of nucleon models**
- **Determined by quark structure of the nucleon**
- **Role of orbital angular momentum and diquark correlation**
- **Ultimately calculable by Lattice-QCD**
- **Input to nuclear structure and parity violation experiments**

50 years of ever increasing activity

- **Tremendous progress in experiment and theory over last decade**
- **New techniques / polarization experiments**
- **Unexpected results**

Present form factor and TPE experiments

Recoil polarization and polarized target (Jlab)

 $GEp-II+III - high-Q²$ recoil polarization $I =$ published (2010) 2-Gamma – ε dependence of recoil pol. – published (2011) E08-007 – low- Q^2 recoil polarization $-$ published (2011) $E08-007 - low - Q²$ polarized target $-$ analysis in progress $SANE - high-Q² polarized target$ – to be published GEp-V (& GMp) – high Q^2 at Jlab-12 – proposed

Rosenbluth separation (Jlab)

Super-Rosen – high-Q² Rosenbluth $-$ analysis in progress

Positron-electron comparisons

Novosibirsk/VEPP-3 – to be published CLAS/Jlab – to be published

Proton radius measurements

PSI / (muonic hydrogen Lamb shift, HFS) – published (2010, 2013) MAMI / A1 (e-scattering) $-$ published (2010) MAMI / A1 (ISR) $-$ analysis in progress Jlab / PRad (e-scattering) – proposed PSI / MUSE (e± , µ± scattering) – proposed

-
-
-
-
-
-
-
-
-
- **OLYMPUS/DESY analysis in progress**
	-
	-
	-
	-
	-

Hadronic structure and EM interaction

The beginnings

FIG. 26. Typical angular distribution for elastic scattering of 400-Mev electrons against protons. The solid line is a theoretical curve for a proton of finite extent. The model providing the theoretical curve is an exponential with rms radii = 0.80×10^{-13} cm.

R. Hofstadter, Rev. Mod. Phys. 56 (1956) 214

ed-elastic Finite size + nuclear structure

Robert Hofstadter Nobel prize 1961

ep-elastic

 $R_p \sim 0.8$ fm

finite size of the proton

FIG. 31. Introduction of a finite proton core allows the experimental data to be fitted with conventional form factors (McIntyre).

Form factors from Rosenbluth method

In One-photon exchange, form factors are related to radiatively corrected elastic electron-proton scattering cross section

$$
\frac{d\sigma/d\Omega}{(d\sigma/d\Omega)_{Mott}} = S_0 = A(Q^2) + B(Q^2) \tan^2 \frac{\theta}{2}
$$

$$
= \frac{G_E^2(Q^2) + \tau G_M^2(Q^2)}{1+\tau} + 2\tau G_M^2(Q^2) \tan^2 \frac{\theta}{2}
$$

$$
= \frac{\epsilon G_E^2 + \tau G_M^2}{\epsilon (1+\tau)}, \qquad \epsilon = \left[1 + 2(1+\tau)\tan^2 \frac{\theta}{2}\right]^{-1}
$$

Gp E and Gp M from unpolarized data

Gp E and Gp M from unpolarized data

Nucleon form factors and polarization

Double polarization observable = spin correlation

$$
-\sigma_0\ \vec{P_p}\cdot\vec{A}=\sqrt{2\tau\epsilon(1-\epsilon)}G_E G_M\sin\theta^*\cos\phi^*+\tau\sqrt{1-\epsilon^2}G_M{}^2\cos\theta^*
$$

Asymmetry ratio ("Super ratio")

independent of polarization or analyzing power

$$
\frac{P_{\perp}}{P_{\parallel}} = \frac{A_{\perp}}{A_{\parallel}} \propto \frac{G_E}{G_M}
$$

Dombey (1969) Donnelly and Raskin (1986)

Polarized targets

Recoil polarization technique

Applicable to protons and neutrons

Akhiezer and Rekalo (1968+1974) Arnold, Carlson and Gross (1981)

Recoil polarization technique

- Pioneered at MIT-Bates
- Pursued in Halls A and C, and MAMI A1
- In preparation for Jlab $@$ 12 GeV

V. Punjabi *et al.***, Phys. Rev. C71 (2005) 05520**

FIG. 9: Schematic of the polarimeter chambers and analyzer, showing a non-central trajectory; ϑ is the polar angle, and φ is the azimuthal angle from the y -direction counterclockwise.

Focal-plane polarimeter Secondary scattering of polarized proton from unpolarized analyzer

FIG. 15: Schematic drawing showing the precession by angle χ_{θ} of the P_{ℓ} component of the polarization in the dipole of the HRS.

Spin transfer formalism to account for spin precession through spectrometer

Proton form factor ratio

Jefferson Lab 2000–

- **All Rosenbluth data from SLAC and**
- **Dramatic discrepancy between Rosenbluth and recoil polarization**
- **Multi-photon exchange considered**

 $X: p.\Delta$

Proton form factor ratio

Polarized target data at high Q2 ¹⁶

M.K. Jones *et al.***, PRC74 (2006) 035201**

Polarized Target:

Independent verification of recoil polarization result is crucial

Polarized internal target / low Q2: **BLAST** Q^2 <0.65 (GeV/c)² not high enough to see deviation from scaling

RSS /Hall C: Q2 ≈ 1.5 (GeV/c)2

Polarized target data at high Q2

A. Liyanage, M.K. *et al.***, to be published**

Polarized Target:

Independent verification of recoil polarization result is crucial

Polarized internal target / low Q2: **BLAST** Q^2 <0.65 (GeV/c)² not high enough to see deviation from scaling

RSS /Hall C: Q2 ≈ 1.5 (GeV/c)2

SANE/Hall C: completed March 2009 BigCal electron detector Recoil protons in HMS parasitically G_F/G_M at $Q^2 \approx 2.1$ and 5.7 (GeV/c)²

Decline of G_E/G_M has been confirmed!

Future precision measurements at high Q2 are feasible

Effect of two-photon exchange

J. Arrington, P. Blunden, W. Melnitchouk, Prog. Part. Nucl. Phys. 66, 782 (2011)

per constructionem, theorists sought mechanism that affects the "slope" in the Rosenbluth plot (ε-dependence)

At high \mathbb{Q}^2 , the contribution of G_F to the cross section **is of similar order as the TPE effect (few %)**

Two-photon exchange: exp. evidence

Elastic ep scattering beyond OPE

$$
P \equiv \frac{p+p'}{2}, \quad K \equiv \frac{k+k'}{2}
$$

Kinematical invariants :

$$
Q2 = -(p - p')2
$$

$$
\nu = K \cdot P = (s - u)/4
$$

Next-to Born approximation:

$$
T_{h'\lambda'_N,h\lambda_N}^{non-flip} = \frac{e^2}{Q^2} \bar{u}(k',h')\gamma_\mu u(k,h)
$$

\n
$$
\times \bar{u}(p',\lambda'_N) \left(\tilde{G}_M \gamma^\mu - \tilde{F}_2 \frac{P^\mu}{M} + \tilde{F}_3 \frac{\gamma \cdot K P^\mu}{M^2}\right) u(p,\lambda_N)
$$

\nThe T-matrix still factorizes, however a new response term F_3 is generated by TPE

Born-amplitudes are modified in presence of TPE; modifications $-\alpha^3$

$$
\begin{array}{rcl} \tilde{G}_M(\nu,Q^2)&=&G_M(Q^2)+\delta \tilde{G}_M\\ \tilde{F}_2(\nu,Q^2)&=&F_2(Q^2)+\delta \tilde{F}_2\\ \tilde{F}_3(\nu,Q^2)&=&0+\delta \tilde{F}_3 \end{array}
$$

$$
\tilde{G}_E \equiv \tilde{G}_M - (1+\tau)\,\tilde{F}_2
$$

$$
\tilde{G}_E(\nu, Q^2) = G_E(Q^2) + \delta \tilde{G}_E
$$

New amplitudes are complex!

Inherited from M. Vanderhaeghen

Imaginary part: Single-spin asymmetries

spin of beam OR target NORMAL to scattering plane X_{\perp}^{\perp} p^{\prime} **on-shell intermediate state (M_X = W)
** $A_n = -\frac{1}{(2\pi)^3} \frac{e^2 (1-\varepsilon)}{8 Q^2} \int_{M^2}^s dW^2 \frac{|\vec{k}_1|^2}{4\sqrt{s}} \int d\Omega_{k1} \frac{1}{Q_*^2 Q_*^2} \mathcal{I}\left(L_{\alpha\mu\nu}H^{\alpha\mu\nu}\right)$ **E.g. target normal spin asymmetry**

$$
A_n = \sqrt{\frac{2\,\varepsilon\,(1+\varepsilon)}{\tau}} \, \frac{1}{\sigma_R} \qquad \left\{ -\,G_M\,\mathcal{I}\left(\delta\tilde{G}_E + \frac{\nu}{M^2}\tilde{F}_3\right) \right. \\ \left. + \,G_E\,\mathcal{I}\left(\delta\tilde{G}_M + \left(\frac{2\varepsilon}{1+\varepsilon}\right)\frac{\nu}{M^2}\tilde{F}_3\right) \right\},
$$

Beam: PVES at Bates, MAMI and Jlab; Target: PR05-015, PR08-005

Inherited from M. Vanderhaeghen

Observables involving real part of TPE

$$
P_{t} = -\sqrt{\frac{2\varepsilon(1-\varepsilon)}{\tau}} \frac{G_{M}^{2}}{d\sigma_{red}} \left\{ R + \frac{R - \frac{\Re(\delta\tilde{G}_{M})}{G_{M}} + \frac{\Re(\delta\tilde{G}_{E})}{G_{M}} + Y_{2\gamma} \right\}
$$
\n
$$
P_{t} = \sqrt{(1+\varepsilon)(1-\varepsilon)} \frac{G_{M}^{2}}{d\sigma_{red}} \left\{ R + \frac{2\frac{\Re(\delta\tilde{G}_{M})}{G_{M}} + \frac{2}{1+\varepsilon}\varepsilon Y_{2\gamma} \right\}
$$
\n
$$
= -\sqrt{\frac{2\varepsilon}{(1+\varepsilon)\tau}} \left\{ R - \frac{R}{G_{M}} + \frac{\Re(\delta\tilde{G}_{M})}{G_{M}} + \frac{\Re(\delta\tilde{G}_{E})}{G_{M}} + 2\left(1 - R\frac{2\varepsilon}{1+\varepsilon}\right) Y_{2\gamma} \right\}
$$
\n
$$
= \frac{d\sigma_{red} / G_{M}^{2}}{G_{red} / G_{M}^{2}} = 1 + \frac{\varepsilon R^{2}}{\tau} + 2\frac{\Re(\delta\tilde{G}_{M})}{G_{M}} + 2R\frac{\varepsilon \Re(\delta\tilde{G}_{E})}{\tau G_{M}} + 2\left(1 + \frac{R}{\tau}\right)\varepsilon Y_{2\gamma} \right\}
$$
\n
$$
\frac{\varepsilon^{*(\mathbf{e} \cdot \mathbf{x} \cdot \mathbf{section}\text{ ratio})}}{\varepsilon (1+\mathbf{x}) \cdot \mathbf{C} \cdot \math
$$

P.A.M. Guichon and M.Vanderhaeghen, Phys.Rev.Lett. 91, 142303 (2003) M.P. Rekalo and E. Tomasi-Gustafsson, E.P.J. A 22, 331 (2004)

Slide idea: L. Pentchev

Jefferson Lab E04-019 (Two-gamma)

Jlab – Hall C $Q^2 = 2.5$ (GeV/c)²

GE/GM from Pt /Pl constant vs. ε

 \rightarrow no effect in P_t/P_l \rightarrow some effect in P_I

Expect larger effect in e+/e-!

M. Meziane *et al.***, hep-ph/1012.0339v2 Phys. Rev. Lett. 106, 132501 (2011)**

Empirical extraction of TPE amplitudes

J. Guttmann, N. Kivel, M. Meziane, and M. Vanderhaeghen, EPJA 47 (2011) 77

Lepton-proton elastic scattering

• **Interference term depends on lepton charge sign (C-odd)**

$$
\sigma_{e^{\pm}p} = |\mathcal{M}_{1\gamma}|^2 \pm 2\Re{\{\mathcal{M}_{1\gamma}^{\dagger}\mathcal{M}_{2\gamma}\}} + \cdots
$$

• e⁺/e⁻ ratio deviates from unity by two-photon contribution

$$
\frac{\sigma_{e^+ \rho}}{\sigma_{e^- \rho}} \approx 1 + 4 \frac{\Re\{\mathcal{M}_{1\gamma}^{\dagger}\mathcal{M}_{2\gamma}\}}{|\mathcal{M}_{1\gamma}|^2}
$$

Comparison of e+/e[−] experiments

- Novosibirsk experiment ($E_{\text{beam}} = 1.6$, 1 and 0.6 GeV)
- CLAS @ JLab experiment $(E_{\text{beam}} = 0.5 \div 4 \text{ GeV})$
- OLYMPUS @ DESY experiment $(E_{\text{beam}} = 2 \text{ GeV})$

Comparison of e+/e[−] experiments

TPE experiments: Novosibirsk/VEPP-3

A. Gramolin, Workshop on Radiative Corrections in Annihilation and Scattering Experiments, Orsay, October 7-8, 2013

TPE experiments: CLAS (E04-116)

Projected results for OLYMPUS

OLYMPUS @ DORIS/DESY

- **Electrons/positrons (100mA) in 2.0–4.5 GeV storage ring DORIS at DESY, Hamburg, Germany**
- **Unpolarized internal hydrogen target (buffer system)** $3x10^{15}$ at/cm² @ 100 mA \rightarrow L = 2x10³³ / (cm²s)
- **Large acceptance detector for e-p in coincidence BLAST detector from MIT-Bates available**
- **Redundant monitoring of luminosity Pressure, temperature, flow, current measurements Small-angle elastic scattering at high epsilon / low Q2 Symmetric Moller/Bhabha scattering**
- **Measure ratio of positron-proton to electron-proton unpolarized elastic scattering to 1% stat.+sys.**

XMPU

OLYMPUS kinematics at 2.0 GeV

The designed OLYMPUS detector

based on a figure by R. Russell

The realized OLYMPUS detector

"The OLYMPUS Experiment", R. Milner *et al***., NIMA 741, 1 (2014)**

Target and vacuum system

Designed and built in 2010 Very stable operation after repairs

J.C. Bernauer *et al.***, NIMA 755, 20 (2014)**

Wire chambers and TOF scintillators

- **2x18 TOFs for PID, timing and trigger**
- **2 WCs for PID and tracking (z,θ,φ,p)**
- **WC and TOF refurbished from BLAST WC re-wired at DESY TOF rewrapped, efficiency tested**
- **Installed in OLYMPUS Apr-May 2011**
- **Stable operation**

Glasgow, Yerevan, UNH, ASU MIT

Designed to fit into forward cone

38

Luminosity monitors: GEM + MWPC

- **Forward elastic scattering of lepton at 12o in coincidence with proton in main detector**
- **Two GEM + MWPC telescopes with interleaved elements operated independently**
- **SiPM scintillators for triggering and timing**
- **Sub-percent (relative) luminosity measurement per hour at 2.0 GeV**
- **High redundancy alignment, efficiency Two independent groups (Hampton/INFN, PNPI)**

Luminosity monitors: GEM + MWPC

Telescopes of three GEMs and MWPCs interleaved Mounted on wire chamber forward end plate Extensively tested at DESY test beam facility

- **Symm. angle 1.3o @ 2.0 GeV**
- **Matrix of 3x3 PbF₂ crystals**
- **Tested at DESY and MAMI**

Performance of DORIS

- **DORIS top-up mode established**
- **Typically 65mA / 0.5 sccm**

 Refills every ~2 minutes by few mA PETRA refills every 30 minutes

Analysis framework

ROOT based C++ analysis framework ("cooker")

with plug-ins and recipes **(J. Bernauer) and full MC integration**

Radiative corrections of order α³

- **Use MC framework to accurately implement all 'standard' RC and to extract effect from hard TPE**
- **Ensure consistency between different experiments**

A. Schmidt, R. Russell, J. Bernauer (MIT)

MIT radiative generator

Event display (3D)

45

Run 4975, event 78

C. O'Connor (MIT)

OL&MPUS

Based on 100 runs (~2% of the data)

Electron beam Positron beam

Polar angle in the right sector versus polar angle in left sector

47

Based on 100 runs (~2% of the data)

Electron beam Positron beam

Polar angle in the right sector versus polar angle in left sector Coplanarity cut ±5 degrees

OL&MPUS

48

Based on 100 runs (~2% of the data)

Electron beam Positron beam

Polar angle in the right sector versus polar angle in left sector Coplanarity cut ±5 degrees Common vertex ±100 mm

OL&MPUS

Based on 100 runs (~2% of the data)

Electron beam Positron beam

Polar angle in the right sector versus polar angle in left sector Coplanarity cut ±5 degrees Common vertex ±100 mm Polar angle kinematic cut $|\theta_{\text{l}} - \theta_{\text{l}}(\theta_{\text{p}})|$ < 5 degrees

OL&MPUS

50

Based on 100 runs (~2% of the data)

Electron beam Positron beam

Polar angle in the right sector versus polar angle in left sector Coplanarity cut ±5 degrees Common vertex ±100 mm Polar angle kinematic cut $|\theta_{\text{l}} - \theta_{\text{l}}(\theta_{\text{p}})|$ < 5 degrees Momentum kinematic cut $|P_p - P_p(\theta_p)| < 400$ MeV/c

Yields: very preliminary …

Based on 100 runs (~2% of the data)

51

ØL&MPUS

Timeline of OLYMPUS

- 2007 Letter of Intent
- **2008 Proposal**
- 2009 Technical review
- **2010 Approval and funding**
- **Summer 2010 BLAST transfer**
- **Spring 2011 Target test run**
- **Summer 2011 Detector installed**
- **Fall 2011 Commissioning**

First run Jan 30 – Feb 27, 2012 … acquired < 0.3 fb-1

Summer 2012 Repairs and upgrades

Second run Oct 24, 2012 – Jan 2, 2013 … acquired > 4.0 fb-1

- Smooth performance of machine, target, detector
- **Spring 2013 Survey & field mapping**
- Analysis progressing framework, calibrations, tracking, simulations
- **Expect results end of 2014**

53

~50 physicists from 13 institutions in 6 countries Elected spokesmen / deputy: R. Milner / R. Beck (2009–2011) M.K. / A. Winnebeck (2011–2013) D. Hasell / U. Schneekloth (2013–)

- **Arizona State University:** TOF support, particle identification, magnetic shielding
- **DESY:** Modifications to DORIS accelerator and beamline, toroid support, infrastructure, installation
- **Hampton University:** GEM luminosity monitor
- **INFN Bari:** GEM electronics
- **INFN Ferrara:** Target
- **INFN Rome:** GEM electronics
- **MIT:** BLAST spectrometer, wire chambers, tracking upgrade, target and vacuum system, transportation to DESY, simulations, slow control, analysis framework
- **Petersburg Nuclear Physics Institute:** MWPC luminosity monitor
- **University of Bonn:** Trigger, data acquisition, and online monitor
- **University of Mainz:** Trigger, DAQ, Symmetric Moller monitor
- **University of Glasgow**: TOF scintillators
- **University of New Hampshire:** TOF scintillators
- **A. Alikhanyan National Laboratory (AANL), Yerevan:** TOF scintillators

mmary

The limits of OPE have been reached with the achieved precision

- **Large discrepancy between unpolarized and polarized data**
- → Nucleon elastic form factors, particularly G_E^p under doubt
- **The TPE hypothesis is suited to remove form factor discrepancy, however calculations of TPE are model-dependent**
- **ε dependence of polarization transfer, ε-nonlinearity of cross sections single-spin asymmetries**
- **Need both positron/electron comparisons for a definitive test of TPE: VEPP-3, CLAS, OLYMPUS**

- **A comprehensive and rich program underway, expected to be conclusive in the near future**
- **Broader Impact: gamma-Z box in PVES; TPE effects in DIS; proton radius puzzle**

Global analysis

J.C. Bernauer *et al.***, arXiv:1307.6227v1**

Outlook: TPE and the proton radius puzzle

MUSE (poster session on Sat) Muon Scattering Experiment

Use e/π/µ beam at PSI for a direct test if µp and ep scattering are different:

- **Simultaneous, separated beam of (e+/π+/µ+) or (e-/π-/µ-) on liquid H₂ target**
- **Measure e+/µ+, e-/µ- ratios to compare extracted charg**
- **Disentangle effects from two-photon exchange (TPE) in e+/e-, µ+/µ-**

Backup

New proton measurements at low Q2

New proton measurements at low Q² 59

Hall A PR07-004, PR08-007 (PAC31/33)

•**Recoil polarization, completed 2008**

•**Polarized target, completed 2012**

New proton measurements at low Q² 60

