Outline	The experiment	CPT 0000	U-boson 000	TFF 00	Light quarks	Conclusions

Latest Results from KLOE-2

Caterina Bloise on behalf of the KLOE-2 Collaboration

INFN, Frascati National Laboratory, Italy

Workshop on Meson Production, Properties and Interaction Krakow, May 29 - June 3, 2014

Outline	The experiment 00000	CPT 0000	U-boson 000	TFF 00	Light quarks 00	Conclusions

1 The experiment

- **2** CPT and Lorentz Invariance
- $3 K^+ \rightarrow \pi^+ \pi^+ \pi^-$
- U-boson searches
- **5** Transition form factors
- **6** Light quark mass ratio

Conclusions

Outline	The experiment	CPT	U-boson	TFF	Light quarks	Conclusions
	00000					

DAΦNE

DA Φ NE, the Frascati ϕ factory

- Most of the infrastructures of the Frascati accelerator complex have been consolidated for a physics run with KLOE-2
- Beam interaction region upgraded
- Commissioning in progress
- The goal is to collect 5 fb^{-1} in 2-3 years

The KLOE detector										
Detectors										
Outline	The experiment ○●000	CPT 0000		U-boson 000	TFF 00	Light quarks 00	Conclusions			

- Big Drift chamber operating with He-rich(90%) mixture, with stereo wires and carbon-fiber structure, σ_{P_T} < 0.4·% P_T (θ > 45°)
- Hermetic sampling calorimeter with lead, scintillating fibers, C-shaped end-caps for full coverage, $\sigma_t \sim \frac{57}{\sqrt{E(GeV)}} \oplus 100 \text{ ps}$
- Loose trigger conditions insure maximal acceptance for any event topology for a wide physics program, EPJ C68(2010)619
- Integrated luminosity of 2.5 fb⁻¹ with 2002 and 2004-2005 runs

• 250 pb⁻¹ collected at 1 GeV for physics in the continuum

Outline	The experiment ○0●00	CPT 0000	U-boson 000	TFF 00	Light quarks 00	Conclusions
Detectors						
The d	etector upg	rades				

- Two different stations of γ-γ taggers, for the detection of e⁺ and e⁻ in the high-energy (HET) and low-energy (LET) windows, : E_e > 400MeV and 130 < E_e < 300 MeV.
- The Inner Tracker is the first cylindrical 3-GEM chamber ever built
- CCALT is a LYSO-crystal calorimeter to detect low-angle photons
- QCALT is a sampling calorimeter to instrument the final focusing region

Outline	The experiment ○○○●○	CPT 0000	U-boson 000	TFF 00	Light quarks 00	Conclusions
Detectors						

The installation, July 2013

Outline	The experiment ○○○○●	CPT 0000	U-boson 000	TFF 00	Light quarks	Conclusions
Data analys	ies					
Physic	s					

- Data collected in 2002 and 2004-2006 are being used for precision measurements in various fields.
- Recently-finalized physics analyses include:
 - CPT tests with entangled kaons;
 - The $K^+ \rightarrow \pi^+ \pi^- \pi^0$ decays; Kaon physics;
 - Dark–photon searches;
 - Transition form factors $F_{\phi\eta}$ and $F_{\phi\pi^0}$ presented by I. Sarra at this conference;
 - The η radiative width JHEP 1301(2013)119, $\Gamma(\eta \rightarrow \gamma \gamma) = (520 \pm 20_{st} \pm 13_{syst}) \text{ eV};$
 - Isospin violating decays: $\eta \to \pi^+ \pi^- \pi^0$ to improve on light quark masses;
 - The hadronic cross section to improve on the theoretical calculation of $(g-2)_{\mu}$ PLB 720(2013)336

Outline	The experiment	CPT •000	U-boson 000	TFF 00	Light quarks 00	Conclusions
Testing CP	Г and Lorentz Invariar	ice				
Metho	d					

- $\bullet\,$ Entangled kaon pairs are produced at the $\varphi-$ factory in a pure QM state, 1^{--}
- $\phi \to \pi^+ \pi^- \pi^+ \pi^-$ final state considered for the precision measurement of the interference pattern
- Any deviation from the expected distribution of the decay distance of the two kaons is a signal of effects at the Planck scale, M_P
- The SME is a model-independent framework created to select observables pointing to physics at *M*_P
- In this framework Δa_{μ} parametrization of CPT violation is used

$$\delta_k \sim i \sin \phi_{
m SW} e^{i \phi_{
m SW}} \gamma_{
m K} (\Delta a_0 - ec{m{eta_{
m K}}} \cdot \Delta ec{m{a}}) / \Delta m$$

appearing in the flavor mixture of the mass eigenstates : $|K_{\rm S,L}\rangle \propto (1+\epsilon_{{\cal S},L})|K^0\rangle \pm (1-\epsilon_{{\cal S},L})|\bar{K}^0\rangle$ with $\epsilon_{\rm S,L}=\epsilon_{\rm K}\pm\delta_{\rm K}$

Outline	The experiment 00000	CPT 0●00	U-boson 000	TFF 00	Light quarks 00	Conclusions
Testing CP	Γ and Lorentz Invarian	ce				

Earth rotation: from lab to celestial coordinates

Outline	The experiment 00000	CPT 00●0	U-boson 000	TFF 00	Light quarks 00	Conclusions
Testing CP	Г and Lorentz Invarian	ce				

Resolution

- Sensitivity strongly dependent on the vertex resolution
- Dedicated work to improve on vertex reconstruction near the IP
- Cut on kaon acollinearity improves tails
- Data analyzed in different bins of i) sidereal time (4) and ii) kaon momentum (2)

Outline	The experiment	CPT 000●		U-boson 000	TFF 00	Light quarks	Conclusions		
Testing CPT and Lorentz Invariance									
Result	ts								

The best sensitivity ever reached in the quark sector [PLB 730(2014)89]: $\Delta a_o = (-6.0 \pm 7.7_{stat} \pm 3.1_{syst}) \times 10^{-18} \text{ GeV}$ $\Delta a_x = (0.9 \pm 1.5_{stat} \pm 0.6_{syst}) \times 10^{-18} \text{ GeV}$ $\Delta a_y = (-2.0 \pm 1.5_{stat} \pm 0.5_{syst}) \times 10^{-18} \text{ GeV}$ $\Delta a_z = (3.1 \pm 1.7_{stat} \pm 0.5_{syst}) \times 10^{-18} \text{ GeV}$

11 / 22

Outline	The experiment	CPT 0000		U-boson 000	TFF 00	Light quarks	Conclusions			
Branching fraction measurement										
$K^+ \rightarrow \pi^+ \pi^+ \pi^-$: Data analysis										

- The absolute BR(K⁺ → π⁺π⁺π⁻) is the last of the precision measurement in the kaon sector, the other dominant decays and the lifetime being obtained at sub-percent precision level
- $\bullet\,$ It is based on $\sim\,174$ pb^{-1}
- The decays are tagged reconstructing the two-body decays of K⁻
- Two pions are required to be reconstructed on the signal side
- The missing mass distribution from kaon (obtained from tagging side) and two pions, is used for event counting

Outline	The experiment	CPT 0000	$\begin{array}{c} K^+ \to \pi^+ \pi^+ \pi^- \\ \circ \bullet \circ \end{array}$	U-boson 000	TFF 00	Light quarks	Conclusions
Branching	fraction measurement						
Result	s						

- From tagged samples of $\sim 12 \text{ M } K^- \rightarrow \mu^- \nu$ and $\sim 5 \text{ M } K^- \rightarrow \pi^- \pi^0$ we obtain 48,032 and 20,063 $K^+ \rightarrow \pi^+ \pi^- \pi^+$
- Systematics relating to tagging, efficiency, analysis cuts have been carefully evaluated and are at 0.5% level

Branching fr	action measurement							
Outline	The experiment	CPT 0000	$\begin{array}{c} K^+ ightarrow \pi^+ \ \circ \circ \bullet \end{array}$	$+\pi^{+}\pi^{-}$	U-boson 000	TFF 00	Light quarks	Conclusions

Constrained fit of K^{\pm} BR's and lifetime

- KLOE provided consistent precision measurements of the K[±] lifetime and the six largest branching fractions
- The fit with the unitary constraint on the sum of the BR's, taking into account of the BR dependence on the lifetime and the covariance matrix gives $\chi^2/\text{ndf} = 0.24/1$ (P=0.68)

Parameter	Value						
${\rm BR}(K_{\mu 2}^+)$	0.6372(11)						
$\mathrm{BR}(K_{\pi 2}^+)$	0.2070(9)	0.55					
$\mathrm{BR}(\pi^+\pi^-\pi^+)$	0.0558(4)	-0.23	-0.05				
${\rm BR}(K_{e3}^{\pm})$	0.0498(5)	0.42	-0.15	0.06			
${\rm BR}(K_{\mu3}^{\pm})$	0.0324(4)	-0.39	0.14	-0.05	-0.58		
${\rm BR}(\pi^\pm\pi^0\pi^0)$	0.01764(25)	-0.13	0.05	-0.02	0.04	-0.04	
τ_K^{\pm} (ns)	12.344(29)	0.20	0.19	-0.14	0.05	-0.04	0.02

Outline	The experiment 00000	CPT 0000		U–boson ●○○	TFF 00	Light quarks 00	Conclusions	
Dark forces								
Dark forces								

- New gauge symmetries advocated for explaining dark matter
- Light vector bosons, with M_U in the GeV range are not completely ruled out if the dark sector is weakly coupled to the SM
- The KLOE program in this field includes several analyses
- Search for the U–boson resonance in the ηe^+e^- final state
- Search for the U–boson resonance in the $\mu^+\mu^-\gamma$ final state
- Search for the U–boson resonance in the $e^+e^-\gamma$ final state
- Search for associated U-h' production in the μ⁺μ⁻ + missing energy final state (invisible h' expected for M'_h < M_U)
- The U-boson portal should also be different from the SM photon (vector portal)
- Further analyses are feasible to search for U-bosons in case of fermion (quark) portal looking at $\eta \pi^0 \gamma$ and $\eta \gamma \rightarrow (\pi^0 \gamma \gamma) \gamma$ final states

Outline	The experiment 00000	CPT 0000		U–boson ○●○	TFF 00	Light quarks 00	Conclusions			
Results										
The e	The exclusion plot									

From the analysis of $\phi \to \eta e^+ e^-$ and $e^+ e^- \to \mu^+ \mu^- \gamma$ No evidence for the signal \to we obtain an excluded region at 90% C.L. of couplings vs the U–boson mass

Outline	The experiment 00000	CPT 0000	U–boson ○O●	TFF 00	Light quarks 00	Conclusions
Results						

Limits on $e^+e^- \rightarrow Uh' \rightarrow \mu^+\mu^- +$ missing energy

From the analysis of final states with 2 μ + missing energy On 1.65 fb⁻¹ of on-peak data and ~200 pb⁻¹ at 1 GeV (off-peak) no evidence for $e^+e^- \rightarrow Uh' \rightarrow \mu^+\mu^-$ + invisible h'

Transition form factors									
Motivations									
Outline	The experiment	CPT 0000		U-boson 000	TFF ●0	Light quarks 00	Conclusions		

- Meson to photon couplings (TFF) are fundamental observables in hadron physics
- They are provided by radiative (and Dalitz-pair) meson decays, $V \rightarrow P\gamma^{(*)}$, e.g. $\phi \rightarrow \eta e^+ e^ \frac{d}{dq^2} \Gamma(\phi \rightarrow \eta e^+ e^-) = \frac{\alpha}{3\pi} \Gamma(\phi \rightarrow \eta \gamma) \frac{\left|F_{\phi\eta}(q^2)\right|^2}{q^2} \sqrt{1 - \frac{4m^2}{q^2}} \left(1 + \frac{2m^2}{q^2}\right) \left[\left(1 + \frac{q^2}{m_{\phi}^2 - m_{\eta}^2}\right)^2 - \frac{4m_{\phi}^2 q^2}{\left(m_{\phi}^2 - m_{\eta}^2\right)^2}\right]^{3/2}$
- \bullet and by meson production in $\gamma{-}\gamma$ processes
- KLOE measured $F_{\phi\eta}, F_{\phi\pi^0}$
- With the new run and the γ - γ tagger system we can measure TFF $\gamma\gamma^{(*)} \rightarrow \pi^0$ at low q² with 5-6% per-bin precision and $\Gamma(\pi^0 \rightarrow \gamma\gamma)$ at 1% pecision level (5 fb⁻¹ of integrated luminosity)

From I. Sarra talk

	SND/CMD-2 (2001)	KLOE
b _{φη} [GeV ⁻²]	3.8 ± 1.8/	$1.17 \pm 0.10^{+0.07}$ -0.11
BR (x10 ⁴)	1.19 ± 0.31 / 1.14 ± 0.16	$1.075 \pm 0.038 \pm 0.007^{+0.006}_{}$

Outline	The experiment 00000	CPT 0000	U-boson 000	TFF 00	Light quarks ●○	Conclusions
Lattice QCI	D and ChPT					

Light quark masses from $\eta \rightarrow 3\pi$

- Isospin violating decays are sensistive to quark mass differences
- $\eta \rightarrow 3\pi$ provides the experimental input to ChPT
- Branching fraction proportional to Q^{-4} ; $Q^2 = \frac{m_s^2 m_{ud}^2}{m_d^2 m_u^2}$

- Dispersion relations have been applied to improve on the one-loop results in ChPT
- Theoretical and experimental work in progress to derive more powerful constraints on the light quark masses

Outline	The experiment 00000	CPT 0000	U-boson 000	TFF 00	Light quarks ○●	Conclusions
Data analys	sis					
	⊥ _ ∩	B				

data

The $\eta ightarrow \pi^+\pi^-\pi^0$ Dalitz plot

- The analysis provides the coefficients of a polynomial expansion around the centre of the Dalitz plot, $\rho(X, Y) \propto 1 + aY + bY^2 + dX^2 + fY^3$
- On respect previous KLOE results, JHEP0805(2008)006, the statistical improvement is of 4.48 10⁶ events vs 1.34 10⁶

The dominant systematic effect relating to pre-selection efficiency in old

data overcome by the minimum-bias sample collected in 2004-2005

	а	b	d	f
JHEP0805,006	-1.090(5)(*8 ₋₁₉)	0.124(6)(10)	0.057(6)(⁺⁷ - ₁₆)	0.140(20)
preliminary,2013	-1.104(3)	0.144(3)	0.073(3)	0.155(6)

Outline	The experiment	CPT 0000		U-boson 000	TFF 00	Light quarks 00	Conclusions
Concl	usions and C	Dutloo	k				

- The KLOE experiment has recently obtained several results on kaon and hadron physics
- The innermost part of the detector has been upgraded to improve vertex resolution near the IP, to increase the acceptance at low polar angle and to instrument the DA Φ NE final focusing region
- A tagging system for $\gamma {-}\gamma$ physics is installed
- $\bullet~\mathsf{DA}\Phi\mathsf{NE}$ commissioning is in progress
- $\bullet\,$ The goal is to collect \sim 5 fb^{-1} in 2-3 years

