

Systematic studies of deeply-bound pionic atoms at the RIKEN RIBF facility

Ryugo S. Hayano (Tokyo)

for the pionic atom factory project

The team (now busy at RIBF)

G.P.A. Berg, M. Dozono, H. Fujioka, N. Fukunishi, H. Geissel, E. Haettner, R.S. Hayano,
S. Hirenzaki, H. Horii, N. Ikeno, N. Inabe, <u>K. Itahashi</u>, M. Iwasaki, D. Kameda, N.Kobayashi,
T. Kubo, H. Matsubara, S. Michimasa, K. Miki, G. Mishima, H. Miya, H. Nagahiro, M. Niikura,
<u>T. Nishi</u>, S. Noji, S. Ota, H. Outa, H. Suzuki, K. Suzuki, M. Takaki, H. Takeda, Y. K. Tanaka,
T. Uesaka, <u>Y.N. Watanabe</u>, H. Weick, H. Yamakami, K. Yoshida

Already discussed by S. Hirenzaki

Deeply bound pionic atoms

Quantum bound system of meson-nucleus

Probes ~60% of ρ_0

N. Ikeno et al., PTP126(2011)483.

Deeply bound pionic atoms

Quantitative evaluation of chiral order parameter

Binding energy $\rightarrow \langle \bar{q}q \rangle$

pionic atom **1s** energy

GSI experiment (pionic Pb, Sn)

successfully completed some 10 years ago

Level scheme

"deep" states invisible to X-rays

"last orbit"

(d,3He) reaction

Missing mass spectroscopy

recoilless condition@250 MeV/u

SETUP

Pionic Sn at GSI

K. Suzuki et al., PRL92 072302 (2004)

NNDC, BNL

Pionic atoms and chiral condensate

why further measurements?

why further measurements?

b₁ precision limited by

(1) Experimental error (ΔBE_{1s})

2 Errors in other params. (b₀, p_n, ReB_{0...})

Improvements by

- \bigcirc \rightarrow Higher statistics, better resolution
- $\textcircled{2} \rightarrow \text{systematic study}$

(disentangle the QCD effects from mundane nuclear effects)

Binding Energy precision

Experimental errors B_{1s} ΔB_{1s} (MeV) Isotope (MeV) Stat. Syst. Total ¹¹⁵Sn 3.906 ± 0.021 ± 0.012 ± 0.024 ¹¹⁹Sn ± 0.012 3.820 ± 0.013 ± 0.018 ¹²³Sn 3.744 ± 0.013 ± 0.012 ± 0.018 200 0deg d²o/dΩdE [µb/sr/MeV] ls 160 $(1s)_{\pi} \otimes (3s1/2)_{n}^{-1}$ How to improve 120 **2**s • $\sigma(\text{stat}) \rightarrow \text{higher statistics}$ 80 (1s)_▼⊗(2d/2)⁻¹ (2s)π⊗(3s1/2)r • $\sigma(sys) \rightarrow by 1s \& 2s$ measurement (3s)π⊗(3s1/2)n 40 $(4s)_{\pi} \otimes (3s_{1/2})_n^{-1}$ $(1s)_{\pi} \otimes (2d_{3/2})_{n}^{-1}$ 0 -142 -134 -144 -138 -140-136

Hayano, MESON 2014, Kraków

Q [MeV]

*N. Ikeno et al., Eur. Phys. J.A 47, 161 (2011)

piAF @ RIBF - what can be improved?

b₁ with better precision - longer lever arm

z	112I	113I	114I	115I	1161	117I	118I	119I	120I	121I	1221	123I	124I	125I	126I	127I	128I
	111Te	112Te	113Te	114Te	115Te	116Te	117Te	118Te	119Te	120Te	121Te	122Te	123Te	124Te	125Te	126Te	127Te
51	110Sb	111Sb	112Sb	113Sb	114Sb	115Sb	116Sb	117Sb	118Sb	119Sb	120Sb	121Sb	122Sb	123Sb	124Sb	125Sb	126Sb
	109Sn	110Sn	111Sn	112Sn	113Sn	114Sn	115Sn	116Sn	117Sn	118Sn	119Sn	120Sn	121Sn	122Sn	123Sn	124Sn	125Sn
49	108In	109In	110In	111In	112In	113In	114In	115In	116In	117In	118In	119In	120In	121In	122In	123In	124In
	107Cd	108Cd	109Cd	110Cd	111Ca	112Cd	113Cd	114Cd	115Ca	116Cd	117Cd	118Cd	119Cd	120Cd	121Cd	122Cd	123Cd
47	106Ag	107Ag	108Ag	109Ag	110Ag	111Ag	112Ag	113Ag	114Ag	115Ag	116Ag	117Ag	118Ag	119Ag	120Ag	121Ag	122Ag
	105Pd	106Pd	107Pd	108Pd	109Pd	110Pd	111Pd	112Pd	113Pd	114Pd	115Pd	116Pd	117Pd	118Pd	119Pd	120Pd	121Pd
45	104Rh	105Rh	106Rh	107Rh	108Rh	109Rh	110Rh	111Rh	112Rh	113Rh	114Rh	115Rh	116Rh	117Rh	118Rh	119Rh	120Rh
	59		61		63		65		67		69		71		73		N
									π-/	∖s-v	vave	inte	ract	ion	→ ⁻	$\langle qq \rangle$	\rangle
									V_s :	$= b_0$	$\rho + q_0$	$-b_1($	$[ho_n$ -	$-\rho_p$,)+	B_{0}	ρ^2 .

b₁ with better precision - 2D coverage

z	112I	113I	114I	115I	116I	117I	118I	119I	120I	121I	1221	123I	124I	125I	126I	1271	1281
	111Te	112Te	113Te	114Te	115Te	116Te	117Te	118Te	119Te	120Te	121Te	122Te	123Te	124Te	125Te	126Te	127Te
51	110Sb	111Sb	112Sb	113Sb	114Sb	115Sb	116Sb	117Sb	118Sb	119 Sb	120Sb	121Sb	122Sb	123Sb	124Sb	125Sb	126Sb
	109Sn	110Sn	111Sn	112Sn	113Sn	114Sn	115Sn	116Sn	117Sn	116 Sn	119Sn	120Sn	121Sn	122Sn	123Sn	124Sn	125Sn
49	108In	109In	110In	11 .In	112In	113 in	114In	115In	116In	11 'In	118In	119In	120In	121In	122In	123In	124In
	107Cd	108Cd	109Cd	11(Cd	111Ca	112°a	113Cd	114Cd	115Cd	11 <mark>-</mark> 2d	117Cd	118Cd	119Cd	120Cd	121Cd	122Cd	123Cd
47	106Ag	107Ag	108Ag	109 Ag	110Ag	111 Ag	112Ag	113Ag	114Ag	115Ag	116Ag	117Ag	118Ag	119Ag	120Ag	121Ag	122Ag
	105Pd	106Pd	107Pd	10. Pd	109Pd	110 / d	111Pd	112Pd	113Pd	114Pd	115Pd	116Pd	117Pd	118Pd	119Pd	120Pd	121Pd
45	104Rh	105Rh	106Rh	107Rh	108Rh	109Rh	110Rh	111Rh	112Rh	113Rh	114Rh	115Rh	116Rh	117Rh	118Rh	119Rh	120Rh
	59		61		63		65		67		69		71		73		N
									π-/	A s-v	vave	inte	eract	ion	\rightarrow	₹qq)	\rangle
									V_s	$= b_0$	$\rho + q_0$	$-b_1($	$(ho_n\cdot$	$-\rho_p$) + (₀	B_0	ρ^2 .

GSI and RIBF

pilot experiment @ RIBF

The pilot experiment @ RIBF

z	112I	113I	114I	1151	116I	117I	118I	1191	1201	121I	1221	123I	Nuc	lear	' cha	art	128I
	111Te	112Te	113Te	114Te	115Te	116Te	117Te	118Te	119Te	120Te	121Te	122Te	123Te	124Te	125Te	126Te	127Te
51	110Sb	111Sb	112Sb	113Sb	114Sb	115Sb	116Sb	117Sb	118Sb	119Sb	120Sb	121Sb	122Sb	123Sb	124Sb	125Sb	126Sb
	109Sn	110Sn	111Sn	112Sn	113Sn	114Sn	115Sn	116Sn	117Sn	118Sn	119Sn	120Sn	121Sn	122Sn	123Sn	124Sn	125Sn
49	108In	109In	110In	111In	112In	113In	114In	115In	116In	117In	118In	119In	120In	121In	122In	123In	124In
	107Cd	108Cd	109Cd	110Cd	111Cd	112Ca	113Cd	114Cd	115Ca	116Cd	117Ca	118Cd	119Cđ	120Cd	121Cd	122Cd	123Cd
47	106Ag	107Ag	108Ag	109Ag	110Ag	111Ag	112Ag	113Ag	114Ag	115Ag	116Ag	117Ag	118Ag	119Ag	120Ag	121Ag	122Ag
	105Pd	106Pd	107Pd	108Pd	109Pd	110Pd	111Pd	112Pd	113Pd	114Pd	115Pd	116Pd	117Pd	118Pd	119Pd	120Pd	121Pd
45	104Rh	105Rh	106Rh	107Rh	108Rh	109Rh	110Rh	111Rh	112Rh	113Rł	114Rh	Fir	st Ex	cperi	men	t 19Rh	120 Rh
	59		61		63		65		67		69		71		73		N

NNDC,BNL

Experimental setup

¹²²Sn(d,³He) (15 hours) - why 3 peaks?

*N. Ikeno et al., Eur. Phys. J. A 47, 161 (2011)

angular distribution!

Hayano, MESON 2014, Kraków

ongoing @ RIKEN RIBF

About to start at RIBF

systematic study of pionic nuclei in isotope / isotone chain

z	112I	113I	114I	115I	1161	117I	118I	119I	120I	1211	1221	Nu	lor	ea	r Cl	hai	't ²⁸¹
	111Te	112Te	113Te	114Te	115Te	116Te	117Te	118Te	119Te	120Te	121Te	122Te	123Te	124Te	125Te	126Te	127Te
51	110Sb	111Sb	112Sb	113Sb	114Sb	115Sb	116Sb	117Sb	118Sb	119Sb	120Sb	121Sb	122Sb	123Sb	124Sb	125Sb	126Sb
	109Sn	110Sn	111Sn	112Sn	113Sn	114Sn	115Sn	116Sn	117Sn	118Sn	119Sn	120Sn	121Sn	122Sn	123Sn	124Sn	125Sn
49	108In	109In	110In	111In	112In	113In	114In	115In	116In	117In	118In	119In	120In	121In	122In	123In	124In
	107Cd	108Cd	109Cd	110Cd	111Cd	112Cd	113Cd	114Cd	115Cd	116Cd	117Cd	118Cd	119Cd	120Cd	121Cd	122Cd	123Cd
47	106Ag	107Ag	108Ag	109Ag	110Ag	111Ag	112Ag	113Ag	114Ag	115Ag	116Ag	117Ag	118Ag	119Ag	120Ag	121Ag	122Ag
	105Pd	106Pd	107Pd	108Pd	¹⁰⁹ (i) 1	225	Sn ·	- pi	lot	ex	p.			Pd	120Pd	121Pd
45	104Rh	105Rh	106Rh	107Rh	¹⁰⁸ (İ	i) 1	17S	sn -	fir	st o	odc	Ab	tar	ge	Rh	119Rh	120Rh
	59		61		63		65		67		69		71		73		N
															1	NNDC,I	BNL

Measurement of π-¹¹⁶Sn

*N. Ikeno et al., Prog. Theor. Exp. Phys. 2013, 063D01 (2013)

future prospects & summary

Future experiments

Unstable Sn

- -Try Inverse reaction
 - (unstable beam on an active D₂ target)
- -proof of principle experiment (stable beam) in a few years

Isotones at RIBF

- High resolution x-ray measurements of light pionic atoms
 - -use TES borometers
 - -pionic ³He & ⁴He 1s shift & width, with <10 eV resolution, planned at PSI this fall

Summary

- Spectroscopy of pionic atoms powerful tool to study partial restoration of chiral symmetry
- Ongoing
 - ¹²²Sn(d,³He) high quality data 1s, 2s, 2p, ...
 - ¹¹⁷Sn(d,³He) first "even-A" pionic 1s, 2s, ...
- Future
 - isotones
 - unstable pionic atoms using inverse kinematics
 - high precision X-ray spectroscopy of light (³He, ⁴He, …) pionic atoms using TES borometers