Overview of ALICE results

Biased selection: new & most interesting

Mateusz Płoskoń

ALICE Collaboration

Hot QCD in laboratory => Heavy-ion collisions at the LHC

- QCD (lattice) predicts a phase transition from hadronic matter to a deconfined phase at high temperatures
- QGP at μ~0 similar to early Universe (~few first μs)
- First signals of QGP from SPS and RHIC
- LHC: detailed studies of QGP exploiting wealth and abundance of [hard] probes (heavy-quarks, jets, quarkonia...)

QCD phase diagram

LHC – a new era of high-precision measurements

Systems:

- Proton-proton
- p-Pb
- Pb-Pb
- Outline of this talk:
 - Selected subjects from soft and hard probes
 - Focus on p-Pb and signatures of collective effects
 - Summary

Outline

Properties & Tools

- Global event / system properties:
 - Inclusive spectra; Identified particles; mean p_T;
 "Blast-wave" fits (T, collective velocity)
- Collective effects
 - Correlations, flow coefficients, v₂, v₃
 (propagation / energy dissipation)
- Heavy-flavour energy loss and thermalization
 - Production vs. multiplicity; suppression and v_2
- Quarkonia QGP vs. Cold Nuclear Matter
 - Production vs. multiplicity; suppression in Pb-Pb;
 v₂; suppression/enhancement in pA
- Jets
 - R_{AA} inclusive production in pp and AA; jet structure; test of N_{binary} scaling in min. bias pPb

GLOBAL EVENT PROPERTIES

Global event properties: mean p_T vs. multiplicity

arXiv:1307.1094

Proton-proton and pPb follow the same trend up to Nch~15; however: this is 90% of pp x-section and 50% of pPb x-section (different biases)

pp and pPb – much stronger increase than in PbPb

Global event properties: mean p_{T} vs. multiplicity

- Proton-proton: PYTHIA strong increase with Nch attributed to Color Reconnections between hadronizing strings - a collective final state effect
- pPb:
 - Glauber MC (incoherent p-N's) using measured <pT> in pp does not work
 - Coherent effects via strings from different p-N?
 - **EPOS** includes collective effects.
- Pb-Pb: DPMJet gets trend right. EPOS has different shape for very peripheral collisions.

IDENTIFIED PARTICLE PRODUCTION

ALICE: Particle identification

π K K^{*} K⁰ p φ Λ Ξ Ω d ³He ³H

ALI-PREL-74045

pp: no significant energy dependence

π K K^{*} K⁰ p φ Λ Ξ Ω d ³He ³H

ALI-PREL-74423

Poster on hadronic resonances by Enrico Fragiacomo

Strangeness enhancement Deuteron enhancement

K* Suppression p?

Thermal fits in Pb-Pb

- Equilibrium models yields T = 156-157 MeV
 - But with χ^2 /ndf of about 2

ALI-PREL-74463THERMUS: CPC 180 (2009) 84 | GSI: PLB 673 (2009) 142 | SHARE: arXiv:1310.5108

- Fits without the proton (and K*)
 - similar *T*, *V* but χ^2 /ndf drops from about 2 to about 1
 - \rightarrow proton anomaly?

Poster on hadronic resonances by Enrico Fragiacomo Physics origin?

- Non equilibrium thermal model
- Baryon annihilation
- Freeze-out temperature hierarchy
- Incomplete hadron spectrum

M. Ploskon, ALICE Overview, Meson 2014

Baryon/meson "anomaly"

- Integrated ratio independent of centrality (L/K⁰_s ~ 0.25)
- Intermediate p_T : Λ/K_s^0 ratio enhanced in central Pb-Pb
 - consistent with radial flow
- High- p_{T} : ratio consistent with vacuum-like fragmentation.

Λ/K⁰ in jets and underlying event

- Λ/K in jets and UE separately consistent with vacuum
- Baryon/meson enhancement is not associated to jets

Collective Flow of QCD Matter

v₂ of identified particles

arXiv: 1405.4632

1.5

Mass ordering for multi-strange baryons

Not shown: v_2 and $v_3(p_T)$ – mass ordering reproduced by hydrodynamic calculations with very small viscosity to entropy ratio: $\eta/s \sim 0.2$

⊖π[±] ★Κ 40-50% ۰¢ ā+a∎ $\star \Lambda + \overline{\Lambda}$ v_2 {SP, $|\Delta \eta| > 0.9$ }/ n_q 0.1 $\star \Omega^{-} + \overline{\Omega}^{+}$ 0.05 2 $p_{\rm T}/n_{\rm q}~({\rm GeV}/c)$ ALI-PUB-82731 ALICE 40-50% Pb-Pb $\sqrt{s_{NN}}$ = 2.76 TeV • p+p 40-50% 1.5 $v_2/n_{\rm q})/(v_2/n_{\rm q})_{\rm Fit\,p}$

0.5

 $p_{\rm T}/n_{\rm q}~({\rm GeV}/c)$

ALICE 40-50% Pb-Pb $\sqrt{s_{NN}}$ = 2.76 TeV

0.5

Flow and particle mass... Focus on the φ meson arXiv: 1405.4632

- Pb-Pb: Hydrodynamics + hadronic scattering model struggles with v_2
- v_2 at low p_T follows mass ordering
- v_2 at high p_{T} close to p in central and close to π in mid-central

Flow and particle mass... Focus on the φ meson arXiv: 1404.0495

- Pb-Pb: Hydrodynamics + hadronic rescattering model struggles with v₂
- v_2 at low p_T follows mass ordering
- v_2 at high p_{τ} close to p in central and close to π in mid-central
- In central collisions p and ϕp_{T} spectra: similar shape up to $\sim 4 \text{ GeV}/c$

(b)

M. P

- As expected from radial flow
- Similar in p-Pb?
- Mass (and not number of ^a constituent quarks) is main driver of v₂ and spectra in central Pb-Pb collisions

"Hard probes" of the medium

Quantifying nuclear effects: R_{AB}

Jet quenching: Jet R_{AA}

• R_{AA}: Strong suppression in most central collisions R~0.4

ALICE

- R_{CP}(50-80%): Similar suppression for jet radii R=0.2 (shown) and R=0.3
- Moderate p_T dependence (plateau at R_{AA} =0.4? similar to hadron R_{AA})

QGP properties...²³ ALICE Charm suppression \Leftrightarrow Jet quenching Studies for colour charge and mass dependence of parton energy loss

ALI-DER-38713

v_2 at high- p_T and R_{AA}

24

Jet quenching and non-zero v₂ are closely related – signature of the physical properties of QGP:

- QGP is opaque to colored probes
- In-medium energy-loss depends on the path length

АА

1.5

0.5

0 0

Challenge for theory – consistent description²⁵ of charm production and its v₂

The simultaneous description of D meson R_{AA} and v₂ is a challenge to theoretical models

- The simultaneous description of heavy flavor decay electrons R_{AA} and v₂ is a challenge to theoretical models
- Not shown: J/ ψ : v₂ > 0 at LHC; R_{AA} LHC > R_{AA} RHIC for most central events

D vs. B mesons R_{AA} vs. centrality

ALICE

 p_{T} ranges: similar kinematics for D and B mesons (measured via non-prompt J/ ψ)

• simulations of decay kinematics used, i.e. in 8-16 GeV/c, in J/ ψp_T range 6.5-30 GeV/c

Indication for larger suppression of charm than beauty M. Ploskon, ALICE Overview, Meson 2014

ALICE

 $R_{
m pPb}$

1.4

1.2

0.8

0.6

0.4

0.2

No nuclear effects at high- p_{T} in pA

- R_{pPb} at high p_T consistent with unity:
 - for charged particles above 10 GeV/c
 - for charged jets up to 100 GeV/c
 - for D^0 , D^+ , D^{*+} mesons (mid rapidity)
 - for $b \rightarrow e$ decays (mid rapidity)

p-Pb, √s_{NN}=5.02 TeV

2.5

1.5

0.5

25

p₊ (GeV/c)

- for c, b \rightarrow μ decays (forward) - for W $\rightarrow \mu$

⊢ Average D⁰. D⁺. D⁺ -0.96<y___<0.04

CGC (Fujii-Watanabe)

10

OQCD NLO (MNR) with CTEQ6M+EPS09 PDF

Vitev: power corr. + k_ broad + CNM Eloss

QUARKONIA

QGP Properties with J/ψ measurements

J/ ψ measured with forward muon arm J/ ψ -> $\mu^+\mu^-$

- Inclusive J/ψ yield lost in central Pb-Pb collisions as compared to equivalent number of pp collisions
 - Quarkonia "melts" within QGP
- LHC: Less suppression than at RHIC and flat centrality dependence
- => in-medium ccbar recombination?
- Important: better knowledge of initial state effects crucial – cold nuclear matter / shadowing / saturation

QGP Properties with J/ψ measurements

arXiv: 1311.0214

J/ ψ measured with forward muon arm J/ ψ -> $\mu^+\mu^-$

- Inclusive J/ψ yield lost in central Pb-Pb collisions as compared to equivalent number of pp collisions
 - Quarkonia "melts" within QGP
- LHC: Less suppression than at RHIC and flat centrality dependence
- => in-medium ccbar recombination?
- Important: better knowledge of initial state effects crucial – cold nuclear matter / shadowing / saturation

p-A: Charmonia

- Q_{pA} is an experimental proxy for R_{pA}
- $J/\psi \rightarrow \mu\mu$: Multiplicity dependent suppression in p-going direction
 - Independent of p_{T}
 - Shadowing region; $\langle x \rangle \sim 10^{-4}$
- No suppression in Pb-going direction
 - Anti-shadowing region; $\langle x \rangle \simeq 10^{-2}$
- $\psi(2S) \rightarrow \mu\mu$: Multiplicity dependent suppression in both directions
- J/ ψ consistent with shadowing
- ψ(2S) additional effects at play
 → Final state interactions?

p-A: Charmonia

- Q_{pA} is an experimental proxy for R_{pA}
- $J/\psi \rightarrow \mu\mu$: Multiplicity dependent suppression in p-going direction
 - Independent of p_{T}
 - Shadowing region; $\langle x \rangle \sim 10^{-4}$
- No suppression in Pb-going direction
 - Anti-shadowing region; $\langle x \rangle \sim 10^{-2}$

R_{p-Pb} x R_{Pb-p}: proxy for cold nuclear matter effects in Pb-Pb Caveat: sqrt(s_{NN}), kinematics

Pb-Pb: stronger suppression at high pT → not an initial state effect

Increase of R_{PbPb} at low p_T suggests contribution from (re)combination

$$J/\psi R_{AA}/R_{pA}$$
 vs. p_{T}

PROTON-LEAD COLLISIONS: COLLECTIVE EFFECTS IN SMALL SYSTEMS?

Identified particle R_{pA}

- "Cronin peak" around 3-4 GeV/c
- Shows dependence on particle type (mass)
 - No peak for π , K
 - Rather pronounced for p, Ξ
 - Weak for $\boldsymbol{\varphi}$

- Blast-wave fits a proxy for hydrodynamic modeling
 - Coherent fit for π , K, p, K⁰, Λ , Ξ , Ω
- At same N_{ch}, <β_T> larger in p-Pb than in Pb-Pb
 - Larger density gradient
- However <β_T> similarly large in pp and p-Pb (at same N_{ch})

Two-particle correlations in p-Pb

The method: from the high-multiplicity yield subtract the jet yield in low-multiplicity events (no ridge)

Twin ridge structure in p-Pb

Further investigations reveal:

- the full modulation is (1) di-jets and (2) the double-ridge structure – nothing more
- Same yield near and away side for all classes of p_T and multiplicity suggest a common underlying process
 fror

Remaining correlation described by finite amplitudes of Fourier terms

Similar observations in Pb-Pb are ascribed to collective effects!

Number of explanations put forward raging from hydrodynamic flow to CGC formalisms

Twin ridge structure in p-Pb with identified particles

39

Shown here: hadron-proton correlation (high-low mult. percentile subtracted)

v₂ coefficient in p-Pb

PLB719 (2013) 29 PLB726 (2013) 164

Mesons (pions and kaons) following the same trend (<2.5 GeV/c) Intersection with protons ~2 GeV/c

M. Ploskon, ALICE Overview, Meson 2014

Comparison of *v*₂ **in Pb-Pb and p-Pb**

High-multiplicity p-Pb collisions

50-60% Pb-Pb

Similar features in p-Pb and Pb-Pb: mass ordering at low- p_T in Pb-Pb ascribed to hydrodynamics

- Not shown: more signatures for collectivity from cumulant analysis

More from ALICE! **Ultra-Peripheral Collisions**

- Coherent J/ ψ photo-production ۲ (PLB718 (2013) 1273, EPJC 73 (2013) 2617)
- First measurement of exclusive ρ^0 •
- First measurement of $\psi(2S)$ ٠ photoproduction in a nuclear target
 - $\psi(2S) \rightarrow |+|^{-1}$
 - $\psi(2S) \rightarrow |^+|^- + \pi^+\pi^-$
- Strong model constraints
 - Strong shadowing disfavored
 - No nuclear effects disfavored

Talk by Christoph Mayer

Run II and Upgrade

- Run II in 2015 2017
 - Updated detectors, readout, trigger
 - LHC energy up to 13 TeV for pp (~5.1 TeV for Pb-Pb)
 - Factor 2-3 to 10 increase in pp, p-Pb and Pb-Pb depending on channel
- ALICE underway for physics in the 2020s
 - New ITS and new TPC readout
 - Increase data-taking rate by factor 100!
 (→ 50kHz Pb-Pb continuous)
 - Heavy flavor, quarkonia, low-mass dileptons, jets ...

Summary

- QGP is opaque to colored probes R_{AA} < 1; signatures of different energy loss for charm and bottom quarks
- Collective flow measured for identified particles in Pb-Pb collisions; features consistent with hydrodynamical nature of QGP (RHIC: even at lowest Vs_{NN})
- Measurements of v₂ and R_{AA} complementary observables – discriminating input to theory
- Minimum bias collisions of p-Pb confirm jet quenching in Pb-Pb is a final state effect
- However, finite v₂ and other signatures of collective effects are found in most violent p-Pb collisions resembling findings from Pb-Pb collisions (!)
- Intriguing suppression patterns for $\psi(2S)$ in p-Pb collisions signature of final state interactions?
- Wealth of results interesting learning curve ahead!

EXTRA SLIDES

Broad view outline

- Heavy-ion collisions at LHC energies
 - Extract physical properties of the hot de-confined QCD matter: T>>T_c at μ_b =0
 - Must have: sensitivity of observables to QGP effects
- pA collisions: cold nuclear matter
 - Understanding of initial state of AA collisions
 - Must test: sensitivity of observables to QGP effects
- proton-proton collisions:
 - Vacuum reference; p-QCD jet cross-section
 - Single NN ≠ single parton-parton interaction
 - Is this the best reference for all observables?

Intermezzo: p-Pb multiplicity

Much broader correlation between different multiplicity (event class) estimators ⇒ expect different sensitivity (bias) to event geometry (Glauber! – Ncoll scaling)

Identified particles in p-Pb

- Yields of pions, charged kaons, protons (TPC+TOF) and KOs, Lambda's (inv. mass)
- Binned in percentiles of multiplicity of VZERO-A detector
- Fitted with blast-wave
- Not shown: studied <pT> (mass ordering present)
- and ratios of particles

 (dependence on dN/dh
 similar in pp, pPb and PbPb)

Identified particles in p-Pb

Lambda/Kaon ratio vs. charged particle multiplicity density $~R=A({
m d}N_{
m ch}/{
m d}\eta)^{
m B}$

- Baryon to meson ratio:
 - similar trend of p/pion ratio in p-Pb as in Pb-Pb per dN_{ch}/dη
 - follows a power-law with a same exponent B(p_T) in two systems (although in p-Pb much smaller than in Pb-Pb case) - similar case for proton/pion ratio

Identified particles in p-Pb

Lambda/Kaon ratio vs. charged particle multiplicity density $~R=A({
m d}N_{
m ch}/{
m d}\eta)^{
m B}$

LI-PREL-54719

- Baryon to meson ratio:
 - similar trend of p/pion ratio in p-Pb as in Pb-Pb per $dN_{ch}/d\eta$
 - follows a power-law with a same exponent B(p_T) in two systems (although in p-Pb much smaller than in Pb-Pb case) - similar case for proton/pion ratio
 - Same trend in proton-proton collisions

Results from p-Pb

p-A: Address cold nuclear effects and calibrate findings related to hot QGP

Valuable reference measurements for high p_{τ} physics

New unexpected effects...

```
v_{NN}=5.02 TeV
```

A p-Pb collision at ALICE side-view

"Calibration" measurement – dN_{ch}/dη

ALICE: arXiv: 1210.3615

Basic measurement allows to discriminate between models

52

Data favors models that incorporate shadowing

Saturation models predict much steeper $\eta\text{-dependence}$ not seen in the data

Cold nuclear matter effects vs. jet quenching in Pb-Pb...

53

Ratio = particle yield in p-Pb per single N-N collision / particle yield in proton-proton

News from R_{AA} of identified particles

54

Flow of heavy-flavor muons

20-40%: v₂ of HFM similar as for HF-electrons in central rapidity M. Ploskon, ALICE Overview, Meson 2014

Heavy-flavor electrons

- Pb-Pb: Heavy-flavor electrons at $|\eta| < 0.7$ and heavy-flavor muons at $2.4 < |\eta| < 5$
 - Similar suppression pattern (centrality dependence) for muons and electrons

·DER-53851

Identified R_{pA} – phi meson

- "Cronin peak" around 3-4 GeV/c
- Shows dependence on particle type
 - No peak for π , K
 - Rather pronounced for p, Ξ
 - Weak for $\boldsymbol{\varphi}$

M. Ploskon, ALICE Overview, Meson 2014

v₂ and VISHNU

Strangeness in p-Pb and Pb-Pb

- Multi-strange baryons
 - p-Pb bridges pp and Pb-Pb smoothly
 - Ξ/π reach thermal model in p-Pb (so does the Λ/π)
 - Ω/π below thermal model
- K* suppression \rightarrow rescattering?

QGP Properties with J/ψ measurements

60

 J/ψ measured with forward muon arm

 $J/\psi - \mu^+\mu^-$

Inclusive J/ψ yield lost in central Pb-Pb collisions as compared to equivalent number of pp collisions

- Quarkonia "melts" within QGP

• LHC: Less suppression than at RHIC and flat centrality dependence

 => in-medium ccbar recombination?

 Important: better knowledge of initial state effects crucial – cold nuclear matter / shadowing / saturation

