The Qweak Experiment: First Determination of the Weak Charge of the Proton Mark Pitt, Virginia Tech for the Qweak Collaboration

MESON 2014:

13th International Workshop on Meson Production, Properties and Interaction

> KRAKÓW, POLAND 29 May – 3 June 2014

Qweak uses parity-violating elastic electron-proton scattering to measure the proton's neutral weak charge at Jefferson Lab

- Precision Standard Model test
- tests "running of $\sin^2\theta_W$ " from M^2_Z to low Q^2
- sensitive to new TeV scale physics

Outline

- Motivation and formalism
- Experiment: technical challenges and achievements
- First measurement of proton's weak charge results and implications
- Status of analysis towards final precision result

Outline

- Motivation and formalism
- Experiment: technical challenges and achievements
- First measurement of proton's weak charge results and implications
- Status of analysis towards final precision result

Proton's Neutral Weak Charge

The Standard Model prescribes the couplings of the fundamental particles to each other $\rightarrow 0^{\gamma} 0^{Z}$

$$u + 2/3 = 1 - 8/3 \sin^2 \theta_W$$

 $d - 1/3 = -1 + 4/3 \sin^2 \theta_W$

 $\sin^2 \theta_W \rightarrow$ "weak mixing angle"

Electromagnetic force \rightarrow proton's electric charge $Q^{p} = 2\left(+\frac{2}{3}\right) + 1\left(-\frac{2}{3}\right) = +1$

Weak force \rightarrow proton's neutral weak charge - Q_{weak} $Q_{weak}^{p} = 2(1-8/3\sin^{2}\theta_{W}) + 1(-1+4/3\sin^{2}\theta_{W})$ $= 1-4\sin^{2}\theta_{W} \sim 0.07$ \rightarrow Accidental suppression sensitivity to new physics

MESON 2014

The Hunt for New Physics

 Z^0

MESON 2014

Two complementary approaches to searching for "New Physics"

"Energy frontier"

- like LHC Large Hadron Collider
- → Make new particles ("X") directly in high energy collisions

"Precision frontier"

- examples: Qweak at JLab, μ (g-2), EDM, $\beta\beta$ decay, n β decay, etc.

→ Look for indirect effect of new particles ("X") made virtually in low energy processes

Х

p

The Qweak **Experiment: The Essentials**

Elastic scattering of longitudinally polarized electrons on protons $\overrightarrow{e} + p \rightarrow e^- + p$

(elastic) scattered e^{-} at small angle

proportional to the proton's weak charge ("Qweak")

Asymmetry measured with precision of ~2% (5 ppb) \rightarrow sensitive Standard Model test \rightarrow probe for certain types of "New Physics"

Parity-Violating Asymmetry –Accessing the Neutral Weak Sector Qweak experiment :

exploit the interference between EM and weak interactions

Parity-Violating Asymmetry for the Qweak **Experiment**

The Qweak experiment at JLAB determines the proton's weak charge by measuring the parityviolating asymmetry in elastic scattering of longitudinally polarized electrons on proton.

$$A_{\rm PV} = \frac{2M_{\rm NC}}{M_{\rm EM}} = \left[\frac{-G_{\rm F}Q^2}{4\sqrt{2}\pi\alpha}\right] \left[\frac{\varepsilon G_{\rm E}^{\gamma}G_{\rm E}^{\rm Z} + \tau G_{\rm M}^{\gamma}G_{\rm M}^{\rm Z} - (1 - 4\sin^2\theta_{\rm W})\varepsilon'G_{\rm M}^{\gamma}G_{\rm A}^{\rm Z}}{\varepsilon(G_{\rm E}^{\gamma})^2 + \tau(G_{\rm M}^{\gamma})^2}\right]$$

At forward scattering angles and low 4-momentum transfer:

Energy Dependent Electroweak Radiative Corrections

→ For useful Standard Model test all electroweak radiative corrections need to be under good theoretical control

Most significant radiative correction: γ-Z Box Diagram

Standard Model Test – "Running of $\sin^2 \theta_w$ "

Full expression for proton's weak charge with all radiative corrections:

$$Q_W^p = \left[1 + \Delta \rho + \Delta_e\right] \left[\left(1 - 4\sin^2\theta_W(0)\right) + \Delta_{e'} \right] + \Box_{WW} + \Box_{ZZ} + \Box_{\gamma Z}$$

Correct for all calculated electroweak radiative corrections Extract $\sin^2\theta_w$ for comparison with other probes

Sensitivity to New Physics at TeV Scales

Parameterize new physics with a new contact interaction in the Lagrangian:

$$\mathcal{L}_{\rm NP}^{\rm PV} = -\frac{g^2}{4\Lambda^2} \bar{e} \gamma_{\mu} \gamma_5 e \sum_{\alpha} h_V^q \bar{q} \gamma^{\mu} q$$

Arbitrary quark flavor dependence of new physics:

$$h_V^u = \cos \theta_h \qquad h_V^d = \sin \theta_h$$

Qweak constrains new PV physics to beyond 2 TeV Young, Carlini, Thomas & Roche, PRL 99, 122003 (2007)

g=coupling

 Λ =mass scale

Possible New Physics Scenarios:

New Physics Scenarios – A Recent Example

"Dark photon" – possible portal for new force to communicate with SM

- Astrophysical motivation: observed excess in positron data
- Could explain muon g-2 anomaly

"Dark parity violation"

(Davoudiasl, Lee, Marciano, arXiv 1402.3620)

- Introduces a new source of low energy parity violation through mass mixing between Z and Z_d with observable consequences
- Complementary to direct searches for heavy dark photons

Outline

- Motivation and formalism
- Experiment: technical challenges and achievements
- First measurement of proton's weak charge results and implications
- Status of analysis towards final precision result

Parity-Violating Electron Scattering Experiments – A Brief History

Qweak Experimental Apparatus

Qweak Experimental Apparatus

Qweak During Installation

Parity-Violating Electron Scattering Method

How do we take the bulk of our data? Pretty simple actually...

- Integrate the light signal in the Cerenkov detectors, sum them, and record the value every 1 msec
- "Normalize" the integrated signal (S) to the amount of charge (Q) in the beam

$$Y = \frac{S}{Q}$$

• Flip the electron beam helicity and form the asymmetry from four adjacent data samples:

$$A_{PV} = \frac{Y^{+} - Y^{-}}{Y^{+} + Y^{-}}$$

• Repeat 2 billion times! (2200 hours of datataking) to get desired statistical error

Qweak Technical Challenges

 $A_{ep} = \frac{A_{meas} - A_{false}}{P_{harr}} - f_{back} A_{back} \quad (\text{for } f_{back} << 1)$

Statistics on A_{meas}

- Small counting statistics error requires →
 - reliable high polarization, high current polarized source
 - high power cyrogenic LH₂ targets
 - large acceptance high count rate detectors/electronics

while minimizing contributions of random noise from

- target density fluctuations
- electronics noise (in integrating mode)

Systematics:

- Minimize helicity-correlated beam properties (A_{false})
- Capability to isolate elastic scattering from other background processes (dilution factor f_{back} , background asymmetry A_{back})
- High precision electron beam polarimetry (P_{beam})
- Precision Q² determination ($A_{ep} \propto Q^2$)

Liquid Hydrogen Target

- World's highest power cryotarget ~ 3 kW
- Used computational fluid dynamics (CFD)
- Designed to minimize contribution to random noise from target density fluctuations – "boiling"

Achieved! 46 ppm < 236 ppm counting statistics noise

Qweak Main Detector

- Main detector: Large array of eight Cerenkov radiator bars (each 200 x 18 x 1.25 cm³)
- artificial fused silica for UV transmission, polished to 25 Angstroms (rms)
- Spectrosil 2000: rad-hard, non-scintillating, low-luminescence
- Two 5" PMTs per bar, S20 cathodes for high light levels
- Yield 100 pe's/track with 2 cm Pb pre-radiators

Precision Polarimetry

Qweak requires $\Delta P/P \le 1\%$

Strategy: use 2 independent polarimeters

- Use existing <1% Hall C Møller polarimeter:
 - Low beam currents, invasive
 - Known analyzing power provided by polarized "saturated" Fe foil in a 3.5 T field.
- Compton (photon & electron) polarimeter (1%/h)
 - Continuous, non-invasive
 - Known analyzing power provided by circularly-polarized laser

Aluminum Window Background

Large A (asymmetry) & *f* (fraction) make this our largest correction. Determined from explicit measurements using Al dummy targets & empty H₂ cell.

(from published Run 0 result)

$$C_{
m Al} = -64 \pm 10 ~
m ppb$$

 $A_{
m Al} = 1.76 \pm 0.26 ~
m ppm$

$$f_{\rm Al} = 3.23 \pm 0.24 ~\%$$

- Dilution from windows measured with empty target (actual target cell windows).
- Corrected for effect of H₂ using simulation and data driven models of elastic and quasi-elastic scattering.

from scaling.

$$A_{PV}\binom{N}{Z}X) = -\frac{Q^2 G_F}{4\pi\alpha\sqrt{2}} \left[Q_W^p + \left(\frac{N}{Z}\right)Q_W^n\right]$$

False Asymmetry Corrections – Beam Related

Parity-violating electron scattering - the whole accelerator is part of the experiment!

CEBAF Linear Accelerators

Qweak in Hall C

 $A_{corr} = \sum_{i=1}^{5} \left(\frac{\partial A}{\partial x_i} \right) \Delta x_i$ (x, x', y, y', E)

Helicity-correlated beam parameters

(position, size, energy):

- Controlled by careful laser setup at polarized source (kept to < few nm in Hall C)
- Corrected for by measuring parameter differences and sensitivity slopes with 2 techniques: natural and driven beam motion 5/30/14 MESON 2014

Outline

- Motivation and formalism
- Experiment: technical challenges and achievements
- First measurement of proton's weak charge results and implications
- Status of analysis towards final precision result

Brief History of Qweak

Brief timeline of Qweak

- Proposal 2001
- Design/construction 2003 2010
- Data-taking 2010 2012
- Finished in May 2012 when Jlab "6 GeV Era" ended

May 18,2012: JLAB Director Hugh Montgomery "pulls the plug" on the "6 GeV Era"

Brief History of Qweak

Brief timeline of Qweak

- Proposal 2001
- Design/construction 2003 2010
- Data-taking 2010 2012
- Finished in May 2012 when Jlab "6 GeV Era" ended

May 18,2012: JLAB Director Hugh Montgomery "pulls the plug" on the "6 GeV Era"

"and then the rains came" – Great Hall C flood – Aug. 25, 2012

May 2014: Jefferson Lab has begun 12 GeV commissioning; first physics beams in fall 2014

Qweak Data Taking Periods and First Results

Qweak had ~ 1 calendar year of beam split into 3 running periods Each period had its own "blinding factor" to avoid analysis bias:

- Run 0: January February 2011
- Run 1: February May 2011
- Run 2: November 2011 May 2012

Run 0 results (about 1/25 of data set) published in PRL in Oct. 2013

PRL 111, 141803 (2013)

PHYSICAL REVIEW LETTERS

week ending 4 OCTOBER 2013

Ş

First Determination of the Weak Charge of the Proton

D. Androic,¹ D. S. Armstrong,² A. Asaturyan,³ T. Averett,² J. Balewski,⁴ J. Beaufait,⁵ R. S. Beminiwattha,⁶ J. Benesch,⁵ F. Benmokhtar,⁷ J. Birchall,⁸ R. D. Carlini,^{5,2,†} G. D. Cates,⁹ J. C. Cornejo,² S. Covrig,⁵ M. M. Dalton,⁹ C. A. Davis,¹⁰ W. Deconinck,² J. Diefenbach,¹¹ J. F. Dowd,² J. A. Dunne,¹² D. Dutta,¹² W. S. Duvall,¹³ M. Elaasar,¹⁴ W. R. Falk,⁸ J. M. Finn,^{2,*} T. Forest,^{15,16} D. Gaskell,⁵ M. T. W. Gericke,⁸ J. Grames,⁵ V. M. Gray,² K. Grimm,^{16,2} F. Guo,⁴ J. R. Hoskins,² K. Johnston,¹⁶ D. Jones,⁹ M. Jones,⁵ R. Jones,¹⁷ M. Kargiantoulakis,⁹ P. M. King,⁶ E. Korkmaz,¹⁸ S. Kowalski,⁴ J. Leacock,¹³ J. Leckey,^{2,‡} A. R. Lee,¹³ J. H. Lee,^{6,2,§} L. Lee,^{10,8} S. MacEwan,⁸ D. Mack,⁵ J. A. Magee,² R. Mahurin,⁸ J. Mammei,^{13,||} J. W. Martin,¹⁹ M. J. McHugh,²⁰ D. Meekins,⁵ J. Mei,⁵ R. Michaels,⁵ A. Micherdzinska,²⁰ A. Mkrtchyan,³ H. Mkrtchyan,³ N. Morgan,¹³ K. E. Myers,^{20,¶} A. Narayan,¹² L. Z. Ndukum,¹² V. Nelyubin,⁹ Nuruzzaman,^{11,12} W. T. H. van Oers,^{10,8} A. K. Opper,²⁰ S. A. Page,⁸ J. Pan,⁸ K. D. Paschke,⁹ S. K. Phillips,²¹ M. L. Pitt,¹³ M. Poelker,⁵ J. F. Rajotte,⁴ W. D. Ramsay,^{10,8} J. Roche,⁶ B. Sawatzky,⁵ T. Seva,¹ M. H. Shabestari,¹² R. Silwal,⁹ N. Simicevic,¹⁶ G. R. Smith,⁵ P. Solvignon,⁵ D. T. Spayde,²² A. Subedi,¹² R. Subedi,²⁰ R. Suleiman,⁵ V. Tadevosyan,³ W. A. Tobias,⁹ V. Tvaskis,^{19,8} B. Waidyawansa,⁶ P. Wang,⁸ S. P. Wells,¹⁶ S. A. Wood,⁵ S. Yang,² R. D. Young,²³ and S. Zhamkochyan³

Extraction of Qweak from e-p Asymmetry Run 0 Results (1/25th of total dataset) – published in PRL **111**, 141803 (2013) $\langle Q^2 \rangle = 0.0250 \; (\text{GeV} / c)^2$ $A_{ep} = -279 \pm 35(\text{stat}) \pm 31(\text{syst}) \text{ ppb}$ at Data Rotated to the Forward-Angle Limit This Experiment 0 0.05 0.1 0.15 0.2 0.25 0.3 0 HAPPEX 0 Ш 0.4SAMPLE • G0 $A_{ep}/A_0 = Q_w^p + Q^2 B(Q^2, \theta)$ PVA4 HAPPEX -1 G0 × SAMPLE SM (prediction) Qweak Asymmetry [ppm] PVA4 0.3 Q-weak Qweak (4% of data*,* 0.2 3 days@100%) 0.1 -6 -7 0 0.0 0.2 0.3 0.4 0.5 0.6 0.1 -8 Q² [(GeV/c)²] $Q^2 [\text{GeV/c}]^2$

Global fit of world PVES data up to Q² = 0.63 GeV² is done to extract the proton's weak charge $\Gamma - G_F Q^2$

$$A_{ep}/A_0 = Q_W^p + Q^2 B(Q^2, \theta), \qquad A_0 = \left\lfloor \frac{\sigma_F Q}{4\pi\alpha\sqrt{2}} \right\rfloor$$

$$Q_W^p(\text{PVES}) = 0.064 \pm 0.012$$
 $Q_W^p(\text{SM}) = 0.0710 \pm 0.000^{\circ}$

First determination of proton's weak charge in good agreement with Standard Model

Quark Vector Coupling Constants

$$\mathbf{L}_{\text{e-q}}^{\text{PV}} = -\frac{G_F}{\sqrt{2}} \bar{e} \gamma_{\mu} \gamma_5 e \sum_q C_{1q} \bar{q} \gamma^{\mu} q \qquad \mathbf{Q}_W^{p} = -2(2C_{1u} + C_{1d})$$

Improved precision on quark coupling constants

$$C_{1u} = -0.1835 \pm 0.0054$$

$$C_{1d} = 0.3355 \pm 0.0050$$

Combining this result with the most precise atomic parity violation experiment we can also extract, for the first time, the neutron's weak charge:

 Q_W^n (PVES+APV) = -0.975 ± 0.010 Q_W^n (SM) = -0.9890 ± 0.0007

Α

 $C_{1i} \equiv 2g_A^e g_V^i$

Running of Weak Mixing Angle

Using calculated electroweak radiative corrections can extract mixing angle for comparison with other observables:

$$Q_W^p = \left[1 + \Delta \rho + \Delta_e\right] \left[\left(1 - 4\sin^2\theta_W(0)\right) + \Delta_{e'} \right] + \Box_{WW} + \Box_{ZZ} + \Box_{\gamma Z}$$

Outline

- Motivation and formalism
- Experiment: technical challenges and achievements
- First measurement of proton's weak charge results and implications
- Status of analysis towards final precision result

Status of Analysis of Full Qweak Dataset

Data analysis in progress for the full dataset

Example: Status of corrections for helicity-correlated beam parameters

(sensitivity of detector asymmetries to beam position variations) $A_{corr} = \sum_{i=1}^{5} \left(\frac{\partial A}{\partial x_i} \right) \Delta x_i$

- "Regression": Natural jitter of beam parameters
- "Dithering": Occasional "large" driven variation of each beam parameter
- Corrections based on the two methods are in excellent agreement for this subset of our data

Run2 measured asymmetry

(x,x',y,y',E)

Conclusions

First published result from the Qweak experiment

PRL 111,141803 (2013) - based on just 4% of data taken

$$A_{ep} = -279 \pm 35(\text{stat}) \pm 31(\text{syst}) \text{ ppb}$$
 $\langle Q^2 \rangle = 0.0250 (\text{GeV}/c)^2$

First determination of proton and neutron weak charges:

 $Q_W^p(\text{PVES}) = 0.064 \pm 0.012$ $Q_W^n(\text{PVES}+\text{APV}) = -0.975 \pm 0.010$ $Q_W^p(\text{SM}) = 0.0710 \pm 0.0007$ $Q_W^n(\text{SM}) = -0.9890 \pm 0.0007$

In good agreement with Standard Model predictions

Final result using full dataset expected ~ 1 year from now

- Statistical error 5 times smaller, reduced systematics, no show stoppers found in analysis so far
- Additionally, many ancillary results under analysis

The Qweak Collaboration

97 collaborators 23 grad students 10 post docs 23 institutions

Institutions:

- ¹ University of Zagreb
- ² College of William and Mary ³ A. I. Alikhanyan National Science Laboratory ⁴ Massachusetts Institute of Technology ⁵ Thomas Jefferson National Accelerator Facility ⁶ Ohio University ⁷ Christopher Newport University ⁸ University of Manitoba, ⁹ University of Virginia ¹⁰ TRIUMF ¹¹ Hampton University ¹² Mississippi State University 13 Virginia Polytechnic Institute & State Univ ¹⁴ Southern University at New Orleans ¹⁵ Idaho State University ¹⁶ Louisiana Tech University ¹⁷ University of Connecticut ¹⁸ University of Northern British Columbia ¹⁹ University of Winnipeg ²⁰ George Washington University ²¹ University of New Hampshire ²² Hendrix College, Conway ²³ University of Adelaide

D. Androic,¹ D.S. Armstrong,² A. Asaturyan,³ T. Averett,² J. Balewski,⁴ J. Beaufait,⁵ R.S. Beminiwattha,⁶ J. Benesch,⁵ F. Benmokhtar,⁷ J. Birchall,⁸ R.D. Carlini,^{5, 2} G.D. Cates,⁹ J.C. Cornejo,² S. Covrig,⁵ M.M. Dalton,⁹ C.A. Davis,¹⁰ W. Deconinck,² J. Diefenbach,¹¹ J.F. Dowd,² J.A. Dunne,¹² D. Dutta,¹² W.S. Duvall,¹³ M. Elaasar,¹⁴ W.R. Falk,⁸ J.M. Finn,², T. Forest,^{15, 16} D. Gaskell,⁵ M.T.W. Gericke,⁸ J. Grames,⁵ V.M. Gray,² K. Grimm,^{16, 2} F. Guo,⁴ J.R. Hoskins,² K. Johnston,¹⁶ D. Jones,⁹ M. Jones,⁵ R. Jones,¹⁷ M. Kargiantoulakis,⁹ P.M. King,⁶ E. Korkmaz,¹⁸ S. Kowalski,⁴ J. Leacock,¹³ J. Leckey,², A.R. Lee,¹³ J.H. Lee,^{6, 2,} L. Lee,¹⁰ S. MacEwan,⁸ D. Mack,⁵ J.A. Magee,² R. Mahurin,⁸ J. Mammei,^{13,} J.W. Martin,¹⁹ M.J. McHugh,²⁰ D. Meekins,⁵ J. Mei,⁵ R. Michaels,⁵ A. Micherdzinska,²⁰ A. Mkrtchyan,³ H. Mkrtchyan,³ N. Morgan,¹³ K.E. Myers,²⁰ A. Narayan,¹² L.Z. Ndukum,¹² V. Nelyubin,⁹ Nuruzzaman,^{11, 12} W.T.H van Oers,^{10, 8} A.K. Opper,²⁰ S.A. Page,⁸ J. Pan,⁸ K.D. Paschke,⁹ S.K. Phillips,²¹ M.L. Pitt,¹³ M. Poelker,⁵ J.F. Rajotte,⁴ W.D. Ramsay,^{10, 8} J. Roche,⁶ B. Sawatzky,⁵ T. Seva,¹ M.H. Shabestari,¹² R. Silwal,⁹ N. Simicevic,¹⁶ G.R. Smith,⁵ P. Solvignon,⁵ D.T. Spayde,²² A. Subedi,¹² R. Subedi,²⁰ R. Suleiman,⁵ V. Tadevosyan,³ W.A. Tobias,⁹ V. Tvaskis,^{19, 8} B. Waidyawansa,⁶ P. Wang,⁸ S.P. Wells,¹⁶S.A. Wood,⁵ S. Yang,² R.D. Young,²³ and S. Zhamkochyan ³

Backups

Ancillary Measurements

Qweak made several ancillary measurements to determine and constrain background processes and corrections –

many will result in physics publications

- PV asymmetry:
 - elastic ²⁷Al
 - N → ∆ (E = 1.16 GeV, 0.877 GeV)
 - Near W = 2.5 GeV (related to γZ box)
 - Pion photoproduction (E = 3.3 GeV)

- PC Transverse asymmetry:
 - elastic ep
 - elastic ²⁷Al, Carbon
 - $N \rightarrow \Delta$
 - Møller
 - Near W = 2.5 GeV
 - Pion photoproduction (E = 3.3 GeV)