Baryon Spectroscopy: Recent Results and Impact

R. Beck HISKP, University Bonn

MESON 2014, May 28. - June 3., Krakow

- Introduction
- Selected Results from ELSA and MAMI: $\vec{\gamma} \ \vec{p} \rightarrow p \ \pi^{0}$ $\vec{\gamma} \ \vec{p} \rightarrow p \ \eta$
- Impact of the New Polarization Data
- Summary and Outlook

supported by the DFG within the SFB/TR16

Introduction

PDG 2010: Status on nucleon resonances

only 7 N* and 5 Δ^*

- Energy pattern for the dominant states
 - constituent Quark Models
 - dynamical Models
 - Lattice QCD

- Various nucleon models predict many more states
 - weak coupling to πN final state
 - insufficient data base

Introduction

Exhibits broad features expected of $SU(6) \otimes O(3)$ symmetry

Counting of levels consistent with non-rel. quark model, no parity doubling

Experimental program for N*

Common effort at ELSA, JLab and MAMI,

- Precision data for different final states ($p\pi^0$, $n\pi^+$, $p\eta$, $K^+\Lambda$, $p\pi^0\pi^0$)
- Polarization experiments (beam, target and recoil) "complete data base"

Problem with a unique PWA solution

 $\vec{\gamma} + \vec{N} \rightarrow N + \pi$

8 well chosen observables have to be measured to determine the production amplitudes (F_1 , F_2 , F_3 and F_4)

• π - threshold until $\Delta^+(1232)$ - region

additional constraints:

(a) s- and p- wave approximation

(b) Fermi- Watson theorem

 $\begin{array}{ll} \gamma + N \to N + \pi & \text{same I, J in the final state} \\ \pi + N \to N + \pi & \quad \bullet \text{ same scattering phase } \delta_{\text{IJ}} \end{array}$

two observable sufficient for "complete data base"

differential cross section : $d\sigma/d\Omega$

beam asymmetry : Σ

• above $\pi\pi$ - threshold

Fermi- Watson theorem not valid any more More observable needed to get a unique partial wave solution

Partial waves for the $P_{33}(1232)$

Problem with a unique PWA solution

 $\vec{\gamma} + \vec{N} \rightarrow N + \pi$

8 well chosen observables have to be measured to determine the production amplitudes (F_1 , F_2 , F_3 and F_4)

• π - threshold until $\Delta^+(1232)$ - region

additional constraints:

(a) s- and p- wave approximation

(b) Fermi- Watson theorem

 $\begin{array}{ll} \gamma + N \to N + \pi & \text{same I, J in the final state} \\ \pi + N \to N + \pi & \quad \bullet \text{ same scattering phase } \delta_{\text{IJ}} \end{array}$

two observable sufficient for "complete data base"

differential cross section : $d\sigma/d\Omega$

beam asymmetry : Σ

• above $\pi\pi$ - threshold

Fermi- Watson theorem not valid any more More observable needed to get a unique partial wave solution

Observables in Meson Photoproduction

Photon		Target		Recoil nucleon		Target and recoil						
polarization		polarization		polarization			polarizations					
		Х	Y	Z(beam)	Χ'	Y'	Z'	X'	Χ'	Z'	Z'	
								X	Ζ	Х	Ζ	
unpolarized	σ	-	Т	-	-	Ρ	-	T _x	L _x	Tz	Lz	
linear	Σ	н	(-P)) G	O _x	(-T)	0 _z	$(-L_z)$	(T_z)	(L_x)	(-T _x)	
circular	-	F	-	E	C _x	-	C _z	-	-	-	-	

Experiments at ELSA, JLAB, MAMI : polarized photons, polarized targets and 4π detector acceptance

Many new results on polarization observables for different final states are coming out

Several contributions also to this conference

Polarization Experiments

Crystal Barrel Set Up at ELSA

Beam-Target Polarization Observables

photoproduction of pseudoscalar mesons with polarized beam and target :

- all three single polarization observables Σ , P, T and cross section σ
- 4 double polarization observables G , E , F and H

can be measured

photon pol.		targ	axis	
		x	y	z
unpolarized	σ		T	
linear	$-\Sigma$	H	-P	-G
circular		F		-E

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(\theta,\phi) = \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(\theta) \cdot \left[1 - P_{\gamma}^{\mathrm{lin}} \Sigma(\theta) \cos(2\phi) + P_{\gamma}^{\mathrm{circ}} F(\theta) \right] \\ + P_{x} \cdot \left(-P_{\gamma}^{\mathrm{lin}} H(\theta) \sin(2\phi) + P_{\gamma}^{\mathrm{circ}} F(\theta) \right) \\ + P_{y} \cdot \left(+P_{\gamma}^{\mathrm{lin}} P(\theta) \cos(2\phi) - T(\theta) \right) \\ - P_{z} \cdot \left(-P_{\gamma}^{\mathrm{lin}} G(\theta) \sin(2\phi) + P_{\gamma}^{\mathrm{circ}} E(\theta) \right) \right]$$

Problem with a unique PWA solution

Helicity dependent cross section for $p\pi^0$

Helicity Asymmetry E for $p\pi^0$

<u>reaction:</u> $\vec{\gamma} + \vec{p} \rightarrow p + \pi^0$

Angular distributions sensitive to interference between resonances

Helicity Asymmetry E for $p\pi^0$

reaction:
$$\vec{\gamma} + \vec{p} \rightarrow p + \pi^0$$

G-Asymmetry for p\pi^0

linearly polarized beam, longitudinally polarized target:

G-Asymmetry for $p\pi^0$

G-Asymmetry for $p\pi^0$

E₀₊ and E₂₋ Multipoles

Impact of the new polarization data

Which L_{max} is seen in the new data \rightarrow truncated partial wave analysis possible $L_{max} = 0$, S-wave, resonances in S-wave: S₁₁(1535), S₁₁(1650), S₃₁(1620) $L_{max} = 1$, P-wave, resonances in P-wave: P₁₁(1440), P₁₃(1710), P₃₃(1232) $L_{max} = 2$, D-wave, resonances in D-wave: D₁₃(1520), D₁₅(1680), D₃₃(1700)

 $L_{max} = 3$, F-wave, resonances in F-wave: $F_{15}(1680)$, $F_{37}(1950)$

for $L_{max} \leq 1$: only s- and p- waves contribute

$$\hat{\mathbf{G}} = \frac{G \cdot \frac{d\sigma}{d\Omega}}{\sin^2(\theta)} = \mathbf{A}_0 = \text{constant}$$

for $L_{max} \leq 2$: only s-, p- and d- waves contribute

$$\hat{\mathbf{G}} = \frac{G \cdot \frac{d\sigma}{d\Omega}}{\sin^2(\theta)} = \mathbf{A}_0 + \mathbf{A}_1 \cdot \cos(\theta) + \mathbf{A}_2 \cdot \cos^2(\theta)$$

for $L_{max} \leq 3$: only s-, p-, d- and f- waves

$$\hat{G} = \frac{G \cdot \frac{d\sigma}{d\Omega}}{\sin^2(\theta)} = A_0 + A_1 \cdot \cos(\theta) + A_2 \cdot \cos^2(\theta) + A_3 \cdot \cos^3(\theta) + A_4 \cdot \cos^4(\theta)$$

W=1622 MeV

- Full angular coverage is important !
- Precision is important !

Crystal Barrel at ELSA, F. Afzal and Y. Wunderlich

- Significant L = 3 signal seen above
 W = 1550 MeV
- Below $L \le 2$ seems to be sufficient
- No significant L=4 signal until W=1850 MeV

for $L \leq 1$: only s- and p- waves

$$\mathsf{T} = \frac{T \cdot \frac{d\sigma}{d\Omega}}{\sin^{1}(\theta)} = \mathsf{A}_{0} + \mathsf{A}_{1} \cdot \cos(\theta)$$

for $L \leq 2$: only s-, p- and d- waves

$$T = \frac{T \cdot \frac{d\sigma}{d\Omega}}{\sin^{1}(\theta)} = A_{0} + A_{1} \cdot \cos(\theta) + A_{2} \cdot \cos^{2}(\theta) + A_{3} \cdot \cos^{3}(\theta)$$

for $L \leq 3$: only s-, p-, d- and f- waves

$$T = \frac{T \cdot \frac{d\sigma}{d\Omega}}{\sin^{1}(\theta)} = A_{0} + A_{1} \cdot \cos(\theta) + A_{2} \cdot \cos^{2}(\theta) + A_{3} \cdot \cos^{3}(\theta) + A_{4} \cdot \cos^{4}(\theta) + A_{5} \cdot \cos^{5}(\theta)$$

W=1756 MeV

W=1862 MeV

-max Interpretation of T-Asymmetry

- Significant L = 3 signal seen above W = 1600 MeV
- Below $L \leq 2$ seems to be sufficient
- No significant L = 4 signal until W = 2100 MeV

Crystal Barrel at ELSA, J. Hartmann, submitted to PRL (2014)

Preliminary: new BnGa energy dependent multipole solution, impact of our new data in the full data base

_ SAID(CM12)

BnGa, A.Sarantzev et al, preliminary

<u>Preliminary:</u> new BnGa energy dependent multipole solution including the new polarization data G,E,T,P and H

M1+ Multipole

• M_{1+} multipole $P_{33}(1232)$, $P_{33}(1620)$ and $P_{13}(1720)$

SAID(CM12)

BnGa, A.Sarantzev et al, preliminary

Preliminary: new BnGa energy dependent multipole solution including the new polarization data G,E,T,P and H

E0+ Multipole

• E_{0+} multipole $S_{11}(1535)$, $S_{11}(1650)$ and $S_{31}(1620)$

___ SAID(SN11)

_ SAID(CM12)

BnGa, A.Sarantzev et al, preliminary

<u>Preliminary:</u> new BnGa energy dependent multipole solution including the new polarization data G,E,T,P and H

M1- Multipole

• M₁₋ multipole P₁₁(1440), P₁₁(1710), P₃₁(1910)

_ SAID(CM12)

Preliminary: new BnGa energy dependent multipole solution including the new polarization data G,E,T,P and H

BnGa, A.Sarantzev et al,

preliminary

E2+ Multipole

• E₂₊ multipole D₁₅(1675)

- Energy independent fits to { o₀, S, BT } observables determine multipoles independently for each given energy
- Multipoles $E_{L\pm}$, $M_{L\pm}$ as fit parameters
- Truncated PWA up to multipole order L_{max} fixed model parametrizations for higher orders

Different energy ranges:

- π^0 threshold region:
 - Determination of *s*, *p* wave multipoles
 - Dataset: σ_0 , Σ

P₃₃(1232) region:

- Full determination of *s*, *p* wave multipoles
- Dataset: σ₀, Σ, *T*, *F*
- B <u>Up to W ~ 1.9 GeV:</u>
 - Full determination of *s*, *p*, *d*, *f* wave multipoles
 - Dataset: **σ**₀, Σ, *T*, *E*, *F*, *G*

Preliminary results Crystal Ball at MAMI, S. Schumann

fitted up to $L_{max} = 1$

fitted up to $L_{max} = 1$

fitted up to $L_{max} = 3$

Preliminary results Crystal Ball at MAMI, S. Schumann

 E_{0+} and E_{1+} , M_{1-} , M_{1+} multipoles Energy independent fits & MAID

Preliminary results Crystal Ball at MAMI, S. Schumann

Status on Baryon Resonances

- Multi-channel BnGa partial wave analysis, including data from Crystal Barrel/TAPS at ELSA and other labs
 - confirmation of known resonances
 - search for new resonances
- Results from meson- photoproduction do now enter the PDG and determine the properties of baryon resonances

	PDG 2010	BnGa-PWA	PDG 2012	GWU'06
N(1860)5/2+		*	**	
N(1875)3/2-		***	***	
N(1880)1/2+		**	**	
N(1895)1/2-		**	**	
N(1900)3/2+	**	***	***	no evidence
N(2060)5/2-		***	**	
N(2150)3/2-		**	**	
∆ (1940)3/2 [−]	*	*	**	no evidence

Summary and Outlook

- First precise double polarization data are coming out now from ELSA, Jlab, MAMI, ...
 - polarization observables are essential to get unique PWA- solution
 - full angular coverage and precision is important (for high L)
 - different final state are important
- Impact of the new polarization data, for example $\vec{\gamma} \ \vec{p} \rightarrow p \ \pi^0$
 - the new polarization data constrain the possible multipole solutions
 - truncated partial wave analysis are possible
- In the high W-mass region the final states $p \eta$, $p \eta$, $p \eta$, and $K^+ \Lambda$, $K^+ \Sigma^0$ are important
 - the necessary precision in the data is still missing
- New polarization data have to be analyzed by the different PWA groups
 systematic error, model dependence of resonance parameter extraction
- New polarization data will finally determine the nucleon excitation spectrum

