TOPICS in LOW-ENERGY QCD with STRANGE QUARKS

Wolfram Weise

ECT* Trento and
Technische Universität München

- Symmetry breaking patterns in low-energy QCD: chiral $\operatorname{SU}(3)$ effective field theory
- Antikaon-nucleon interactions and news on $\mathbf{\Lambda}(\mathbf{1 4 0 5})$
- $\mathbf{K}^{-} \mathbf{d}$ scattering length and kaonic deuterium
- $\overline{\mathbf{K}}$ NN systems and search for quasi-bound state
- Hyperon-nucleon interactions with strangeness News from ChEFT and Lattice QCD
- Strangeness in dense baryonic matter New constraints from neutron stars

BASIC ISSUES

- Strange quarks are intermediate between "light" and "heavy":
- Interplay between spontaneous and explicit chiral symmetry breaking in low-energy QCD
- Testing ground: high-precision antikaon-nucleon threshold physics Attractive low-energy $\overline{\mathbf{K}} \mathbf{N}$ interaction
- Nature and structure of $\Lambda(1405)\left(B=1, \quad S=-1, \quad J^{P}=1 / 2^{-}\right)$

Three-quark valence structure vs.
"molecular" meson-baryon state ?

- Quest for quasi-bound antikaon-NN system(s) ?
- Role of strangeness in dense baryonic matter

Kaon condensation ?
Strange quark matter, hyperons in neutron stars ?

PART I:
 $\overline{\mathbf{K}} \mathbf{N}$ and $\overline{\mathbf{K}} \mathbf{N N}$ Interactions

$\Lambda(1405):$ RECENT NEWS

- $\gamma \mathbf{p} \rightarrow \mathbf{K}^{+} \pi^{-} \boldsymbol{\Sigma}^{+}$@ CLAS / JLab

- Detailed analysis of $\boldsymbol{\Sigma}^{+} \pi^{-}$distribution and $\boldsymbol{\Sigma}^{+}$polarization confirms

$$
\mathrm{J}^{\mathrm{P}}=\frac{1}{2}^{-} \text {of } \Lambda(1405)
$$

K. Moriya et al. (CLAS collaboration)

Phys. Rev. Lett. II2 (2014) 068103

- Structure of $\Lambda(\mathbf{1 4 0 5})$ from Lattice QCD

$$
\left|\boldsymbol{\Lambda}^{*}\right\rangle=\mathbf{a}|\mathbf{u d s}\rangle+\mathbf{b}|(\mathbf{u d u})(\overline{\mathbf{u}} \mathbf{s})\rangle+\ldots
$$

- Quasimolecular $\overline{\mathbf{K}} \mathbf{N}$ structure of $\boldsymbol{\Lambda}(\mathbf{1 4 0 5})$
J.M.M. Hall et al. (Adelaide group) (2014)

Low-Energy $\overline{\mathbf{K}} \mathbf{N}$ Interactions

- Framework: Chiral SU(3) Effective Field Theory ... but :

Chiral Perturbation Theory NOT applicable: Λ (1405) resonance 27 MeV below $\mathbf{K}^{-} \mathbf{p}$ threshold
N. Kaiser, P. Siegel, W.W. (1995)
E. Oset, A. Ramos (1998)

Non-perturbative Coupled Channels approach based on Chiral SU(3) Dynamics

Leading s-wave I = 0 meson-baryon interactions (Tomozawa-Weinberg)

Recent Review:
T. Hyodo, D. Jido

Prog. Part. Nucl. Phys. 67 (2012) 55

channel coupling

CHIRAL SU(3) EFFECTIVE FIELD THEORY COUPLED CHANNELS DYNAMICS:

- NLO hierarchy of driving terms -

leading order (Weinberg-Tomozawa) terms input: physical pion and kaon decay constants
direct and crossed Born terms input: axial vector constants D and F from hyperon beta decays

$$
g_{A}=D+F=1.26
$$

$$
\mathcal{L}_{1}^{M B}=\operatorname{Tr}\left(\frac{D}{2}\left(\bar{B} \gamma^{\mu} \gamma_{5}\left\{u_{\mu}, B\right\}\right)+\frac{F}{2}\left(\bar{B} \gamma^{\mu} \gamma_{5}\left[u_{\mu}, B\right]\right)\right)
$$

input: several low-energy constants

$$
\begin{aligned}
\mathcal{L}_{2}^{M B}= & b_{D} \operatorname{Tr}\left(\bar{B}\left\{\chi_{+}, B\right\}\right)+b_{F} \operatorname{Tr}\left(\bar{B}\left[\chi_{+}, B\right]\right)+b_{0} \operatorname{Tr}(\bar{B} B) \operatorname{Tr}\left(\chi_{+}\right) \\
& +d_{1} \operatorname{Tr}\left(\bar{B}\left\{u^{\mu},\left[u_{\mu}, B\right]\right\}\right)+d_{2} \operatorname{Tr}\left(\bar{B}\left[u^{\mu},\left[u_{\mu}, B\right]\right]\right) \\
& +d_{3} \operatorname{Tr}\left(\bar{B} u_{\mu}\right) \operatorname{Tr}\left(u^{\mu} B\right)+d_{4} \operatorname{Tr}(\bar{B} B) \operatorname{Tr}\left(u^{\mu} u_{\mu}\right),
\end{aligned}
$$

K^{-}p SCATTERING AMPLITUDE from CHIRAL SU(3) COUPLED CHANNELS DYNAMICS

$$
\mathbf{f}\left(\mathbf{K}^{-} \mathbf{p}\right)=\frac{\mathbf{1}}{\mathbf{2}}\left[\mathbf{f}_{\overline{\mathbf{K}} \mathbf{N}}(\mathbf{I}=\mathbf{0})+\mathbf{f}_{\overline{\mathbf{K}} \mathbf{N}}(\mathbf{I}=\mathbf{1})\right]
$$

Y. Ikeda, T. Hyodo, W. W. PLB 706 (201I) 63 NPA88I (2012) 98
$\Lambda(\mathbf{1 4 0 5}): \overline{\mathbf{K}} \mathbf{N}(\mathbf{I}=\mathbf{0})$ quasibound state embedded in the $\pi \boldsymbol{\Sigma}$ continuum

- Complex scattering length (including Coulomb corrections)
$\operatorname{Re} \mathbf{a}\left(\mathrm{K}^{-} \mathrm{p}\right)=-0.65 \pm 0.10 \mathrm{fm}$

$$
\operatorname{Ima}\left(K^{-} p\right)=0.81 \pm 0.15 \mathrm{fm}
$$

CONSTRAINTS from SIDDHARTA

- Kaonic hydrogen precision data

M. Bazzi et al. (SIDDHARTA)

Phys. Lett. B 704 (201I) II3

- Strong interaction

Is energy shift and width

$$
\begin{gathered}
\Delta \mathbf{E}=\mathbf{2 8 3} \pm \mathbf{3 6}(\text { stat }) \pm \mathbf{6}(\text { syst }) \\
\mathbf{e V} \\
\boldsymbol{\Gamma}=\mathbf{5 4 1} \pm \mathbf{8 9}(\text { stat }) \pm \mathbf{2 2}(\text { syst })
\end{gathered} \mathbf{e V} .
$$

The TWO POLES scenario

- Characteristic feature of Chiral SU(3) Dynamics

Energy dependent driving interactions
D. Jido et al.

Nucl. Phys. A723 (2003) 205
T. Hyodo, W.W.

Phys. Rev. C 77 (2008) 03524
T. Hyodo, D. Jido

Prog. Part. Nucl. Phys. 67 (2012) 55

Pole positions from chiral SU(3) coupled-channels calculation with SIDDHARTA threshold constraints:

$$
\begin{array}{ll}
\mathrm{E}_{1}=1424 \pm 15 \mathrm{MeV} & \mathrm{E}_{2}=1381 \pm 15 \mathrm{MeV} \\
\Gamma_{1}=52 \pm 10 \mathrm{MeV} & \Gamma_{2}=162 \pm 15 \mathrm{MeV}
\end{array}
$$

Y. Ikeda, T. Hyodo, W.W.: Nucl. Phys. A 88I (2012) 98

- Note: phenomenological potential approach is qualitatively different: energy-independent interaction, single $\Lambda(1405)$ pole

Scenarios: TWO-POLES ENERGY-DEPENDENT
 VS. SINGLE-POLE ENERGY-INDEPENDENT

- Three-body coupled channels (Faddeev) calculations
$\pi \Sigma$ invariant mass distribution $p_{K}^{l a b}=700 \mathrm{MeV}$

E-dep. (two-pole, 1420)

Shota Ohnishi, Y. Ikeda, T. Hyodo, E. Hiyama, W.W. (2014)

CHIRAL SU(3) COUPLED CHANNELS DYNAMICS

- Predicted antikaon-neutron amplitudes at and below threshold
Y. Ikeda, T. Hyodo, W.Weise : Phys.Lett. B 706 (201I) 63 , Nucl. Phys. A 88 I (2012) 98

$$
\mathrm{a}\left(\mathrm{~K}^{-} \mathbf{n}\right)=0.57_{-0.21}^{+0.04}+\mathrm{i} 0.72_{-0.41}^{+0.26} \mathrm{fm}
$$

- Needed: accurate constraints from antikaon-deuteron threshold measurements
complete information for both isospin $\mathrm{I}=\mathbf{0}$ and $\mathrm{I}=\mathbf{1} \quad \overline{\mathrm{K}} N$ channels plus potentially important information about K-NN absorption

ANTIKAON - DEUTERON THRESHOLD PHYSICS K^{-}d SCATTERING LENGTH and KAONIC DEUTERIUM

- Three-body calculation using Chiral SU(3) Coupled Channels approach

$$
\overline{\mathbf{K}} \mathbf{N N} \leftrightarrow \pi \mathbf{Y} \mathbf{N}
$$

- Recent result constrained by SIDDHARTA $\mathbf{K}^{-} \mathbf{p}$ input:

$$
\mathbf{a}\left(\mathbf{K}^{-} \mathbf{d}\right)=(-\mathbf{1 . 5 5}+\mathbf{i} 1.66) \mathbf{f m} \quad(\pm \mathbf{1 0 \%}) \quad \begin{aligned}
& \text { S. Ohnishi, Y. Ikeda, T. Hyodo, } \\
& \text { E. Hiyama, W.W. } \\
& (2014)
\end{aligned}
$$

ANTIKAON - DEUTERON SCATTERING LENGTH

- Recent calculations using SIDDHARTA - constrained input

- Sources of (10-20\%) uncertainties:
"Fixed scatterer" approximation $\quad \mathbf{K}^{-} \mathbf{n}$ amplitude $\quad \mathbf{K}^{-} \mathbf{d} \rightarrow \mathbf{Y N}$ absorption

KAONIC DEUTERIUM
 STRONG INTERACTION ENERGY SHIFT \& WIDTH

Exp. Proposals: SIDDHARTA-2 and J-PARC

- Theory: using $\mathbf{K}^{-} \mathbf{d}$ scattering length based on 3-body Chiral $\operatorname{SU}(3)$ dynamics

Energy shift and width (Is)

$\Delta \mathrm{E}=(958 \pm 50) \mathrm{eV} \quad \Gamma=(906 \pm 70) \mathrm{eV}$
including finite-size Coulomb, vacuum polarization and binding corrections

- Comparison with improved Deser formula:
U.-G. Meißner, U. Raha,A. Rusetsky Eur. Phys. J. C 35 (2004) 349

$$
\Delta \mathrm{E}-\frac{\mathbf{i}}{\mathbf{2}} \boldsymbol{\Gamma}=-\frac{2 \mu^{2} \alpha^{3} \mathrm{a}\left(\mathrm{~K}^{-} \mathrm{d}\right)}{1-2 \mu \alpha(1-\ln \alpha) \mathbf{a}\left(\mathrm{K}^{-} \mathbf{d}\right)} \quad\left(\Delta \mathrm{E}, \frac{\boldsymbol{\Gamma}}{\mathbf{2}}\right)=(870,593) \mathrm{eV}
$$

UPDATE on QUASIBOUND Kpp

3-Body (Faddeev) calculations

Variational calculations
...now consistently using amplitudes from Chiral SU(3) coupled-channels dynamics including energy dependence in subthreshold extrapolations

Calculated binding energy and width (in MeV) of the \mathbf{K}^{-}pp system

	$[\mathbf{1}]$			$[\mathbf{2}]$
modest binding	B	16	$17-23$	$9-16$
large width	Γ	41	$40-70$	$34-46$

[1] Variational (hyperspherical harmonics): N. Barnea, A. Gal, E.Z. Livets; Phys.Lett. B 712 (2012) 132
[2] Variational (Gaussian trial wave functions): A. Doté, T. Hyodo, W.W.; Phys. Rev. C 79 (2009) 014003
[3] Faddeev: Y.lkeda, H. Kamano,T. Sato ; Prog.Theor. Phys. 124 (2010) 533

New Searches for QUASIBOUND Kpp

- part I -

A.O.Tokiyasu et al.
(LEPS collaboration)
Phys. Lett. B 728 (2014) 616

No significant signal found in the search region of interest

Upper limits ($0.1-0.7 \mu \mathrm{~b}$) estimated for differential cross section of quasibound state production

New Searches for QUASIBOUND K’pp

- part II -

$p+p \xrightarrow{3.5 \mathrm{GeV}} p+K^{+}+\Lambda$

E. Epple et al. (HADES collaboration)

Systematic partial wave analysis using series of N^{*} resonances

- Upper limit for cross section of pp $\rightarrow \mathbf{K}^{+}$" $\mathbf{K}^{-} \mathbf{p p}$ "quasibound state production

New Searches for QUASIBOUND Kpp

- part III -

Experiments at J-PARC (in progress)

$$
\mathbf{K}^{-}+{ }^{\mathbf{3}} \mathrm{He} \rightarrow \mathbf{n}+\mathbf{X}
$$

PART II:
 Hyperon-Nucleon Interactions and Strangeness in Dense Matter

Chiral SU(3) Effective Field Theory and Hyperon-Nucleon Interactions

J. Haidenbauer, S. Petschauer, N. Kaiser, U.-G. Meißner, A. Nogga, W.W.: Nucl. Phys. A 915 (2013) 24

- Interaction terms involving baryon and pseudoscalar meson octets...

$$
\begin{gathered}
P=\left(\begin{array}{ccc}
\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta}{\sqrt{6}} & \pi^{+} & K^{+} \\
\pi^{-} & -\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta}{\sqrt{6}} & K^{0} \\
K^{-} & \bar{K}^{0} & -\frac{2 \eta}{\sqrt{6}}
\end{array}\right) \quad B=\left(\begin{array}{ccc}
\frac{\Sigma^{0}}{\sqrt{2}}+\frac{\Lambda}{\sqrt{6}} & \Sigma^{+} & p \\
\Sigma^{-} & -\Sigma^{0} \\
-\Xi^{-} & \frac{\Lambda}{\sqrt{6}} & n \\
\Xi^{0} & -\frac{2 \Lambda}{\sqrt{6}}
\end{array}\right) . \\
\mathcal{L}_{1}=-\frac{\sqrt{2}}{2 f_{0}} \operatorname{tr}\left(D \bar{B} \gamma^{\mu} \gamma_{5}\left\{\partial_{\mu} P, B\right\}+F \bar{B} \gamma^{\mu} \gamma_{5}\left[\partial_{\mu} P, B\right]\right) \\
\mathcal{L}_{2}=\frac{1}{4 f_{0}^{2}} \operatorname{tr}\left(i \bar{B} \gamma^{\mu}\left[\left[P, \partial_{\mu} P\right], B\right]\right)
\end{gathered}
$$

Hyperon - Nucleon Interaction (contact terms)

$\mathrm{SU}(3)$ relations for the various contact potentials in the isospin basis. C_{ξ}^{27} etc. refers to the corresponding irreducible $\mathrm{SU}(3)$ representation for a particular partial wave ξ. The actual potential still needs to be multiplied by pertinent powers of the momenta p and p^{\prime}.

	Channel	I	$V(\xi)$		
			$\xi={ }^{1} S_{0},{ }^{3} P_{0},{ }^{3} P_{1},{ }^{3} P_{2}$	$\xi={ }^{3} S_{1},{ }^{3} S_{1-}{ }^{3} D_{1},{ }^{1} P_{1}$	$\xi={ }^{1} P_{1}-{ }^{3} P_{1}$
$S=0$	$N N \rightarrow N N$	0	-	$C_{\xi}^{10 *}$	-
	$N N \rightarrow N N$	1	C_{ξ}^{27}	5	-
$S=-1$	$\Lambda N \rightarrow \Lambda N$	$\frac{1}{2}$	$\frac{1}{10}\left(9 C_{\xi}^{27}+C_{\xi}^{8{ }^{8}}\right)$	$\frac{1}{2}\left(C_{\xi}^{8 a}+C_{\xi}^{10^{*}}\right)$	$\frac{-1}{\sqrt{20}} C_{\xi}^{8_{s} 8_{a}}$
	$\Lambda N \rightarrow \Sigma N$	$\frac{1}{2}$	$\frac{3}{10}\left(-C_{\xi}^{27}+C_{\xi}^{8 s}\right)$	$\frac{1}{2}\left(-C_{\xi}^{8 a}+C_{\xi}^{10^{*}}\right)$	$\frac{-3}{\sqrt{20}} C_{\xi}^{8} 8_{a}$
	$\Sigma N \rightarrow \Lambda N$				$\frac{1}{\sqrt{20}} C_{\xi}^{8_{s} 8_{a}}$
	$\Sigma N \rightarrow \Sigma N$	$\frac{1}{2}$	$\frac{1}{10}\left(C_{\xi}^{27}+9 C_{\xi}^{8 s}\right)$	$\frac{1}{2}\left(C_{\xi}^{8 a}+C_{\xi}^{10^{*}}\right)$	$\frac{3}{\sqrt{20}} C_{\xi}^{8_{s} 8_{a}}$
	$\Sigma N \rightarrow \Sigma N$	$\frac{3}{2}$	C_{ξ}^{27}	C_{ξ}^{10}	$\sqrt{20}$

Hyperon - Nucleon Interaction (contd.)

Hyperon - Nucleon Interactions from Lattice QCD

$\boldsymbol{\Lambda} \mathbf{N}\left({ }^{1} \mathbf{S}_{\mathbf{0}}\right)=\frac{9}{10}[\mathbf{2 7}]+\frac{1}{10}\left[\mathbf{8}_{\mathbf{s}}\right]$

$$
\boldsymbol{\Lambda} \mathbf{N}\left({ }^{3} \mathbf{S}_{\mathbf{1}}\right)=\frac{1}{2}\left[\mathbf{1 0 ^ { * }}\right]+\frac{1}{2}\left[\mathbf{8}_{\mathbf{a}}\right]
$$

T. Inoue et al.
(HAL QCD)
PTP 124 (2010) 591 Nucl. Phys. A88I (2012) 28

Neutron Star Scenarios

Tolman-Oppenheimer-Volkov
Equations

$$
\begin{gathered}
\frac{\mathrm{dP}}{\mathrm{dr}}=-\frac{\mathbf{G}}{\mathbf{c}^{2}} \frac{\left(\mathbf{M}+4 \pi \mathbf{P r}^{3}\right)(\mathcal{E}+\mathbf{P})}{\mathbf{r}\left(\mathbf{r}-\mathbf{G M} / \mathbf{c}^{2}\right)} \\
\frac{\mathrm{dM}}{\mathrm{dr}}=4 \pi \mathbf{r}^{2} \frac{\mathcal{E}}{\mathbf{c}^{2}}
\end{gathered}
$$

NEUTRON STARS and the EQUATION OF STATE of DENSE BARYONIC MATTER
J. Lattimer, M. Prakash: Astrophys.J. 550 (2001) 426

Phys. Reports 442 (2007) 109

- Mass-Radius Relation

Neutron Star Scenarios

Tolman-Oppenheimer-Volkov
Equations

$$
\begin{gathered}
\frac{\mathrm{dP}}{\mathrm{dr}}=-\frac{\mathbf{G}}{\mathbf{c}^{2}} \frac{\left(\mathbf{M}+4 \pi \mathbf{P r}^{3}\right)(\mathcal{E}+\mathbf{P})}{\mathbf{r}\left(\mathbf{r}-\mathbf{G M} / \mathbf{c}^{2}\right)} \\
\frac{\mathrm{dM}}{\mathrm{dr}}=4 \pi \mathbf{r}^{2} \frac{\mathcal{E}}{\mathbf{c}^{2}}
\end{gathered}
$$

NEUTRON STARS and the EQUATION OF STATE of DENSE BARYONIC MATTER
J. Lattimer, M. Prakash: Astrophys. J. 550 (2001) 426

Phys. Reports 442 (2007) 109

- Mass-Radius Relation

New constraints from NEUTRON STARS

P.B. Demorest et al.

Nature 467 (2010) 1081

PSR JI614+2230
$\mathrm{M}=1.97 \pm 0.04 \mathrm{M}_{\odot}$

PSR J0348+0432
$\mathrm{M}=2.01 \pm 0.04 \mathrm{M}_{\odot}$

News from NEUTRON STARS

- Constraints from neutron star observables
F. Özil, D. Psaltis: Phys. Rev. D80 (2009) 103003
F. Özil, G. Baym, T. Güver: Phys. Rev. D82 (2010)IOI30I

"Exotic" equations of state ruled out ?

NEUTRON STAR MATTER

Equation of State

- In-medium Chiral Effective Field Theory up to 3 loops (reproducing thermodynamics of normal nuclear matter)
- 3-flavor PNJL (chiral quark) model at high densities (incl. strange quarks)

- beta equilibrium $\mathbf{n} \leftrightarrow \mathbf{p}+e, \mu$
- charge conservation
- coexistence region:

Gibbs conditions

- quark-nuclear
coexistence occurs (if at all) at baryon densities

$$
\rho>5 \rho_{0}
$$

see also:
K. Masuda, T. Hatsuda, T.Takatsuka PTEP (2013) 7,073D0I

NEUTRON STAR MATTER including HYPERONS

Chiral SU(3) Effective Field Theory and Hyperon-Nucleon Interactions

SUMMARY

- Chiral SU(3) Effective Field Theory realization of low-energy QCD with strange quarks
well-defined framework both for antikaon- and hyperon-nuclear systems

Active communication between theory and experiment progress in understanding the $\Lambda(1405)$

- $\overline{\mathbf{K}} \mathbf{N N}$ threshold and subthreshold physics: focused experimental programmes
- Role of strangeness in dense matter
- new constraints from two-solar-mass neutron stars: stiff equaton-of-state
- consequences for hyperon-nuclear two- and three-body interactions: quest for strong short-distance repulsion

