Technische Universität München

Electric dipole moment searches

Peter Fierlinger

Motivation

Different systems to search for electric dipole moments (EDMs)

Examples

Electric dipole moment

A non-zero particle EDM violates T (time reversal symmetry)

Purcell and Ramsey, PR78(1950)807

... assuming CPT conservation, also CP is violated

Neutron EDM and the SM

JETP Lett. 5 (1967) 24

Baryon asymmetry

Ingredients' to model baryogenesis: Sakharov criteria

Remarks:

- Beyond-SM physics usually requires large EDMs
- EDMs and Baryogenesis via Leptogenesis?
- Also other options w/o new CP violation possible (Kostelecky, CPT)
- SUSY: small CPV phases, heavy masses, cancellations?
- What do we learn from an EDM?

Different measurements are needed!

Physics behind EDMs

Eint

Schiff moment:

Eex

Non-perfect cancellation of E_{ext} in atomic shell

Paramagnetic atoms ~ electron EDM Relativistic effects $d_a \propto d_e Z^3$ Sandars, 1968

Diamagnetic atoms ~ nuclear EDM Finite size of nucleus violates Schiff's theorem

 $d_a \propto d_{nucl} Z^2$ Schiff 1963: Sandars, 1968

Schiff 1963; Sandars, 1968; Feinberg 1977; ... - 2010

Large enhancements also with deformed nuclei (Ra, Rn, also Fr, Ac, Pa)

 $E_{ext} + E_{int} = 0$

Eext

Atomic effects

Contributions to atomic EDMs:

 $d_A = (k_T C_T + k_S C_S) + \eta_e d_e + \kappa_S S + \text{ h.o. } (MQM)$

- 13 (model-dependent) parameters TeV-scale CP odd physics, nucleon level, nucleus-level
- Only 8 types of experiments

Illustration: T. Chupp et al., to be published

Measuring the neutron EDM

Ramsey's method

Particle beam or trapped particles

Clock-comparison experiment

- Neutrons and ¹⁹⁹Hg stored in the same chamber
- Gravity changes center of mass!

Analysis using the gradient:

Requirement: ¹⁹⁹Hg-EDM must be small: (btw., this also limits other parameters, e.g C_S , C_T ...):

Neutron and proton experiments

nEDM	Method	Goal (x10 ⁻²⁸ ecm)	Comments
Cryo EDM	4He	1. ~ 50; 2. < 5	CANCELED in 2014
ILL Crystal EDM	Solid	< 100	Diffraction in crystal: large E
FRM-II EDM	sD2	< 5	Adjustable UCN velocity
JPARC	sD2	< 10	Special UCN handling
NIST Crystal	Cold beam	< 10	R&D
PNPI/ILL	Turbine	1. ~ 100; 2. < 10	E = 0 reference cell
PSI EDM	sD2	1. ~ 50; 2. < 5	Phase 1 takes data
SNS EDM	4He	< 5	Sophisticated technology
TRIUMF/RNPC	4He	< 10	Phase II at TRIUMF

pEDM

Jülich	B and E field ring	1. R&D 2. 10 ⁻²⁴ ; 3. 10 ⁻²⁹	Stepwise improvements
BNL	Electrostatic ring	10 ⁻²⁹	Completely novel technology

Current generation' improvements

PSI (adapted from B. Lauss, K. Kirch, 2013)

< 2 UCN/cm3 in EDM experiment

ПΠ

PNPI/ILL (adapted from A. Serebrov, 2013):

UCN density 3-4 ucn/cm³ (MAM position)Electric field 10 kV/cmT(cycle) = 65 s $\delta D_{edm} \sim 5 \cdot 10^{-25} \text{ e·cm/day}$...new electric field 20 kV/cm $\delta D_{edm} \sim 2.5 \cdot 10^{-25} \text{ e·cm/day}$

~ 2014: EDM position at PF2 1.10⁻²⁶ e.cm/100 days

,Next generation'

Most critical systematic effect for next generation experiments:

$$\Delta \omega = \frac{\omega_{xy}^2}{2(\omega_0 - \omega_r)}$$

$$_{xy}^{2} = \left(\frac{\partial B_{0z}}{\partial z}\alpha\right)^{2} + \left(\frac{E \times v}{c^{2}}\right)^{2} + 2\frac{\partial B_{0z}}{\partial z}\alpha \cdot \frac{E \times v}{c^{2}}$$

Magnetic field requirements for 10⁻²⁸ ecm – level accuracy:

- ~ fT field drift error,
- ~ < 0.3 nT/m avg. gradients $d_f \sim 4.10^{-27}$ ecm (¹⁹⁹Hg geom. phase) $d_n \sim 1-2.10^{-28}$ ecm (UCN geom. phase)

Statistics: 10³ UCN/cm³ ~ 1 year

Further: P. G. Harris et al., Phys. Rev. A 73, 014101 (2006); G. Pignol, arXiv:1201.0699 (2012); A. Steyerl, PRA (2014)

 ω

The smallest extended size field and gradient on earth

- < 100 pT/m gradient in 0.5 m^3
- At FRM-II EDM setup: fields designed and measured this technology is ready and available!

New sources of UCN

Superthermal solid D₂ or superfluid ⁴He-II

SD₂**:** Molceular excitations used to cool neutrons to zero energy - similar: **ILL, LANL**, **Mainz,** NCSU, PNPI, PSI, TUM ...

⁴He: ILL, KEK, SNS, TRIUMF, ...

Goal of most sources: 10³ UCN /cm³ in experiment

Next generation experiments

E.g. at FRM-II (reactor):

- ,Conventional', double chamber
- UCN velocity tuning
- SQUIDs, Cs, ³He, ¹⁹⁹Hg, ¹²⁹Xe (co)magnetometers
- Measurements at FRM and ILL

E.g. at SNS (spallation):

- Cryogenic, double chamber
- Neutron detection via spin dependent
 ³He absorption and scintillation
- ³He co-magnetometry

In the future... again nEDM with a cold beam?

Pulse structure and strong peak flux:

- Cold-beam-EDM at long-<u>pulse</u>-neutron source (ESS) could be competitive? (Piegsa, PRC)
- Re-accelerated polarized UCN with pulse-structure?
- Large-scale neutron interferometer?

TUM EDM overview

Work at FRM-II:

- Ongoing noble gas EDM measurement
- Magnetometry: geometric phases controlled to 1.10⁻²⁷ ecm

Work at ILL starting end of 2014:

Commissioning and optimization of inner apparatus with UCN (initially 1-10 UCN/cc) $< 10^{-26}$ ecm sensitivity in 2015/16; $< 10^{-27}$ ecm sensitivity in 2017

Future: possible cryogenic inner module

'Inner' part of the experiment UCN optics, B0/1 field, vacuum

zH/∖T1 / 23.5 Hz baseline: 30 m noise frequency / Hz 3He/129Xe EDM measurements in 'outer' part of the experiment

SLOW

DFG SPP 1491

distance cell surface SQUID ~ 80 mn

k Baby1 Dewar BMSR

baseline: 30 mm 460 pT/Phi0

cell: 30 mm diamete

Baby1 Dewar TU

Z-gradiometer

NEUTRONS

Xe at 2.5 µT

Xe at 2.0 ul

29.44 Hz

EDN

He at 2.5 µ

50

100

He at 2.0 uT

64 92 Hz

Next generation nucleon EDMs

Proton, deuteron, ... EDM

- Charged particle EDM searches require the development of a new class of high-precision storage rings
- Projected sensitivity ~ 10^{-29} ecm: ... tests θ to < 10^{-13} !
- Currently 2 approaches:
 - JEDI collab.: starting with COSY ring, development in stages
 E, B fields
 - BNL: completely electrostatic, new design all-electric ring
- Requirements:
 - Electric field gradients 17 MV/m (possible)
 - Spin coherence times > 1000 s (200s demonstrated at Jülich)
 - Continuous polarimetry < 1 ppm error (demonstrated at Jülich)
 - Spin tracking simulations of 10⁹ particles over 1000 s

Figures: H. Stroeher

Proton EDM in ,magic' ring

- Frozen horizontal spin precession: p II s
 EDM turns s out of plane
- $\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s}$ $\vec{\Omega} = \frac{e\hbar}{mc} [G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1}\right)\vec{v} \times \vec{E} + \frac{1}{2}\eta(\vec{E} + \vec{v} \times \vec{B})]$ B $\vec{d} = \eta \frac{e\hbar}{2mc} \vec{S}, \quad \vec{\mu} = 2(G+1) \frac{e\hbar}{2m} \vec{S}, \quad G = \frac{g-2}{2}$ polarimeters 40 melectric sector bend Magic ring: B - Purely electric ring only for G > 0Wideroe linac solenoid or cyclotron - E and B ring for other isotopes excitation magnetometers $G = \frac{g-2}{2}$ p/GeV/c E_R /MV/m B_V/T Electrostatic ring proposal at BNL 1.79 0.701 10 proton 0 -0.14 1.0 deuteron -4 0.16 injector ³He -4.18 1.285 17 -0.05 C

Octupole deformations: ²²⁵Ra

Lepton EDM measurements

Best limits:

Mainly paramagnetic systems and polar molecules

- Cs, Tl, YbF: $d_e < 1.05 \cdot 10^{-27}$ ecm (E. Hinds et al.)
- Soon: ThO currently taking data
- Molecules, molecular ions, solids: PbO, PbF, HBr, BaF, HgF, GGG, $Gd_2Ga_5O_{12}$ etc.
- $d_{GGG} \sim < 10^{-24} \text{ ecm}$
- $d_{\mu} < 1.8 . 10^{-19} (90\%)$ ecm from g-2
- d_{τ}^{μ} < 1.7 . 10⁻¹⁷ (90%) ecm from $Z\tau\bar{\tau}_{-100x10^{9}}$

Magnetic State shielding Detection preparation aser aser 22 cm

Figures: thesis Y. Gurevich

ThO molecules:

100 GV/cm internal electric field due to level structure, polarizable with very small lab-field

Small magnetic moment, therefore less sensitive to B-field quality

 \mathcal{E}_{lab}

internal

 Ω -doublet: internal co-magnetometer

Th⁺

- High Z: enhancement
- Well understood system
 - High statistics: strong cold beam

Status: 10⁻²⁸ ecm //day, limit $d_e < 8.7.10^{-29}$ ecm

The ACME experiment

New EDM experiments are highly sensitive probes for new physics

Several experiments must be performed to understand the underlying physics.

Experimental techniques span from table top AMO - solid state - low temperature – accelerators - neutron physics

Next generation precision within next 2 years: nEDM ~ few 10⁻²⁷ ecm atoms ~ < 1.10⁻²⁹ ecm (ThO, ¹⁹⁹Hg, ¹²⁹Xe) 6 years: nEDM ~ few 10⁻²⁸ ecm atoms - hard to predict

... Note: my nEDM time estimate stayed constant since 2009