

TOPICS in LOW-ENERGY QCD with STRANGE QUARKS

BASIC ISSUES

Strange quarks are intermediate between "light" and "heavy":
 Interplay between spontaneous and explicit chiral symmetry breaking in low-energy QCD
 Testing ground: high-precision antikaon-nucleon threshold physics
 Attractive low-energy KN interaction

Three-quark valence structure vs. "molecular" meson-baryon state ?

- Quest for quasi-bound **antikaon-NN** system(s) ?
- Role of strangeness in dense baryonic matter
 - **Kaon condensation** ?

Strange quark matter, hyperons in neutron stars ?

$\Lambda(1405) \colon \textbf{RECENT NEWS}$

Low-Energy **K** N Interactions

Framework: Chiral SU(3) Effective Field Theory ... but :

С

Technische Universität München

Leading s-wave I = 0 meson-baryon interactions (Tomozawa-Weinberg)

CHIRAL SU(3) EFFECTIVE FIELD THEORY COUPLED CHANNELS DYNAMICS:

NLO hierarchy of driving terms

$K^-p\,$ scattering amplitude $\,$ from chiral SU(3) coupled channels dynamics

$$\mathbf{f}(\mathbf{K}^{-}\mathbf{p}) = \frac{1}{2} \big[\mathbf{f}_{\mathbf{\bar{K}N}}(\mathbf{I}=\mathbf{0}) + \mathbf{f}_{\mathbf{\bar{K}N}}(\mathbf{I}=\mathbf{1}) \big]$$

Y. Ikeda, T. Hyodo, W. W. PLB 706 (2011) 63 NPA881 (2012) 98

 $\Lambda(1405): \ ar{\mathbf{K}}\mathbf{N} \ (\mathbf{I}=\mathbf{0}) \ \mathbf{q}$ uasibound state embedded in the $\pi \mathbf{\Sigma}$ continuum

CONSTRAINTS from **SIDDHARTA**

 $\Delta \mathbf{E} = \mathbf{283} \pm \mathbf{36} (stat) \pm \mathbf{6} (syst) \quad \mathbf{eV}$ $\mathbf{\Gamma} = \mathbf{541} \pm \mathbf{89} (stat) \pm \mathbf{22} (syst) \quad \mathbf{eV}$

The TWO POLES scenario

Characteristic feature of **Chiral SU**(3) **Dynamics**

Pole positions from chiral SU(3) coupled-channels calculation with SIDDHARTA threshold constraints:

$\mathbf{E_1} = 1424 \pm 15~\mathbf{MeV}$	$\mathbf{E_2} = 1381 \pm 15 \mathbf{MeV}$)
$\Gamma_1=52\pm10{ m MeV}$	$\Gamma_{2}=162\pm15{ m MeV}$ $ ight)$

Y. Ikeda, T. Hyodo, W.W. : Nucl. Phys. A 881 (2012) 98

Note: phenomenological potential approach is qualitatively different: energy-independent interaction, single $\Lambda(1405)$ pole

Scenarios: TWO-POLES ENERGY-DEPENDENT vs. SINGLE-POLE ENERGY-INDEPENDENT

Three-body coupled channels (Faddeev) calculations

 $\pi \Sigma$ invariant mass distribution $p_{\bar{K}}^{lab} = 700 \text{MeV}$

E-dep. (two-pole, 1420) E-indep. (one-pole, 1405) 0.09 0.18 0.08 0.16 0.07 0.14 dσ/dM_{πΣ}(μb/MeV) $d\sigma/dM_{\pi\Sigma}(\mu b/MeV)$ 0.06 0.12 0.05 0.1 0.08 0.04 0.06 0.03 0.04 0.02 0.02 0.01 0 0 1420 1380 1400 1440 1360 1360 1380 1400 1420 1440 $M_{\pi \Sigma}(MeV)$ M_π(MeV) preliminary

Shota Ohnishi, Y. Ikeda, T. Hyodo, E. Hiyama, W.W. (2014)

CHIRAL SU(3) COUPLED CHANNELS DYNAMICS

Needed: accurate constraints from antikaon-deuteron threshold measurements

- **complete** information for both isospin I = 0 and I = 1 $\overline{K}N$ channels
- plus potentially important information about **K-NN absorption**

ANTIKAON - DEUTERON THRESHOLD PHYSICS K^-d scattering length and kaonic deuterium

Three-body calculation using Chiral SU(3) Coupled Channels approach $ar{\mathbf{K}}\mathbf{N}\mathbf{N}\leftrightarrow\pi\mathbf{Y}\mathbf{N}$

Recent result constrained by SIDDHARTA $\mathbf{K}^-\mathbf{p}$ input:

 $\mathbf{a}(\mathbf{K}^-\mathbf{d}) = (-1.55 + i\, 1.66)~\mathbf{fm} \qquad (\pm 10\%)$

S. Ohnishi, Y. Ikeda, T. Hyodo, E. Hiyama, W.W. (2014)

ANTIKAON - DEUTERON SCATTERING LENGTH

KAONIC DEUTERIUM STRONG INTERACTION ENERGY SHIFT & WIDTH

Exp. Proposals: SIDDHARTA-2 and J-PARC

Theory: using K^-d scattering length based on 3-body Chiral SU(3) dynamics

Comparison with improved Deser formula:

U.-G. Meißner, U. Raha, A. Rusetsky Eur. Phys. J. C 35 (2004) 349

$$\Delta \mathbf{E} - \frac{\mathbf{i}}{2} \mathbf{\Gamma} = -\frac{2\mu^2 \alpha^3 \mathbf{a} (\mathbf{K}^- \mathbf{d})}{1 - 2\mu \alpha (1 - \ln \alpha) \mathbf{a} (\mathbf{K}^- \mathbf{d})} \qquad (\Delta \mathbf{E},$$

 $(\Delta \mathbf{E}, \, rac{\Gamma}{2}) = (\mathbf{870}, \, \mathbf{593}) \, \mathbf{eV}$

UPDATE on QUASIBOUND K⁻pp

3-Body (Faddeev) calculations

Variational calculations

- ... now consistently using amplitudes from **Chiral SU(3) coupled-channels** dynamics including **energy dependence** in subthreshold extrapolations
 - Calculated **binding energy** and **width** (in MeV) of the $\mathrm{K}^-\mathrm{pp}$ system

		[1]	[2]	[3]	
modest binding	В	16	17-23	9-16	remarkable degree of
large width	Γ	41	40-70	34-46	consistency

- 1 Variational (hyperspherical harmonics): N. Barnea, A. Gal, E.Z. Livets ; Phys. Lett. B 712 (2012) 132
- [2] Variational (Gaussian trial wave functions): A. Doté, T. Hyodo, W.W.; Phys. Rev. C 79 (2009) 014003
- **3** Faddeev: Y. Ikeda, H. Kamano, T. Sato ; Prog. Theor. Phys. 124 (2010) 533

New Searches for QUASIBOUND K⁻pp - part | -

A.O. Tokiyasu et al. (LEPS collaboration) Phys. Lett. B 728 (2014) 616

- **No significant signal** found in the search region of interest
- **Upper limits** (0.1 0.7 μ b) estimated for differential cross section of quasibound state production

New Searches for QUASIBOUND K⁻pp - part III -

PART II:

Hyperon-Nucleon Interactions and Strangeness in Dense Matter

Chiral SU(3) Effective Field Theory and Hyperon-Nucleon Interactions

J. Haidenbauer, S. Petschauer, N. Kaiser, U.-G. Meißner, A. Nogga, W.W.: Nucl. Phys. A 915 (2013) 24

Interaction terms involving baryon and pseudoscalar meson octets ...

$$P = \begin{pmatrix} \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & K^{0} \\ K^{-} & \bar{K}^{0} & -\frac{2\eta}{\sqrt{6}} \end{pmatrix} \qquad B = \begin{pmatrix} \frac{\Sigma^{0}}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & \Sigma^{+} & p \\ \Sigma^{-} & -\frac{\Sigma^{0}}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & n \\ -\Xi^{-} & \Xi^{0} & -\frac{2\Lambda}{\sqrt{6}} \end{pmatrix} \\ \mathcal{L}_{1} = -\frac{\sqrt{2}}{2f_{0}} \operatorname{tr} \left(D\bar{B}\gamma^{\mu}\gamma_{5}\{\partial_{\mu}P, B\} + F\bar{B}\gamma^{\mu}\gamma_{5}[\partial_{\mu}P, B] \right) \\ \mathcal{L}_{2} = \frac{1}{4f_{0}^{2}} \operatorname{tr} \left(i\bar{B}\gamma^{\mu} \big[[P, \partial_{\mu}P], B \big] \big)$$

... generate Nambu-Goldstone boson exchange processes

Hyperon - Nucleon Interaction

(contact terms)

$$V_{BB \to BB}^{(0)} = C_S + C_T \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2$$

$$V_{BB \to BB}^{(0)} = C_S + C_T \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2$$

$$V_{BB \to BB}^{(2)} = C_1 \mathbf{q}^2 + C_2 \mathbf{k}^2 + (C_3 \mathbf{q}^2 + C_4 \mathbf{k}^2) \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 + \frac{i}{2} C_5 (\boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_2) \cdot (\mathbf{q} \times \mathbf{k})$$

$$+ C_6 (\mathbf{q} \cdot \boldsymbol{\sigma}_1) (\mathbf{q} \cdot \boldsymbol{\sigma}_2) + C_7 (\mathbf{k} \cdot \boldsymbol{\sigma}_1) (\mathbf{k} \cdot \boldsymbol{\sigma}_2) + \frac{i}{2} C_8 (\boldsymbol{\sigma}_1 - \boldsymbol{\sigma}_2) \cdot (\mathbf{q} \times \mathbf{k})$$

SU(3) relations for the various contact potentials in the isospin basis. C_{ξ}^{27} etc. refers to the corresponding irreducible SU(3) representation for a particular partial wave ξ . The actual potential still needs to be multiplied by pertinent powers of the momenta p and p'.

	Channel	Ι	$V(\xi)$			
			$\xi = {}^{1}S_{0}, {}^{3}P_{0}, {}^{3}P_{1}, {}^{3}P_{2}$	$\xi = {}^3S_1, {}^3S_1 - {}^3D_1, {}^1P_1$	$\xi = {}^{1}P_{1} - {}^{3}P_{1}$	
S = 0	$NN \rightarrow NN$	0	_	$C_{\xi}^{10^{*}}$	_	
	$NN \rightarrow NN$	1	C_{ξ}^{27}	_	_	
S = -1	$\Lambda N \to \Lambda N$	$\frac{1}{2}$	$\frac{1}{10}(9C_{\xi}^{27}+C_{\xi}^{8_s})$	$\frac{1}{2}(C_{\xi}^{8a}+C_{\xi}^{10^*})$	$\frac{-1}{\sqrt{20}}C_{\xi}^{8_{s}8_{a}}$	
	$\Lambda N \to \Sigma N$	$\frac{1}{2}$	$\frac{3}{10}(-C_{\xi}^{27}+C_{\xi}^{8_s})$	$\frac{1}{2}(-C_{\xi}^{8a}+C_{\xi}^{10^{*}})$	$\frac{\frac{-1}{\sqrt{20}}C_{\xi}^{8_{s}8_{a}}}{\frac{-3}{\sqrt{20}}C_{\xi}^{8_{s}8_{a}}}$	
	$\Sigma N \to \Lambda N$				$\frac{1}{\sqrt{20}}C_{\xi}^{8_{s}8_{a}}$	
	$\Sigma N \to \Sigma N$	$\frac{1}{2}$	$\frac{1}{10}(C_{\xi}^{27}+9C_{\xi}^{8_s})$	$\frac{1}{2}(C_{\xi}^{8a}+C_{\xi}^{10^*})$	$\frac{\frac{1}{\sqrt{20}}C_{\xi}^{8_{s}8_{a}}}{\frac{3}{\sqrt{20}}C_{\xi}^{8_{s}8_{a}}}$	
	$\Sigma N \to \Sigma N$	$\frac{3}{2}$	C_{ξ}^{27}	C_{ξ}^{10}	<u> </u>	
r						

Hyperon - Nucleon Interaction (contd.)

Hyperon - Nucleon Interactions from Lattice QCD

 $\frac{dM}{dr} = 4\pi r^2 \frac{\mathcal{E}}{c^2}$

NEUTRON STARS and the **EQUATION OF STATE** of **DENSE BARYONIC MATTER**

J. Lattimer, M. Prakash: Astrophys. J. 550 (2001) 426 Phys. Reports 442 (2007) 109

Mass-Radius Relation

NEUTRON STARS and the **EQUATION OF STATE** of **DENSE BARYONIC MATTER**

J. Lattimer, M. Prakash: Astrophys. J. 550 (2001) 426 Phys. Reports 442 (2007) 109

Mass-Radius Relation

New constraints from NEUTRON STARS

J.Antoniadis et al. Science 340 (2013) 6131

PSR J1614+2230

 $\mathbf{M} = 1.97 \pm 0.04~M_{\odot}$

 $\mathbf{M} = \mathbf{2.01} \pm \mathbf{0.04} \ M_{\odot}$

PSR J0348+0432

Technische Universität München

News from NEUTRON STARS

Constraints from **neutron star observables**

NEUTRON STAR MATTER Equation of State

- In-medium Chiral Effective Field Theory up to 3 loops (reproducing thermodynamics of normal nuclear matter)
- 3-flavor PNJL (chiral quark) model at high densities (incl. **strange** quarks)

SUMMARY

- Chiral SU(3) Effective Field Theory
 - realization of **low-energy QCD** with **strange quarks**
 - well-defined framework both for antikaon- and hyperon-nuclear systems
- Active communication between **theory** and **experiment**
 - **progress** in understanding the $\, {f \Lambda}({f 1405}) \,$
 - KNN threshold and subthreshold physics: focused experimental programmes
- Role of **strangeness** in **dense matter**
 - new constraints from two-solar-mass neutron stars: stiff equaton-of-state
 - consequences for hyperon-nuclear two- and three-body interactions: quest for strong short-distance **repulsion**

