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FIG. 2. (Color online) (a) M(Σ+π−) distribution summed
over the range of W and kaon angle used in this analysis.
The Λ(1405) (hatched red histogram) and Λ(1520) (filled cyan
histogram) are seen. The estimate for the main background
due to the Σ0(1385) is superimposed (filled green area) near
the bottom. Contributions from the K∗0Σ+ (filled blue his-
togram) and Y ∗(1670) background (solid magenta curve) are
also shown but contribute very little. The fit total is shown
as the open blue histogram. (b) M(Σ+π−) versus M(K+π−)
for the range of W and kaon angles used in the analysis. The
vertical band is due to K∗ production, while the horizontal
bands show the Λ(1405) below and the Λ(1520) above.

tribution had the most discriminating power, and the 1
2

−

case consistently had the best χ2 probability. In our nine
independent kinematic bins, the 1

2

+
and 3

2

−
hypotheses

are typically ruled out by 3σ or more from the χ2 prob-
abilities and can be excluded. The three parameters de-
scribing the 3

2

+
hypothesis can conspire to exactly mimic

the behavior of a 1
2

−
state, so definitive exclusion based

on statistical tests is impossible. Fits to the 3
2

+
hypoth-

esis had worse χ2 probabilities in all energy bins, but we
also excluded it by assuming the simpler hypothesis with
fewer parameters is correct.

For the cases of spin-parity 1
2

±
, the two distinct behav-

iors of the transferred polarization allow a simple visual
illustration. Independent fits were performed in separate
bins of cos θΣ+ . An example of the polarization Qz in the
ẑ direction for one bin of W and angle is shown in Fig. 4.
As a function of cos θΣ+ , the polarization clearly does not
change sign between the extremes of cos θΣ+ = ±1 and
cos θΣ = 0, as would be expected from Eq. (2). We can
compute the probability of each hypothesis and while the
1
2

−
hypothesis consistently gives a good χ2 probability,
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FIG. 3. (Color online) Distributions of the projections of
(a) cos θΣ+ and (b) cos θp for 2.65 < W < 2.75 GeV and
0.70 < cos θc.m.

K+ < 0.80. The black points are data, the
blue histograms with points are the initial MC events without
weighting, and the red histograms are the MC events weighted
with the fit results using the 1

2

−
hypothesis. Each of the MC

histograms have been scaled to have the same area as the
corresponding data histograms.
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FIG. 4. (Color online) Polarization Qz of Σ+ versus cos θΣ+

for 2.65 < W < 2.75 GeV and 0.70 < cos θc.m.
K+ < 0.80. The

average is shown as the red solid line. The dotted blue curve
is the expectation for P -wave decay.

the 1
2

+
hypothesis is ruled out in its most favorable bin

by at least 3.6σ and is typically ruled out by more than
5σ. With nine independent W and angle bins, the 1

2

+

hypothesis is overwhelmingly ruled out.

The Σ+ polarizations using all events in each kinematic
bin with the 1

2

−
hypothesis are shown in Table I. Since in

this situation the polarization that is measured through
the Σ+ is equivalent to the polarization of the Λ(1405)
itself, the Qz values in Table I represent measurements
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J.M.M. Hall et al. (Adelaide group)
(2014)

Quasimolecular structure of  K̄N Λ(1405)
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2 M.F.M. Lutz et al.

Thus, it is useful to review also in detail effective coupled-channel field theories
based on the chiral Lagrangian.

The task to construct a systematic effective field theory for the meson-baryon
scattering processes in the resonance region is closely linked to the fundamental ques-
tion as to what is the ’nature’ of baryon resonances. The radical conjecture10), 5), 11), 12)

that meson and baryon resonances not belonging to the large-Nc ground states are
generated by coupled-channel dynamics lead to a series of works13), 14), 15), 17), 16), 18)

demonstrating the crucial importance of coupled-channel dynamics for resonance
physics in QCD. This conjecture was challenged by a phenomenological model,11)

which generated successfully non-strange s- and d-wave resonances by coupled-channel
dynamics describing a large body of pion and photon scattering data. Of course,
the idea to explain resonances in terms of coupled-channel dynamics is an old one
going back to the 60’s.19), 20), 21), 22), 23), 24) For a comprehensive discussion of this
issue we refer to.12) In recent works,13), 14) which will be reviewed here, it was shown
that chiral dynamics as implemented by the χ−BS(3) approach25), 10), 5), 12) provides
a parameter-free leading-order prediction for the existence of a wealth of strange and
non-strange s- and d-wave wave baryon resonances. A quantitative description of
the low-energy pion-, kaon and antikaon scattering data was achieved earlier within
the χ-BS(3) scheme upon incorporating chiral correction terms.5)

§2. Effective field theory of chiral coupled-channel dynamics

Consider for instance the rich world of antikaon-nucleon scattering illustrated in
Fig. 1. The figure clearly illustrates the complexity of the problem. The K̄N state
couples to various inelastic channel like πΣ and πΛ, but also to baryon resonances
below and above its threshold. The goal is to bring order into this world seeking a
description of it based on the symmetries of QCD. For instance, as will be detailed
below, the Λ(1405) and Λ(1520) resonances will be generated by coupled-channel
dynamics, whereas the Σ(1385) should be considered as a ’fundamental’ degree of
freedom. Like the nucleon and hyperon ground states the Σ(1385) enters as an
explicit field in the effective Lagrangian set up to describe the K̄N system.

The starting point to describe the meson-baryon scattering process is the chiral
SU(3) Lagrangian (see e.g.26), 5)). A systematic approximation scheme arises due to a
successful scale separation justifying the chiral power counting rules.27) The effective
field theory of the meson-baryon scattering processes is based on the assumption
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Figure 1: Feynman diagrams for the meson-baryon interactions in chiral perturbation theory.
(a) Weinberg-Tomozawa interaction, (b) s-channel Born term, (c) u-channel Born term, (d)
NLO interaction. The dots represent the O(p) vertices while the square denotes the O(p2)
vertex.

where qi, Mi and Ei are the momentum, the mass and the energy of the baryon in channel i, and χσi is
the two-component Pauli spinor for the baryon in channel i. Applying the s-wave projection (11), we
obtain the WT interaction

V WT
ij (W ) = −Cij

4f2
(2W − Mi − Mj)

√
Mi + Ei

2Mi

√
Mj + Ej

2Mj
. (15)

The Cij coefficients express the sign and the strength of the interaction for this channel. With the
SU(3) isoscalar factors [101, 102], it is given by [103, 104]

Cij =
∑

α

[6 − C2(α)]

(
8 8 α

Iī, Yī Ii, Yi I, Y

)(
8 8 α

Ij̄, Yj̄ Ij, Yj I, Y

)
, (16)

Y = Yī + Yi = Yj̄ + Yj, I = Iī + Ii = Ij̄ + Ij,

where α is the SU(3) representation of the meson-baryon system with C2(α) being its quadratic Casimir,
Ii and Yi are the isospin and hypercharge of the particle in channel i (i stands for the baryon and ī for
the meson). Explicit values of Cij for the S = −1 meson-baryon scattering can be found in Ref. [8]. It
is remarkable that the sign and the strength of the interaction (15) are fully determined by the group
theoretical factor Cij. This is because the low energy constant is absent in the Lagrangian (13), as it
is derived from the covariant derivative. In the language of current algebra, this is the consequence
of the vector current conservation (Weinberg-Tomozawa theorem) [74, 75]. Indeed, at threshold of
the πN → πN amplitude, Eq. (15) gives the scattering length (the relation of the T-matrix with the
nonrelativistic scattering amplitude is summarized in Appendix)

aπN→πN =






MN

4π(MN + mπ)

mπ

f 2
for I = 1/2

− MN

8π(MN + mπ)

mπ

f2
for I = 3/2

,

in accordance with the low energy theorem.
It is also remarkable that the phenomenological vector meson exchange potential [6] leads to the

same channel couplings with Cij when the flavor SU(3) symmetric coupling constants are used. In fact,
with the KSRF relation g2

V = m2
V /2f 2 [105, 106], the vector meson exchange potential reduces to the

contact interaction V ∝ Cij/f2 in the limit mV → ∞.
Another important feature of Eq. (15) is the dependence on the total energy W . This is a consequence

of the derivative coupling nature of the NG boson in the nonlinear realization. The energy dependence
is an important aspect for the discussion of the s-wave resonance state.
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Y = Yī + Yi = Yj̄ + Yj, I = Iī + Ii = Ij̄ + Ij,
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CHIRAL SU(3) EFFECTIVE FIELD THEORY
COUPLED CHANNELS DYNAMICS:

-  NLO hierarchy of driving terms  -

leading order  (Weinberg-Tomozawa) terms
input: physical pion and kaon decay constants

direct and crossed Born terms
input:  axial vector constants
D and F from hyperon beta decays

Now we turn to the baryons which are introduced as matter fields in the nonlinear realization [93, 94].
The octet baryon fields are collected as

B =





1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
6
Λ



 ,

which transforms under g ∈ SU(3)R × SU(3)L as

B
g→ hBh†, B̄

g→ hB̄h†,

with h(g, u) ∈ SU(3)V . For baryons, the mass term M0Tr(B̄B) is chiral invariant even if the quark
masses are absent. The mass term brings the additional scale M0 in the theory, which causes problems
in the counting rule of Lagrangian and eventually in the systematic renormalization program. An
elegant method to avoid this difficulty is the heavy baryon chiral perturbation theory [95], where the
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1

2
{u†(∂µ − irµ)u + u(∂µ − ilµ)u†}.
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g→ hOh†, except for the chiral connection Γµ,

which transforms as
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g→ hΓµh
† + h∂µh

†.

Then the covariant derivatives for the octet baryon fields can be defined as
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The power counting rule for baryon fields is given by
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With these counting rules, we can construct the most general effective Lagrangian for meson-baryon
system as

Leff(B, U) =
∞∑

n=1

[LM
2n(U) + LMB

n (B,U)],

where LMB
n (B, U) consists of bilinears of B field with the chiral order O(pn). In the lowest order O(p),

we have

LMB
1 = Tr

(
B̄(i /D − M0)B +

D

2
(B̄γµγ5{uµ, B}) +

F

2
(B̄γµγ5[uµ, B])

)
, (9)

4In this paper we utilize chiral perturbation theory for the meson-baryon scattering amplitude up to O(p2) where no
loop diagram appears. At O(p3), an appropriate renormalization procedure in the relativistic scheme [99, 100] must be
introduced.
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next-to-leading order (NLO)
input:  several low-energy constants

gA = D + F = 1.26

O(p2)
where D and F are low energy constants related to the axial charge of the nucleon gA = D + F ∼
1.26, and M0 denotes the common mass of the octet baryons. Among many next-to-leading order
Lagrangians [96, 97, 98], the relevant terms to the meson-baryon scattering are

LMB
2 =bDTr

(
B̄{χ+, B}

)
+ bF Tr

(
B̄[χ+, B]

)
+ b0Tr(B̄B)Tr(χ+)

+ d1Tr
(
B̄{uµ, [uµ, B]}

)
+ d2Tr

(
B̄[uµ, [uµ, B]]

)

+ d3Tr(B̄uµ)Tr(uµB) + d4Tr(B̄B)Tr(uµuµ), (10)

where bi and di are the low energy constants. The first three terms are proportional to the χ field and
hence to the quark mass term. Thus, they are responsible for the mass splitting of baryons. Indeed,
Gell-Mann–Okubo mass formula follows from the tree level calculation with isospin symmetric masses
mu = md = m̂ "= ms.

3.3 Low energy meson-baryon interaction

Here we derive the s-wave low energy meson-baryon interaction up to the order O(p2) in momen-
tum space. In three flavor sector, several meson-baryon channels participate in the scattering, which
are labeled by the channel index i. The scattering amplitude from channel i to j can be written as
Vij(W, Ω,σi,σj) where W is the total energy of the meson-baryon system in the center-of-mass sys-
tem, Ω is the solid angle of the scattering, and σi is the spin of the baryon in channel i. Since we
are dealing with the scattering of the spinless NG boson off the spin 1/2 baryon target, the angular
dependence vanishes and the spin-flip amplitude does not contribute after the s-wave projection and
the spin summation. Thus, the s-wave interaction depends only on the total energy W as

Vij(W ) =
1

8π

∑

σ

∫
dΩ Vij(W, Ω, σ,σ). (11)

In chiral perturbation theory up to O(p2), there are four kinds of diagrams as shown in Fig. 1. For the
s-wave amplitude, the most important piece in the leading order terms is the Weinberg-Tomozawa (WT)
contact interaction (a). The covariant derivative term in Eq. (9) generates this term which can also be
derived from chiral low energy theorem. At order O(p), in addition to the WT term, there are s-channel
Born term (b) and u-channel term (c) which stem from the axial coupling terms in Eq. (9). Although
they are in the same chiral order with the WT term (a), the Born terms mainly contribute to the p-wave
interaction and the s-wave component is in the higher order of the nonrelativistic expansion [72]. With
the terms in the next-to-leading order Lagrangian (10), the diagram (d) gives the O(p2) interaction. In
summary, the tree-level meson-baryon amplitude is given by

Vij(W, Ω,σi,σj) = V WT
ij (W, Ω,σi,σj) + V s

ij(W, Ω,σi,σj) + V u
ij (W, Ω,σi,σj) + V NLO

ij (W, Ω,σi,σj), (12)

where V WT
ij , V s

ij, V u
ij and V NLO

ij terms correspond to the diagrams (a), (b), (c) and (d) in Fig. 1,
respectively. In the following we derive the amplitude Vij(W ) by calculating these diagrams.

Let us first consider the WT interaction (a). By expanding the covariant derivative term in Eq. (9)
in powers of meson field Φ, we obtain the meson-baryon four-point vertex

LWT =
1

4f 2
Tr

(
B̄iγµ[Φ∂µΦ − (∂µΦ)Φ, B]

)
. (13)

The tree-level amplitude by this term is given by

V WT
ij (W, Ω,σi,σj) = − Cij

4f 2

√
Mi + Ei

2Mi

√
Mj + Ej

2Mj

× (χσi)T

[
2W − Mi − Mj + (2W + Mi + Mj)

qi · qj + i(qi × qj) · σ
(Mi + Ei)(Mj + Ej)

]
χσj , (14)
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K−p          SCATTERING AMPLITUDE  from 
CHIRAL SU(3) COUPLED CHANNELS DYNAMICS

Complex scattering length (including Coulomb corrections)

f(K−p) =
1

2

[

fK̄N(I = 0) + fK̄N(I = 1)
]

Ima(K−p) = 0.81 ± 0.15 fmRe a(K−p) = −0.65 ± 0.10 fm

Λ(1405)

Λ(1405)

: K̄N (I = 0) quasibound state embedded in the πΣ continuum

Y. Ikeda,  T. Hyodo,  W.  W. 
PLB 706 (2011) 63 
NPA881 (2012) 98



SIDDHARTA

CONSTRAINTS  from  SIDDHARTA

Kaonic hydrogen 
precision data 

  M. Bazzi et al.  (SIDDHARTA)   
  Phys. Lett. B 704 (2011) 113

Strong interaction 
1s energy shift and width

∆E = 283 ± 36 (stat)±6 (syst) eV

Γ = 541 ± 89 (stat)±22 (syst) eV
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Pole structure in the complex energy plane
Resonance state ~ pole of the scattering amplitude

∼

Tij(
√

s) ∼ gigj√
s − MR + iΓR/2

D. Jido, J.A. Oller, E. Oset, A. Ramos, U.G. Meissner, Nucl. Phys. A 723, 205 (2003)

Λ(1405) in meson-baryon scattering

T. Hyodo, D. Jido, arXiv:1104.4474

K̄NπΣ

The   TWO  POLES   scenario 

D. Jido et al.    
Nucl. Phys.  A723 (2003) 205

dominantly
πΣdominantly

K̄N

T. Hyodo,  W. W.   
Phys. Rev. C 77 (2008) 03524

T. Hyodo,  D. Jido 
  Prog. Part. Nucl. Phys. 67 (2012) 55

Pole positions from chiral SU(3) coupled-channels calculation 
with SIDDHARTA threshold constraints:

E1 = 1424 ± 15 MeV

Γ1 = 52 ± 10 MeV Γ2 = 162 ± 15 MeV

E2 = 1381 ± 15 MeV Y. Ikeda, T. Hyodo,  W. W. : 
Nucl. Phys.  A 881 (2012) 98

Characteristic feature of Chiral SU(3) Dynamics 
Energy dependent driving interactions 

Note:  phenomenological potential approach is qualitatively different:
          energy-independent interaction,     single                poleΛ(1405)
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Scenarios:
TWO-POLES  ENERGY-DEPENDENT

vs.
SINGLE-POLE ENERGY-INDEPENDENT

Three-body coupled channels (Faddeev) calculations

Shota Ohnishi,  Y. Ikeda,  T. Hyodo,  E. Hiyama,  W. W.  (2014)
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plus potentially important information about K-NN absorption 

CHIRAL SU(3) COUPLED CHANNELS DYNAMICS

Predicted antikaon-neutron amplitudes at and below threshold
Y. Ikeda, T. Hyodo,  W. Weise :      Phys. Lett. B 706 (2011) 63 ,  Nucl. Phys.  A 881 (2012) 98

Needed:   accurate constraints from 
                  antikaon-deuteron threshold measurements

complete information for both isospin I = 0 and channelsI = 1 K̄N

K−n scattering length and amplitude

Tetsuo Hyodo

October 24, 2011

The K−n scattering length is calculated as

aK−n = 0.29 + i0.76 fm (WT)

aK−n = 0.27 + i0.74 fm (WTB)

aK−n = 0.57 + i0.72 fm (NLO)

The scattering amplitude is shown in Fig. .
The jump of the real part of the scattering length in the step WTB → NLO is correlated with

the jump of the K−p scattering length:

aK−p = −0.93 + i0.82 fm (WT)

aK−p = −0.94 + i0.85 fm (WTB)

aK−p = −0.70 + i0.89 fm (NLO)

Note that the results with the WT and WTB models are a bit off the SIDDHARTA result.
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Figure 1: Scattering amplitude in K−n channel.
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ANTIKAON - DEUTERON THRESHOLD PHYSICS

K
−

d SCATTERING LENGTH and KAONIC DEUTERIUM

Three-body calculation using Chiral SU(3) Coupled Channels approach

K
−

N N

K̄NN ↔ πYN

a(K−
d) =

(

1 +
mK

Md

)

−1 ∫

∞

0

dr
[

u
2(r) + w

2(r)
]

A(r)

Table 4: Parameters of the deuteron wave functions [6].

j Cj (fm−1/2) Dj (fm−1/2)
1 0.88472985 0.22623762 × 10−1

2 −0.26408759 −0.50471056
3 −0.44114404 × 10−1 0.56278897
4 −0.14397512 × 102 −0.16079764 × 102

5 0.85591256 × 102 0.11126803 × 103

6 −0.31876761 × 103 −0.44667490 × 103

7 0.70336701 × 103 0.10985907 × 104

8 −0.90049586 × 103 −0.16114995 × 104

9 0.66145441 × 103 (11)
10 −0.25958894 × 103 (12)
11 (10) (13)
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Figure 4: Wave functions of CD-Bonn [6].

Table 5: Estimate of K−d scattering length with Refs. [2, 3] and realistic deuteron wave functions
of CD-Bonn [6].

Input [2, 3] CD-Bonn
Full model AKd [fm] −1.54 + i1.64
No charge exchange AKd [fm] −1.04 + i1.34
Impulse approximation AKd [fm] −0.13 + i1.81
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2
]

Importance of 
charge exchange:  

S.S. Kamalov,  E. Oset,  A. Ramos 
  Nucl. Phys.  A 690 (2001) 494

S. Ohnishi, Y. Ikeda,T. Hyodo,
E. Hiyama,  W. W.       (2014)

Recent result constrained by SIDDHARTA  input: 

(±10%)a(K−

d) = (−1.55 + i 1.66) fm

K−p

K−pn ↔ K̄0nn



Fig. 4. Uncertainty of the boundary of allowed values for AKd. The central value
(solid line) corresponds to the average of ap from scattering data and the SID-
DHARTA value; uncertainty (shaded area) from the combined errors of these two
sources.

4. In summary, we have reanalysed the predictions for the kaon-deuteron
scattering length in view of the new kaonic hydrogen experiment from SID-
DHARTA. Based on consistent solutions for input values of the K−p scatter-
ing length, we have explored the allowed ranges for the isoscalar and isovector
kaon-nucleon scattering lengths and explored the range of the complex-valued
kaon-deuteron scattering length that is consistent with these values. In partic-
ular, the new SIDDHARTA measurement is shown to resolve inconsistencies
for a0, a1, and AKd as they arose from the DEAR data. A precise measure-
ment of the K−d scattering length from kaonic deuterium would therefore
serve as a stringent test of our understanding of the chiral QCD dynamics
and is urgently called for.
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KAONIC DEUTERIUM 
STRONG INTERACTION ENERGY SHIFT & WIDTH

Exp.  Proposals:     SIDDHARTA-2  and  J-PARC

Theory:  using K−

d scattering length based on 3-body Chiral SU(3) dynamics

∆E −
i

2
Γ =

〈Φ|U|Ψ〉
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Complex potential 

3-body amplitude
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distribution
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UPDATE  on  QUASIBOUND  K pp-

Variational calculations    3-Body (Faddeev) calculations    

. . . now consistently using amplitudes from Chiral SU(3) coupled-channels    
    dynamics including  energy dependence  in  subthreshold  extrapolations

K−pp calculated binding energies & widths (in MeV)

chiral, energy dependent non-chiral, static calculations

var. [1] var. [2] Fad. [3] var. [4] Fad. [5] Fad. [6] var. [7]
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2. A. Doté, T. Hyodo, W. Weise, NPA 804 (2008) 197, PRC 79 (2009) 014003
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Robust binding & large widths; chiral models give weak binding.
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618 LEPS Collaboration / Physics Letters B 728 (2014) 616–621

Liquid deuterium (LD2) of 16 cm effective length was used as
the target. 7.6 × 1012 tagged photons were incident on the target
in total. Charged particles produced from the target were detected
with the LEPS spectrometer at forward angles in the laboratory
system. The LEPS spectrometer consists of a start counter (SC),
a silica-aerogel Čerenkov counter (AC), a silicon vertex detector
(SVTX), drift chambers (DCs), a dipole magnet with a field strength
of 0.7 T and a time-of-flight (TOF) scintillator wall. AC has the re-
fractive index 1.03 and was used for e+e− vetoes at the trigger
level. The momentum threshold of AC is 2.0 GeV/c for kaons and
0.57 GeV/c for pions. The momenta of particles were determined
using tracking information, and particle species were identified us-
ing TOF information. The momentum resolution is estimated to be
6 MeV/c at 1 GeV/c by the Monte Carlo simulation. Thus, the mass
resolution of MMd(K+π−) is ∼ 10 MeV/c2 in the region from 2.2
to 2.4 GeV/c2. More details about the experimental setup are given
in [19].

For the present analysis, events with K+ and π− tracks were
selected with mass values required to be within 3σ , where σ
is the mass resolution depending on the momentum. Events for
which π+ was misidentified as K+ were rejected by requiring
that the missing mass of the p(γ ,π+π−)X reaction was above
0.97 GeV/c2, where the π+ mass was used instead of the K+

mass. The misidentified events were distributed mainly in the re-
gion below 1.7 GeV/c2 in the MMd(K+π−) spectrum and were
negligible in the region where a peak structures was searched for.
To reduce the systematic uncertainty arising from the acceptance
correction, the analysis was performed within the following kine-
matical region:

cos θ lab
K+ > 0.95

cos θ lab
π− > 0.95

0.25 GeV/c < plabK+ < 2.0 GeV/c

0.25 GeV/c < plabπ− < 0.6 GeV/c (1)

Here θ lab and plab denotes the scattering angle and momentum
in the laboratory system, respectively. The vertex resolution along
the beam axis was approximately 2 mm, and the events from the
SC or AC were well-separated from the events from the LD2 tar-
get. The vertex points of the K+ and π− tracks were required to
be located at the target. In addition, the distance of closest ap-
proach (DCA) between the two tracks was required to be less than
4 mm. These vertex constraints reduced the contribution of the
hyperon decay events of which vertex points were outside the tar-
get or had large DCA values. The ratio of the signal of the K−pp
bound state to the background arising from the hyperon decay
events was estimated to be improved by a factor of 2 by apply-
ing these vertex constraints. The event loss of the signal of the
K−pp bound state by these constraint was estimated to be 5% by
the Monte Carlo simulation. Finally, for the events in which three
tracks were detected (K+ , π− , and p), the invariant masses of p
and π− (M(pπ−)) were calculated, and the events in the range of
1.05 GeV/c2 < M(pπ−) < 1.12 GeV/c2 were rejected because they
arise from the quasi-free Λ production process. The event loss due
to this cut is small (∼ 4%). There is little possibility to distort the
shape of the spectrum of MMd(K+π−).

3. Results and discussion

Fig. 1 shows the differential cross section spectrum of
MMd(K+π−) (d3σ /d cos θ lab

K+/d cos θ lab
π−/dM) within the kinemat-

ical region given in Eq. (1). The search region (2.22 GeV/c2–2.36
GeV/c2) and the K−pp mass threshold (2.37 GeV/c2) are also in-
dicated in the figure.

Fig. 1. (Color online.) Differential cross section of d(γ , K+π−)X , d3σ /d cos θ lab
K+ /

d cos θ lab
π− /dM . The bin width is 20 MeV/c2. The blue triangle points denote the

results of 2002/2003 dataset, the red square 2006/2007 dataset and the back circle
summed up dataset. The error bars include both statistical and systematic errors.
Inset: The differential cross section in the range from 2.2 to 2.4 GeV/c2. The error
bars and the open boxes indicate statistical and systematic errors, respectively. The
error band denotes the discrepancy between two datasets.

The differential cross section was obtained by applying an ac-
ceptance correction for each event. The acceptance was calculated
with the GEANT-based Monte Carlo simulation as a function of
momentum, cos θ lab and vertex point. The systematic uncertainty
arising from the acceptance correction is estimated to be 5.7% in
the search region. The fluctuation of the target density was as-
sumed to be negligibly small. The systematic uncertainty of photon
flux was estimated to be 3%. The systematic uncertainty arising
from the above-mentioned sources was 6.4% in total in the search
region. There was discrepancy in the obtained results between the
two datasets. The discrepancy is estimated to be 12% (R.M.S.) us-
ing the quasi-free Λ and Σ production, which is shown as a error
band in the inset in Fig. 1. The results obtained from two datasets
were consistent within this error.

As shown in Fig. 1, there are three peaks around 1.9 GeV/c2,
2.1 GeV/c2 and 2.2 GeV/c2 in the MMd(K+π−) spectrum. These
peaks correspond to the γn → K+Σ− followed by the Σ− →
π−n, the γn → K+π−Λ and the γ p/n → K+π−Σ+/0 processes.
The differential cross section of each process was determined to
be ∼ 3 µb, ∼ 7 µb and ∼ 4 µb, respectively, within the kinemat-
ical region given in Eq. (1). If the K−pp bound state exists and
has a large production rate, a peak structure should be observed
as the signal in the range from 2.22 GeV/c2 to 2.36 GeV/c2 in the
MMp(K+π−) spectrum.

A peak structure corresponding to the K−pp bound state pro-
duction was searched for with the Log-likelihood ratio method.
In this method, firstly, the MMd(K+π−) spectrum was fitted un-
der two hypotheses: background processes only, and background
processes and the signal process of the K−pp bound state pro-
duction. Then, the improvement of the Log-likelihood value was
tested. For the fitting, we use the spectrum without the accep-
tance correction (raw spectrum) and the Monte Carlo generated
spectra of the assumed processes as the fitting function. The rea-
sons why we use the raw spectrum are as follows. As shown in
the inset of Fig. 1, the spectrum has considerable systematic un-
certainties coming from the acceptance correction. The acceptance
correction was performed for each track to derive the differen-
tial cross section, and the uncertainty attributed for each event
was accumulated to the final result. On the other hand, in case of
the Monte Carlo generated spectra, we can easily reduce the sys-
tematic uncertainties by increasing the statistics of the generated
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Figure 2: Normalized neutron missing-mass spectrum with the evaluated backgrounds.
The blue histogram represents the K0-tagged spectrum with a scale factor of 8. From
the K0 tagged spectrum shape, the biggest structure above the K−pp threshold comes
from the kaon quasi-elastic reaction on one of the nucleon of 3He (Kaon quasi-free
reaction).

quite sensitive to the K̄N interaction and therefore the spectral shape largely depends
on the interaction. To examine the sub-threshold structure in the obtained spectrum,
we first evaluated backgrounds which are shown in Fig. 2. In the figure, cross-section
of the spectrum was evaluated with integrated luminosity of 540 µb−1, NC acceptance
of 22 msr, neutron detection efficiency of 0.23, and analysis efficiency of 0.68. It should
be note that the systematic error of the neutron detection efficiency is evaluated as ±
17%, which is dominant contribution in the uncertainty for this measurement. Here
we considered the following backgrounds in the region of interest:

• Detector resolution
The detector resolution can be evaluated from the edge-shape of the forward neu-
tron spectrum at the K−pp threshold, by requesting that the K0 is in the final
state. In these events, high energy neutron can only be produced by the simple
charge-exchange reaction, K− 3He → K0nds; the K0

S → π+π− decays can be re-
constructed and identified by the CDS. In fact, the quasi-free spectrum, at around
the K−pp threshold energy, is well reproduced by a GEANT4[8]-based Monte
Carlo simulation. The missing-mass resolution is evaluated to be ∼ 10 MeV/c2

(σ) in the energy region of interest. Because of this excellent neutron energy res-
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Fig. 1. Relevant Feynman diagrams up-to-and-including next-to-leading order. Solid and dashed lines denote octet
baryons and pseudoscalar mesons, respectively. The square symbolizes a contact vertex with two derivatives. From left
to right: LO contact term, one-meson exchange, NLO contact term, planar box, crossed box, left triangle, right triangle,
football diagram.

2. Chiral potential at next-to-leading order

The derivation of chiral baryon–baryon potentials for the strangeness sector at LO using the
Weinberg power counting has been outlined in Refs. [21,44–46]. The NLO contributions for the
NN case are described in detail in Ref. [33], while the extension to baryon–baryon systems with
any combination of octet baryons has been worked out in Ref. [47]. The LO potential consists
of four-baryon contact terms without derivatives and of one-pseudoscalar-meson exchanges. At
NLO contact terms with two derivatives arise, together with loop contributions from (irreducible)
two-pseudoscalar-meson exchanges. The corresponding Feynman diagrams are shown in Fig. 1.

2.1. Contact terms

The spin dependence of the potentials due to leading order contact terms is given by [33]

V
(0)
BB→BB = CS + CT σ 1 · σ 2, (1)

where the parameters CS and CT are low-energy constants (LECs), depending on the considered
baryon–baryon channel, which need to be determined in a fit to data. At next-to-leading order
the spin and momentum dependence of the contact terms reads

V
(2)
BB→BB = C1q2 + C2k2 +

(
C3q2 + C4k2)σ 1 · σ 2 + i

2
C5(σ 1 + σ 2) · (q × k)

+ C6(q · σ 1)(q · σ 2) + C7(k · σ 1)(k · σ 2) + i
2
C8(σ 1 − σ 2) · (q × k), (2)

where Ci (i = 1, . . . ,8) are additional LECs. The transferred and average momenta, q and k,
are defined in terms of the final and initial center-of-mass momenta of the baryons, p′ and p, as
q = p′−p and k = (p′+p)/2. When performing a partial-wave projection, these terms contribute
to the two S-wave (1S0, 3S1) potentials, the four P -wave (1P1, 3P0, 3P1, 3P2) potentials, and
the 3S1–3D1 and 1P1–3P1 transition potentials in the following way [29]:

V
(1S0

)
= 4π(CS − 3CT ) + π(4C1 + C2 − 12C3 − 3C4 − 4C6 − C7)

(
p2 + p′ 2)

= C̃1S0
+ C1S0

(
p2 + p′ 2), (3)

V
(3S1

)
= 4π(CS + CT ) + π

3
(12C1 + 3C2 + 12C3 + 3C4 + 4C6 + C7)

(
p2 + p′ 2)

= C̃3S1
+ C3S1

(
p2 + p′ 2), (4)

V
(1P1

)
= 2π

3
(−4C1 + C2 + 12C3 − 3C4 + 4C6 − C7)pp′ = C1P1

pp′, (5)

V
(3P1

)
= 2π

3
(−4C1 + C2 − 4C3 + C4 + 2C5 − 8C6 + 2C7)pp′ = C3P1

pp′, (6)
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Table 1
SU(3) relations for the various contact potentials in the isospin basis. C27

ξ etc. refers to the corresponding irreducible
SU(3) representation for a particular partial wave ξ . The actual potential still needs to be multiplied by pertinent powers
of the momenta p and p′.

Channel I V (ξ)

ξ = 1S0, 3P0, 3P1, 3P2 ξ = 3S1, 3S1–3D1, 1P1 ξ = 1P1–3P1

S = 0 NN → NN 0 – C10∗
ξ –

NN → NN 1 C27
ξ – –

S = −1 ΛN → ΛN 1
2

1
10 (9C27

ξ + C
8s
ξ ) 1

2 (C
8a
ξ + C10∗

ξ ) −1√
20

C
8s8a
ξ

ΛN → ΣN 1
2

3
10 (−C27

ξ + C
8s
ξ ) 1

2 (−C
8a
ξ + C10∗

ξ ) −3√
20

C
8s8a
ξ

ΣN → ΛN 1√
20

C
8s8a
ξ

ΣN → ΣN 1
2

1
10 (C27

ξ + 9C
8s
ξ ) 1

2 (C
8a
ξ + C10∗

ξ ) 3√
20

C
8s8a
ξ

ΣN → ΣN 3
2 C27

ξ C10
ξ –

singlet representation (C1) is present in the strangeness S = −2 channels with isospin I = 0 [45]
and there are four more LECs that contribute to the S = −2 sector at NLO [50].

2.2. Goldstone boson exchange

The one- and two-pseudoscalar-meson exchange potentials follow from the SU(3)-invariant
meson–baryon interaction Lagrangian

LMB = tr
(
B̄

(
iγ µDµ − M0

)
B

)
− D

2
tr
(
B̄γ µγ5{uµ,B}

)
− F

2
tr
(
B̄γ µγ5[uµ,B]

)
, (14)

with DµB = ∂µB + [Γµ,B], Γµ = 1
2 (u†∂µu + u∂µu†) and uµ = i(u†∂µu − u∂µu†), and where

the trace is taken in flavor space. The constant M0 denotes the baryon mass in the three-flavor
chiral limit. The coupling constants F and D satisfy the relation F + D = gA & 1.26, where gA

is the axial-vector strength measured in neutron β-decay. The pseudoscalar mesons and octet
baryons are collected in traceless 3 × 3 matrices [51]

P =





π0√
2

+ η√
6

π+ K+

π− − π0√
2

+ η√
6

K0

K− K̄0 − 2η√
6



 , B =





Σ0√
2

+ Λ√
6

Σ+ p

Σ− −Σ0√
2

+ Λ√
6

n

−Ξ− Ξ0 − 2Λ√
6



 .

(15)

For the pseudoscalar mesons we use the usual non-linear realization of chiral symmetry with
U(x) = u2(x) = exp(i

√
2P(x)/f0), where f0 is the Goldstone boson decay constant in the chiral

limit. These fields transform under the chiral group SU(3)L × SU(3)R as U → RUL† and B →
KBK† with L ∈ SU(3)L, R ∈ SU(3)R and the SU(3) valued compensator field K = K(L,R,U),
cf. Ref. [52]. After an expansion of the interaction Lagrangian in powers of P one obtains from
the terms proportional to D and F the pseudovector coupling term

L1 = −
√

2
2f0

tr
(
DB̄γ µγ5{∂µP,B} + FB̄γ µγ5[∂µP,B]

)
, (16)
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which leads to a vertex between two baryons and one meson. In the same way, the term involving
the chiral connection Γµ gives

L2 = 1

4f 2
0

tr
(
iB̄γ µ

[
[P, ∂µP ],B

])
, (17)

which describes a (Weinberg–Tomozawa) vertex between two baryons and two mesons.
Writing the pseudovector interaction Lagrangian L1 explicitly in the isospin basis, one gets

L1 = −fNNπ N̄γ µγ5τN · ∂µπ + ifΣΣπ Σ̄γ µγ5 × Σ · ∂µπ

− fΛΣπ

[
Λ̄γ µγ5Σ + Σ̄γ µγ5Λ

]
· ∂µπ − fΞΞπΞ̄γ µγ5τΞ · ∂µπ

− fΛNK

[
N̄γ µγ5Λ∂µK + h.c.

]
− fΞΛK

[
Ξ̄γ µγ5Λ∂µK̄ + h.c.

]

− fΣNK

[
N̄γ µγ5τ∂µK · Σ + h.c.

]
− fΣΞK

[
Ξ̄γ µγ5τ∂µK̄ · Σ + h.c.

]

− fNNη8N̄γ µγ5N∂µη − fΛΛη8Λ̄γ µγ5Λ∂µη

− fΣΣη8Σ̄ · γ µγ5Σ∂µη − fΞΞη8Ξ̄γ µγ5Ξ∂µη. (18)

Here, we have introduced the isospin doublets

N =
(

p

n

)
, Ξ =

(
Ξ0

Ξ−

)
, K =

(
K+

K0

)
, K̄ =

(
K̄0

−K−

)
. (19)

The signs have been chosen according to the conventions of Ref. [48], such that the inner product
of the isovector Σ (or π ) defined in spherical components reads

Σ · Σ =
∑

m

(−1)mΣmΣ−m = Σ+Σ− + Σ0Σ0 + Σ−Σ+. (20)

Since the original interaction Lagrangian in Eq. (16) is SU(3)-invariant, the various coupling
constants are related to each other by [48]

fNNπ = f, fNNη8 = 1√
3
(4α − 1)f, fΛNK = − 1√

3
(1 + 2α)f,

fΞΞπ = −(1 − 2α)f, fΞΞη8 = − 1√
3
(1 + 2α)f, fΞΛK = 1√

3
(4α − 1)f,

fΛΣπ = 2√
3
(1 − α)f, fΣΣη8 = 2√

3
(1 − α)f, fΣNK = (1 − 2α)f,

fΣΣπ = 2αf, fΛΛη8 = − 2√
3
(1 − α)f, fΞΣK = −f. (21)

Evidently, all coupling constants are given in terms of f ≡ gA/2f0 and the ratio α = F/(F +D).
The expression for the one-pseudoscalar-meson exchange potential is similar to the standard

one-pion-exchange potential [33]

V OBE
B1B2→B3B4

= −fB1B3P fB2B4P
(σ 1 · q)(σ 2 · q)

q2 + m2
P

IB1B2→B3B4 . (22)

Here, mP is the mass of the exchanged pseudoscalar meson. In the present calculation we use
the physical masses mπ , mK , mη in Eq. (22). Thus, the explicit SU(3) breaking reflected in the
mass splitting between the pseudoscalar mesons is taken into account. The η meson is identified
with the octet-state η8. The isospin factors IB1B2→B3B4 are given in Table 2.

. . . generate Nambu-Goldstone boson exchange processes

Interaction terms involving baryon and pseudoscalar meson octets . . . 
LO NLO
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Table 1
SU(3) relations for the various contact potentials in the isospin basis. C27

ξ etc. refers to the corresponding irreducible
SU(3) representation for a particular partial wave ξ . The actual potential still needs to be multiplied by pertinent powers
of the momenta p and p′.

Channel I V (ξ)

ξ = 1S0, 3P0, 3P1, 3P2 ξ = 3S1, 3S1–3D1, 1P1 ξ = 1P1–3P1

S = 0 NN → NN 0 – C10∗
ξ –

NN → NN 1 C27
ξ – –

S = −1 ΛN → ΛN 1
2

1
10 (9C27

ξ + C
8s
ξ ) 1

2 (C
8a
ξ + C10∗

ξ ) −1√
20

C
8s8a
ξ

ΛN → ΣN 1
2

3
10 (−C27

ξ + C
8s
ξ ) 1

2 (−C
8a
ξ + C10∗

ξ ) −3√
20

C
8s8a
ξ

ΣN → ΛN 1√
20

C
8s8a
ξ

ΣN → ΣN 1
2

1
10 (C27

ξ + 9C
8s
ξ ) 1

2 (C
8a
ξ + C10∗

ξ ) 3√
20

C
8s8a
ξ

ΣN → ΣN 3
2 C27

ξ C10
ξ –

singlet representation (C1) is present in the strangeness S = −2 channels with isospin I = 0 [45]
and there are four more LECs that contribute to the S = −2 sector at NLO [50].

2.2. Goldstone boson exchange

The one- and two-pseudoscalar-meson exchange potentials follow from the SU(3)-invariant
meson–baryon interaction Lagrangian

LMB = tr
(
B̄

(
iγ µDµ − M0

)
B

)
− D

2
tr
(
B̄γ µγ5{uµ,B}

)
− F

2
tr
(
B̄γ µγ5[uµ,B]

)
, (14)

with DµB = ∂µB + [Γµ,B], Γµ = 1
2 (u†∂µu + u∂µu†) and uµ = i(u†∂µu − u∂µu†), and where

the trace is taken in flavor space. The constant M0 denotes the baryon mass in the three-flavor
chiral limit. The coupling constants F and D satisfy the relation F + D = gA & 1.26, where gA

is the axial-vector strength measured in neutron β-decay. The pseudoscalar mesons and octet
baryons are collected in traceless 3 × 3 matrices [51]

P =





π0√
2

+ η√
6

π+ K+

π− − π0√
2

+ η√
6

K0

K− K̄0 − 2η√
6



 , B =





Σ0√
2

+ Λ√
6

Σ+ p

Σ− −Σ0√
2

+ Λ√
6

n

−Ξ− Ξ0 − 2Λ√
6



 .

(15)

For the pseudoscalar mesons we use the usual non-linear realization of chiral symmetry with
U(x) = u2(x) = exp(i

√
2P(x)/f0), where f0 is the Goldstone boson decay constant in the chiral

limit. These fields transform under the chiral group SU(3)L × SU(3)R as U → RUL† and B →
KBK† with L ∈ SU(3)L, R ∈ SU(3)R and the SU(3) valued compensator field K = K(L,R,U),
cf. Ref. [52]. After an expansion of the interaction Lagrangian in powers of P one obtains from
the terms proportional to D and F the pseudovector coupling term

L1 = −
√

2
2f0

tr
(
DB̄γ µγ5{∂µP,B} + FB̄γ µγ5[∂µP,B]

)
, (16)
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Fig. 1. Relevant Feynman diagrams up-to-and-including next-to-leading order. Solid and dashed lines denote octet
baryons and pseudoscalar mesons, respectively. The square symbolizes a contact vertex with two derivatives. From left
to right: LO contact term, one-meson exchange, NLO contact term, planar box, crossed box, left triangle, right triangle,
football diagram.

2. Chiral potential at next-to-leading order

The derivation of chiral baryon–baryon potentials for the strangeness sector at LO using the
Weinberg power counting has been outlined in Refs. [21,44–46]. The NLO contributions for the
NN case are described in detail in Ref. [33], while the extension to baryon–baryon systems with
any combination of octet baryons has been worked out in Ref. [47]. The LO potential consists
of four-baryon contact terms without derivatives and of one-pseudoscalar-meson exchanges. At
NLO contact terms with two derivatives arise, together with loop contributions from (irreducible)
two-pseudoscalar-meson exchanges. The corresponding Feynman diagrams are shown in Fig. 1.

2.1. Contact terms

The spin dependence of the potentials due to leading order contact terms is given by [33]

V
(0)
BB→BB = CS + CT σ 1 · σ 2, (1)

where the parameters CS and CT are low-energy constants (LECs), depending on the considered
baryon–baryon channel, which need to be determined in a fit to data. At next-to-leading order
the spin and momentum dependence of the contact terms reads

V
(2)
BB→BB = C1q2 + C2k2 +

(
C3q2 + C4k2)σ 1 · σ 2 + i

2
C5(σ 1 + σ 2) · (q × k)

+ C6(q · σ 1)(q · σ 2) + C7(k · σ 1)(k · σ 2) + i
2
C8(σ 1 − σ 2) · (q × k), (2)

where Ci (i = 1, . . . ,8) are additional LECs. The transferred and average momenta, q and k,
are defined in terms of the final and initial center-of-mass momenta of the baryons, p′ and p, as
q = p′−p and k = (p′+p)/2. When performing a partial-wave projection, these terms contribute
to the two S-wave (1S0, 3S1) potentials, the four P -wave (1P1, 3P0, 3P1, 3P2) potentials, and
the 3S1–3D1 and 1P1–3P1 transition potentials in the following way [29]:

V
(1S0

)
= 4π(CS − 3CT ) + π(4C1 + C2 − 12C3 − 3C4 − 4C6 − C7)

(
p2 + p′ 2)

= C̃1S0
+ C1S0

(
p2 + p′ 2), (3)

V
(3S1

)
= 4π(CS + CT ) + π

3
(12C1 + 3C2 + 12C3 + 3C4 + 4C6 + C7)

(
p2 + p′ 2)

= C̃3S1
+ C3S1

(
p2 + p′ 2), (4)

V
(1P1

)
= 2π

3
(−4C1 + C2 + 12C3 − 3C4 + 4C6 − C7)pp′ = C1P1

pp′, (5)

V
(3P1

)
= 2π

3
(−4C1 + C2 − 4C3 + C4 + 2C5 − 8C6 + 2C7)pp′ = C3P1

pp′, (6)
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Fig. 1. Relevant Feynman diagrams up-to-and-including next-to-leading order. Solid and dashed lines denote octet
baryons and pseudoscalar mesons, respectively. The square symbolizes a contact vertex with two derivatives. From left
to right: LO contact term, one-meson exchange, NLO contact term, planar box, crossed box, left triangle, right triangle,
football diagram.

2. Chiral potential at next-to-leading order

The derivation of chiral baryon–baryon potentials for the strangeness sector at LO using the
Weinberg power counting has been outlined in Refs. [21,44–46]. The NLO contributions for the
NN case are described in detail in Ref. [33], while the extension to baryon–baryon systems with
any combination of octet baryons has been worked out in Ref. [47]. The LO potential consists
of four-baryon contact terms without derivatives and of one-pseudoscalar-meson exchanges. At
NLO contact terms with two derivatives arise, together with loop contributions from (irreducible)
two-pseudoscalar-meson exchanges. The corresponding Feynman diagrams are shown in Fig. 1.

2.1. Contact terms

The spin dependence of the potentials due to leading order contact terms is given by [33]

V
(0)
BB→BB = CS + CT σ 1 · σ 2, (1)

where the parameters CS and CT are low-energy constants (LECs), depending on the considered
baryon–baryon channel, which need to be determined in a fit to data. At next-to-leading order
the spin and momentum dependence of the contact terms reads

V
(2)
BB→BB = C1q2 + C2k2 +

(
C3q2 + C4k2)σ 1 · σ 2 + i

2
C5(σ 1 + σ 2) · (q × k)

+ C6(q · σ 1)(q · σ 2) + C7(k · σ 1)(k · σ 2) + i
2
C8(σ 1 − σ 2) · (q × k), (2)

where Ci (i = 1, . . . ,8) are additional LECs. The transferred and average momenta, q and k,
are defined in terms of the final and initial center-of-mass momenta of the baryons, p′ and p, as
q = p′−p and k = (p′+p)/2. When performing a partial-wave projection, these terms contribute
to the two S-wave (1S0, 3S1) potentials, the four P -wave (1P1, 3P0, 3P1, 3P2) potentials, and
the 3S1–3D1 and 1P1–3P1 transition potentials in the following way [29]:

V
(1S0

)
= 4π(CS − 3CT ) + π(4C1 + C2 − 12C3 − 3C4 − 4C6 − C7)

(
p2 + p′ 2)

= C̃1S0
+ C1S0

(
p2 + p′ 2), (3)

V
(3S1

)
= 4π(CS + CT ) + π

3
(12C1 + 3C2 + 12C3 + 3C4 + 4C6 + C7)

(
p2 + p′ 2)

= C̃3S1
+ C3S1

(
p2 + p′ 2), (4)

V
(1P1

)
= 2π

3
(−4C1 + C2 + 12C3 − 3C4 + 4C6 − C7)pp′ = C1P1

pp′, (5)

V
(3P1

)
= 2π

3
(−4C1 + C2 − 4C3 + C4 + 2C5 − 8C6 + 2C7)pp′ = C3P1

pp′, (6)
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Fig. 1. Relevant Feynman diagrams up-to-and-including next-to-leading order. Solid and dashed lines denote octet
baryons and pseudoscalar mesons, respectively. The square symbolizes a contact vertex with two derivatives. From left
to right: LO contact term, one-meson exchange, NLO contact term, planar box, crossed box, left triangle, right triangle,
football diagram.

2. Chiral potential at next-to-leading order

The derivation of chiral baryon–baryon potentials for the strangeness sector at LO using the
Weinberg power counting has been outlined in Refs. [21,44–46]. The NLO contributions for the
NN case are described in detail in Ref. [33], while the extension to baryon–baryon systems with
any combination of octet baryons has been worked out in Ref. [47]. The LO potential consists
of four-baryon contact terms without derivatives and of one-pseudoscalar-meson exchanges. At
NLO contact terms with two derivatives arise, together with loop contributions from (irreducible)
two-pseudoscalar-meson exchanges. The corresponding Feynman diagrams are shown in Fig. 1.

2.1. Contact terms

The spin dependence of the potentials due to leading order contact terms is given by [33]

V
(0)
BB→BB = CS + CT σ 1 · σ 2, (1)

where the parameters CS and CT are low-energy constants (LECs), depending on the considered
baryon–baryon channel, which need to be determined in a fit to data. At next-to-leading order
the spin and momentum dependence of the contact terms reads

V
(2)
BB→BB = C1q2 + C2k2 +

(
C3q2 + C4k2)σ 1 · σ 2 + i

2
C5(σ 1 + σ 2) · (q × k)

+ C6(q · σ 1)(q · σ 2) + C7(k · σ 1)(k · σ 2) + i
2
C8(σ 1 − σ 2) · (q × k), (2)

where Ci (i = 1, . . . ,8) are additional LECs. The transferred and average momenta, q and k,
are defined in terms of the final and initial center-of-mass momenta of the baryons, p′ and p, as
q = p′−p and k = (p′+p)/2. When performing a partial-wave projection, these terms contribute
to the two S-wave (1S0, 3S1) potentials, the four P -wave (1P1, 3P0, 3P1, 3P2) potentials, and
the 3S1–3D1 and 1P1–3P1 transition potentials in the following way [29]:

V
(1S0

)
= 4π(CS − 3CT ) + π(4C1 + C2 − 12C3 − 3C4 − 4C6 − C7)
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= C̃1S0
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Fig. 1. Relevant Feynman diagrams up-to-and-including next-to-leading order. Solid and dashed lines denote octet
baryons and pseudoscalar mesons, respectively. The square symbolizes a contact vertex with two derivatives. From left
to right: LO contact term, one-meson exchange, NLO contact term, planar box, crossed box, left triangle, right triangle,
football diagram.

2. Chiral potential at next-to-leading order

The derivation of chiral baryon–baryon potentials for the strangeness sector at LO using the
Weinberg power counting has been outlined in Refs. [21,44–46]. The NLO contributions for the
NN case are described in detail in Ref. [33], while the extension to baryon–baryon systems with
any combination of octet baryons has been worked out in Ref. [47]. The LO potential consists
of four-baryon contact terms without derivatives and of one-pseudoscalar-meson exchanges. At
NLO contact terms with two derivatives arise, together with loop contributions from (irreducible)
two-pseudoscalar-meson exchanges. The corresponding Feynman diagrams are shown in Fig. 1.

2.1. Contact terms

The spin dependence of the potentials due to leading order contact terms is given by [33]

V
(0)
BB→BB = CS + CT σ 1 · σ 2, (1)

where the parameters CS and CT are low-energy constants (LECs), depending on the considered
baryon–baryon channel, which need to be determined in a fit to data. At next-to-leading order
the spin and momentum dependence of the contact terms reads

V
(2)
BB→BB = C1q2 + C2k2 +

(
C3q2 + C4k2)σ 1 · σ 2 + i

2
C5(σ 1 + σ 2) · (q × k)

+ C6(q · σ 1)(q · σ 2) + C7(k · σ 1)(k · σ 2) + i
2
C8(σ 1 − σ 2) · (q × k), (2)

where Ci (i = 1, . . . ,8) are additional LECs. The transferred and average momenta, q and k,
are defined in terms of the final and initial center-of-mass momenta of the baryons, p′ and p, as
q = p′−p and k = (p′+p)/2. When performing a partial-wave projection, these terms contribute
to the two S-wave (1S0, 3S1) potentials, the four P -wave (1P1, 3P0, 3P1, 3P2) potentials, and
the 3S1–3D1 and 1P1–3P1 transition potentials in the following way [29]:
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note: 
moderate attraction at low momenta
strong repulsion at higher momenta
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Fig. 2. “Total” cross section σ (as defined in Eq. (24)) as a function of plab. The experimental cross sections are taken
from Refs. [54] (filled circles), [55] (open squares), [69] (open circles), and [70] (filled squares) (Λp → Λp), from [56]
(Σ−p → Λn, Σ−p → Σ0n) and from [57] (Σ−p → Σ−p, Σ+p → Σ+p). The red/dark band shows the chiral EFT
results to NLO for variations of the cutoff in the range Λ = 500, . . . ,650 MeV, while the green/light band are results to
LO for Λ = 550, . . . ,700 MeV. The dashed curve is the result of the Jülich ’04 meson-exchange potential [37].

also for Λp the NLO results are now well in line with the data even up to the ΣN threshold.
Furthermore, one can see that the dependence on the cutoff mass is strongly reduced in the NLO
case. We also note that in some cases the LO and the NLO bands do not overlap. This is partly
due to the fact that the description at LO is not as precise as at NLO (cf. the total χ2 values in
Table 5). Also, the error bands are just given by the cutoff variation and thus can be considered
as lower limits.

A quantitative comparison with the experiments is provided in Table 5. There we list the
obtained overall χ2 but also separate values for each data set that was included in the fitting
procedure. Obviously the best results are achieved in the range Λ = 500–650 MeV. Here, in
addition, the χ2 exhibits also a fairly weak cutoff dependence so that one can really speak of
a plateau region. For larger cutoff values the χ2 increases smoothly while it grows dramatically
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Fig. 6. The Λp 1S0 and 1P1 phase shifts δ as a function of plab. The red/dark band shows the chiral EFT results to
NLO for variations of the cutoff in the range Λ = 500, . . . ,650 MeV, while the green/light band shows results to LO for
Λ = 550, . . . ,700 MeV. The dashed curve is the result of the Jülich ’04 meson-exchange potential [37].

Fig. 7. The Λp phase shifts for the coupled 3S1–3D1 partial wave as a function of plab. Same description of curves as
in Fig. 6.

state in the ΣN system. It should be said, however, that the majority of the meson-exchange
potentials [36,38,39] produce an unstable bound state, similar to our NLO interaction. The only
characteristic difference of the chiral EFT interactions to the meson-exchange potentials might
be the mixing parameter ε1 which is fairly large in the former case and close to 45◦ at the ΣN

threshold, see Fig. 7. It is a manifestation of the fact that the pertinent Λp T -matrices (for the
3S1 → 3S1, 3D1 → 3D1, and 3S1 ↔ 3D1 transitions) are all of the same magnitude.

The strong variation of the 3S1–3D1 amplitudes around the ΣN threshold is reflected in
an impressive increase in the Λp cross section at the corresponding energy, as seen in Fig. 2.

LO

NLO

LO

NLO

repulsion

phase shift

 Hyperon - Nucleon Interaction
(contd.)
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direct measurement of

neutron star mass from

increase in travel time

near companion

J1614-2230

most edge-on binary

pulsar known (89.17°)

+ massive white dwarf

companion (0.5 Msun)

heaviest neutron star

with 1.97±0.04 Msun

Nature, Oct. 28, 2010

  New constraints  from  NEUTRON  STARS

M = 2.01 ± 0.04

Many physically motivated extensions to general relativity (GR) predict sig-
nificant deviations in the properties of spacetime surrounding massive neu-
tron stars. We report the measurement of a 2.01±0.04 solar mass (M⊙) pul-
sar in a 2.46-hr orbit with a 0.172±0.003 M⊙ white dwarf. The high pulsar
mass and the compact orbit make this system a sensitive laboratory of a pre-
viously untested strong-field gravity regime. Thus far, the observed orbital
decay agrees with GR, supporting its validity even for the extreme conditions
present in the system. The resulting constraints on deviations support the use
of GR-based templates for ground-based gravitational wave detectors. Addi-
tionally, the system strengthens recent constraints on the properties of dense
matter and provides insight to binary stellar astrophysics and pulsar recycling.

Neutron stars (NSs) with masses above 1.8 M⊙ manifested as radio pulsars are valuable
probes of fundamental physics in extreme conditions unique in the observable Universe and
inaccessible to terrestrial experiments. Their high masses are directly linked to the equation-
of-state (EOS) of matter at supra-nuclear densities (1, 2) and constrain the lower mass limit
for production of astrophysical black holes (BHs). Furthermore, they possess extreme internal
gravitational fields which result in gravitational binding energies substantially higher than those
found in more common, 1.4 M⊙ NSs. Modifications to GR, often motivated by the desire for
a unified model of the four fundamental forces, can generally imprint measurable signatures in
gravitational waves (GWs) radiated by systems containing such objects, even if deviations from
GR vanish in the Solar System and in less massive NSs (3–5).

However, the most massive NSs known today reside in long-period binaries or other systems
unsuitable for GW radiation tests. Identifying a massive NS in a compact, relativistic binary
is thus of key importance for understanding gravity-matter coupling under extreme conditions.
Furthermore, the existence of a massive NS in a relativistic orbit can also be used to test current
knowledge of close binary evolution.

Results
PSR J0348+0432 & optical observations of its companion PSR J0348+0432, a pulsar spin-
ning at 39 ms in a 2.46-hr orbit with a low-mass companion, was detected by a recent sur-
vey (6, 7) conducted with the Robert C. Byrd Green Bank Telescope (GBT). Initial timing ob-
servations of the binary yielded an accurate astrometric position, which allowed us to identify
its optical counterpart in the Sloan Digital Sky Survey (SDSS) archive (8). The colors and flux
of the counterpart are consistent with a low-mass white dwarf (WD) with a helium core at a dis-
tance of d ∼ 2.1 kpc. Its relatively high apparent brightness (g� = 20.71 ± 0.03 mag) allowed us
to resolve its spectrum using the Apache Point Optical Telescope. These observations revealed
deep Hydrogen lines, typical of low-mass WDs, confirming our preliminary identification. The
radial velocities of the WD mirrored that of PSR J0348+0432, also verifying that the two stars
are gravitationally bound.

2

PSR J0348+0432

P.B. Demorest et al. 
Nature 467 (2010) 1081

Shapiro delay measurement

Text

PSR J1614+2230

Many physically motivated extensions to general relativity (GR) predict sig-
nificant deviations in the properties of spacetime surrounding massive neu-
tron stars. We report the measurement of a 2.01±0.04 solar mass (M⊙) pul-
sar in a 2.46-hr orbit with a 0.172±0.003 M⊙ white dwarf. The high pulsar
mass and the compact orbit make this system a sensitive laboratory of a pre-
viously untested strong-field gravity regime. Thus far, the observed orbital
decay agrees with GR, supporting its validity even for the extreme conditions
present in the system. The resulting constraints on deviations support the use
of GR-based templates for ground-based gravitational wave detectors. Addi-
tionally, the system strengthens recent constraints on the properties of dense
matter and provides insight to binary stellar astrophysics and pulsar recycling.

Neutron stars (NSs) with masses above 1.8 M⊙ manifested as radio pulsars are valuable
probes of fundamental physics in extreme conditions unique in the observable Universe and
inaccessible to terrestrial experiments. Their high masses are directly linked to the equation-
of-state (EOS) of matter at supra-nuclear densities (1, 2) and constrain the lower mass limit
for production of astrophysical black holes (BHs). Furthermore, they possess extreme internal
gravitational fields which result in gravitational binding energies substantially higher than those
found in more common, 1.4 M⊙ NSs. Modifications to GR, often motivated by the desire for
a unified model of the four fundamental forces, can generally imprint measurable signatures in
gravitational waves (GWs) radiated by systems containing such objects, even if deviations from
GR vanish in the Solar System and in less massive NSs (3–5).

However, the most massive NSs known today reside in long-period binaries or other systems
unsuitable for GW radiation tests. Identifying a massive NS in a compact, relativistic binary
is thus of key importance for understanding gravity-matter coupling under extreme conditions.
Furthermore, the existence of a massive NS in a relativistic orbit can also be used to test current
knowledge of close binary evolution.

Results
PSR J0348+0432 & optical observations of its companion PSR J0348+0432, a pulsar spin-
ning at 39 ms in a 2.46-hr orbit with a low-mass companion, was detected by a recent sur-
vey (6, 7) conducted with the Robert C. Byrd Green Bank Telescope (GBT). Initial timing ob-
servations of the binary yielded an accurate astrometric position, which allowed us to identify
its optical counterpart in the Sloan Digital Sky Survey (SDSS) archive (8). The colors and flux
of the counterpart are consistent with a low-mass white dwarf (WD) with a helium core at a dis-
tance of d ∼ 2.1 kpc. Its relatively high apparent brightness (g� = 20.71 ± 0.03 mag) allowed us
to resolve its spectrum using the Apache Point Optical Telescope. These observations revealed
deep Hydrogen lines, typical of low-mass WDs, confirming our preliminary identification. The
radial velocities of the WD mirrored that of PSR J0348+0432, also verifying that the two stars
are gravitationally bound.
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Fig. 9.— The upper panels give the probability distributions for the mass versus radius curves implied by
the data, and the solid (dotted) contour lines show the 2-σ (1-σ) contours implied by the data. The lower
panes summarize the 2-σ probability distributions for the 7 objects considered in the analysis. The left
panels show results under the assumption rph = R, and the right panes show results assuming rph ! R. The
dashed line in the upper left is the limit from causality. The dotted curve in the lower right of each panel
represents the mass-shedding limit for neutron stars rotating at 716 Hz.
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Constraints from neutron star observables

“Exotic” equations of state ruled out ?

A. Akmal,  V.R. Pandharipande, D.G. Ravenhall
Phys. Rev. C 58 (1998) 1804

F. Özil, D. Psaltis: Phys. Rev. D80 (2009) 103003
F. Özil, G. Baym, T. Güver: Phys. Rev. D82 (2010)101301
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Equation of State

In-medium Chiral Effective Field Theory up to 3 loops
(reproducing thermodynamics of normal nuclear matter) 

coexistence region:
Gibbs conditions  

n ↔ p + e, µ

3-flavor PNJL (chiral quark) model at high densities (incl. strange quarks)

beta equilibrium 

charge conservation 

quark-nuclear
coexistence occurs
(if at all)
at baryon densities  

ρ > 5 ρ0

realistic
“conventional” EoS
(nucleons & pions)

quark - nuclear
coexistence

see also:
 K. Masuda, T. Hatsuda, T. Takatsuka

PTEP (2013) 7, 073D01
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density
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FIG. 4: Density ratios for different particles for a "soft" nu-
cleonic EoS as a function of the baryon density using the
χEFT600 model.

with the corresponding lepton density ratio xl = ρl/ρL.
The total lepton density ρL is the sum over all three lep-
tons. For nonrelativistic interacting baryons, the chemi-
cal potential for species b reads

µb = Mb +
k2Fb

2Mb
+ Ub(kFb

) . (20)

For a given total baryon density ρB the equations (15)-
(18) govern the composition of matter, i.e. the baryonic
and leptonic concentrations. The corresponding solution
is referred to as β-stable matter.

For the sake of consistency we now have to treat the
nucleonic part of the chemical potential µN in the same
way as the corresponding energy per particle. Since the
chemical potential can be obtained as a derivative of the
energy density ε and is related to the energy per particle
via ε = ρBE/A, we use the definition

µb =
∂ε

∂ρb
, (21)

to have the appropriate replacement in the nucleonic
chemical potential. Finally, we arrive at the expression

µN =
∂εNN

∂ρN
+ UY

N (kFY
), (22)

where we have effectively replaced MN+
k2
FN

2MN
+UN

N (kFN
)

of Eq. (20) with the derivative ∂εNN/∂ρN . In this way
the parameterization Eq. (9) enters in the nucleonic part
of the chemical potential.

Since we are only parameterizing the nucleonic sec-
tor, no such replacement is necessary for the hyperons.
However, since we have neglected the Y Y interaction
UY
Y (kFY

) is zero and Eq. (20) reduces to

µY = MY +
k2FY

2MY
+ UN

Y (kFY
) . (23)
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FIG. 5: Same as Fig. 4 but for "stiff" nucleonic EoS using the
NSC97f model.

For the determination of the particle concentration the
single-particle potential in equilibrium is used. For hy-
perons below the threshold density it is given by UY (p =
0), similar to the symmetric matter case. Above the
threshold density it depends on composition and den-
sity. In Fig. 6 the density dependence of UΣ−(kF

Σ−
) in

β-equilibrium for two different incompressibilities K0 is
shown. In the figure a kink in the curves appears at the
point where the hyperons appear.

Another observation is the relative ordering and the
magnitudes which resemble those of the single-particle
potentials at zero momentum in symmetric matter as
shown in Fig. 1. Essentially, the NSC97a, NCS97c,
NSC97f and J04 interactions are still slightly attractive
while the NSC89 and χEFT600 remain repulsive. Simi-
lar observations hold for the Λ system. A new structure
in form of a second inflection point emerges due to the
appearance of the Σ− hyperon.

A better indicator at which densities hyperons start to
appear is given by the concentrations of all particles and
is displayed in Figs. 4 and 5. In Fig. 4 a “soft” nucle-
onic EoS is used in combination with an attractive ΛN
and a very repulsive ΣN interaction implemented by the
χEFT600 model. In contrast in Fig. 5 a “stiff” EoS is
used represented by the NSC97f model which has a simi-
lar ΛN interaction compared to the χEFT600 model but
also an attractive ΣN interaction. This difference already
leads to very different density profiles. While in Fig. 4
the Λ hyperon is the first one which appears and no Σ−

hyperons are present, the Σ− hyperon appears first in
Fig. 5.

One should note that with the appearance of the Σ−

hyperon the density of the negatively charged leptons
starts to drop immediately. This is because their role in
the charge neutrality condition, Eq. (15), is now being
taken over by the Σ−. Similarly, the appearance of the
Λ hyperon will accelerate the disappearance of neutrons

NEUTRON  STAR  MATTER
 including  HYPERONS
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FIG. 10: Mass-radius relation of a neutron star for symmetry energy at = 32 MeV and different Y N interactions. For
comparison the mass-radius curve obtained for the pure NN interaction is also shown. Left panel: soft EoS, right panel: stiff
EoS.
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cant softening of the EoS which in turn results in smaller
maximum masses of a neutron star compared to a purely
nucleonic EoS. Notably, the predicted maximum masses
are well below the observed value of 1.4 M!, an outcome
also known from other works, e.g. [8, 33–35]. This poses
a serious problem.

The softening of the EoS due to hyperons cannot be
circumvented by stiffening the nucleonic EoS, i.e., by in-
creasing K0, since this will cause hyperons to appear ear-

lier. Changing the high-density behavior of the symmetry
energy dependence or including the S = −2 sector does
not alter this conclusion either. For more details about
the S = −2 sector, in particular Ξ hyperons in dense
baryonic matter see e.g. [39–42]. This can only mean,
that correlations beyond the one-loop level could be im-
portant to stiffen the hyperon contributions to the EoS.
This, however, is not sufficient as Brueckner-Hartree-
Fock calculations indicate [9, 26]. As has been known

 H. Djapo,  
B.-J. Schaefer,
J. Wambach

Phys. Rev. C81 (2010) 035803

with inclusion of hyperons:
EoS too soft to support 2 solar mass star

unless strong short-range repulsion in 
YN and / or YNN interactions

Mmax ! 1.5M!

Th. Hell,  W. W.
arXiv:1402.4098
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Fig. 6. The Λp 1S0 and 1P1 phase shifts δ as a function of plab. The red/dark band shows the chiral EFT results to
NLO for variations of the cutoff in the range Λ = 500, . . . ,650 MeV, while the green/light band shows results to LO for
Λ = 550, . . . ,700 MeV. The dashed curve is the result of the Jülich ’04 meson-exchange potential [37].

Fig. 7. The Λp phase shifts for the coupled 3S1–3D1 partial wave as a function of plab. Same description of curves as
in Fig. 6.

state in the ΣN system. It should be said, however, that the majority of the meson-exchange
potentials [36,38,39] produce an unstable bound state, similar to our NLO interaction. The only
characteristic difference of the chiral EFT interactions to the meson-exchange potentials might
be the mixing parameter ε1 which is fairly large in the former case and close to 45◦ at the ΣN

threshold, see Fig. 7. It is a manifestation of the fact that the pertinent Λp T -matrices (for the
3S1 → 3S1, 3D1 → 3D1, and 3S1 ↔ 3D1 transitions) are all of the same magnitude.

The strong variation of the 3S1–3D1 amplitudes around the ΣN threshold is reflected in
an impressive increase in the Λp cross section at the corresponding energy, as seen in Fig. 2.
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Chiral SU(3) Effective Field Theory 
and Hyperon-Nucleon Interactionsrecall:



SUMMARY

Chiral SU(3) Effective Field Theory

well-defined framework 
both for antikaon- and hyperon-nuclear systems

Active communication between theory and experiment 

realization of low-energy QCD with strange quarks

progress in understanding the Λ(1405)

           threshold and subthreshold physics: 
focused experimental programmes  
K̄NN

Role of strangeness in dense matter
new constraints from two-solar-mass neutron stars:
stiff equaton-of-state
consequences for hyperon-nuclear two- and three-body interactions:
quest for strong short-distance repulsion 


