Krakow, 29 May — 3 June



The Challenge of QCD

@ QCD is the only known example in nature of a fundamental quantum field
theory that is innately non-perturbative

@ a priori no idea what such a theory can produce

@ Solving QCD will have profound implications for our understanding of the
natural world

o e.g. it will explain how massless gluons and light quarks bind together to form
hadrons, and thereby explain the origin of ~98% of the mass in the visible
universe

o given QCDs complexity, the best promise for progress is a strong interplay
between experiment and theory

@ QCD is characterized by two emergent phenomena:
o confinement & dynamical chiral symmetry breaking (DCSB)
o a world without DCSB would be profoundly different, e.g. m, ~ m,,

@ Must discover the origin of confinement, its relationship to DCSB and
understand how these phenomenon influence hadronic obserables
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QCDs Dyson-Schwinger Equations

@ The equations of motion of QCD <= QCDs Dyson—Schwinger equations

o an infinite tower of coupled integral equations
@ must implement a symmetry preserving truncation

@ The most important DSE is QCDs gap equation = quark propagator

5O
@ - -+

o ingredients — dressed gluon propagator & dressed quark-gluon vertex

M. S. Bhagwat et al., Phys. Rev. C 68, 015203 (2003)]
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Pion’s Parton Distribution Amplitude

@ pion’s PDA — ¢ (2): is a probability amplitude that describes the momentum
distribution of a quark and antiquark in the bound-state’s valence Fock state

o . . . .+ b
@ it’s a function of the lightcone momentum fraction = = i‘)—_ and the scale Q?

|

@ PDAs enter numerous hard exclusive scattering processes
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Pion’s Parton Distribution Amplitude

@ pion’s PDA — ¢ (2): is a probability amplitude that describes the momentum
distribution of a quark and antiquark in the bound-state’s valence Fock state

e . . . .+ -
@ it’s a function of the lightcone momentum fraction = = f}—_ and the scale Q?

@ The pion’s PDA is defined by
koo + +
fr on(@) = Z2 2n? § (k* —xp®) Tr [y s S(k) Tx(k, p) S(k — p)]

@ S(k)T:(k,p) S(k— p) is the pion’s Bethe-Salpeter wave function

o in the non-relativistic limit it corresponds to the Schrodinger wave function

@ o (z): is the axial-vector projection of the pion’s Bethe-Salpeter wave
function onto the light-front  [pseudo-scalar projection also non-zero]

@ Pion PDA is interesting because it is calculable in perturbative QCD and,
e.g., in this regime governs the Q? dependence of the pion form factor

QF(Q?) T 167 f2a,(Q?) =  (@)=6z(1—2)

table of contents MESON 29 May — 3 June



QCD Evolution & Asymptotic PDA
@ ERBL (Q?) evolution for pion PDA [c.f. DGLAP equations for PDFs]

1
M% (s ) = /O dy V(z,5) o(y, 1)

@ This evolution equation has a solution of the form

on(@,Q%) =6z (1-2) [1+ Y a¥/2(Q%) G320 - 1)

n=2,4,...

@ a = 3/2 because in Q? — oo limit QCD is invariant under the collinear
conformal group SL(2;R)

@ Gegenbauer-a = 3/2 polynomials are irreducible representations SL(2; R)

@ The coefficients of the Gegenbauer polynomials, ad? (Q?), evolve
logarithmically to zero as Q% — oo: ¢, (7) — ¢ () =62 (1 — x)

@ At what scales is this a good approximation to the pion PDA
@ E.g., AdS/QCD find ¢, () ~ z'/? (1 — 2)'/? at Q* = 1 GeV? expansion in

terms of C/ ?(22 — 1) convergences slowly: agf / ag/ 2~ 10%
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Pion PDA from the DSEs

[L. Chang, ICC, et al., Phys. Rev. Lett. 110, 132001 (2013)] [C.D. Roberts, Prog. Part. Nucl. Phys. 61 50 (2008)]
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@ Both DSE results, each using a different Bethe-Salpeter kernel, exhibit a
pronounced broadening compared with the asymptotic pion PDA

@ scale of calculation is given by renormalization point ( = 2 GeV

@ Broading of the pion’s PDA is directly linked to DCSB

@ As we shall see the dilation of pion’s PDA will influence the Q2 evolution of
the pion’s electromagnetic form factor
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Pion PDA from Ilattice QCD

. . 14 asympto‘tit """
@ Lattice QCD can only determine one ‘
« . 1.2
non-trivial moment o
1 9 "3 08 )
/ dx (Qx — 1)*pr(x) =0.27 £ 0.04 =S 06 L lattice QCD
0
04
[V. Braun et al., Phys. Rev. D 74, 074501 (2006)] 02 | DCSB improved “ ]
) ) 1 nee, et al., Phys. Rev. Lett. 111, 092001 (2013)] ’
cale ic — / 0
@ scaleis Q* = 4GeV ) " " o o 1

T
@ Standard practice to fit first coefficient of “asymptotic expansion” to moment
2\ _ _ 3/2(2\ 3/2 .
or(@, Q) =6a(1-a) [14+ 3] a¥/2(Q*)C¥ (2 —1)]

@ however this expansion is guaranteed to converge rapidly only when Q2 — oo
o this procedure results in a double-humped pion PDA

@ Advocate using a generalized expansion
2\ _ a—1/2/1 _  Na—1/2 a2 e’ _
on(@, Q%) = Noa® /21 = 2)*1/2 14 >, @@ Crz—1)

@ Find ¢, ~ 2(1 — 2)*, a = 0.357037 ; good agreement with DSE: o ~ 0. 30
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Pion PDA from Ilattice QCD

@ Lattice QCD can only determine one
non-trivial moment
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[V. Braun et al., Phys. Rev. D 74, 074501 (2006)] 0.2
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@ Standard practice to fit first coefficient of “asymptotic expar;sion” to moment

on(@,Q%) =6z (1-2) [1+ Y a¥/2(Q*) G320 - 1)

n=2,4,...

@ however this expansion is guaranteed to converge rapidly only when Q? — oo
o this procedure results in a double-humped pion PDA

@ Advocate using a generalized expansion

on(@,Q%) = Naz* 21— 2)*7 2 14+ 3 a5 (Q%) Ca 2w — 1)

n=2,4,...

@ Find ¢, ~ 2(1 — 2)*, a = 0.357)37 ; good agreement with DSE: o =~ 0.30
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When is the Pion’s PDA Asymptotic

[I. C. Cloét, et al., Phys. Rev. Lett. 111, 092001 (2013)] [T. Nguyen, et al., Ph\s RL\ C 83 ()6"‘20] (2011)]
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@ Under leading order Q? evolution the pion PDA remains broad to well above
Q? > 100GeV?, compared with 7" (7) = 62 (1 — )

@ Consequently, the asymptotic form of the pion PDA is a poor approximation
at all energy scales that are either currently accessible or foreseeable in
experiments on pion elastic and transition form factors

@ Importantly, ¢ () is only guaranteed be an accurate approximation to
= (x) when pion valence quark PDF satisfies: ¢7 (z) ~ d(x)

@ This is far from valid at forseeable energy scales
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When is the Pion’s Valence PDF Asymptotlc Argon
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@ LO QCD evolution of momentum fraction carried by valence quarks

a.(0? 7§92 /(280) (0)2
(wan(o) (@) = (2459) (o) (@) where L

e therefore, as Q> — oo we have (z¢,(x)) — 0 implies ¢,(z) = §(x)

>0

@ At LHC energies valence quarks still carry 20% of pion momentum

o the gluon distribution saturates at (z g(z)) ~ 55%

@ Asymptotia is a long way away!
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Pion Elastic Form Factor

@ Extended the pre-experiment DSE
prediction to Q? > 4 GeV?

@ Predict max at Q? ~ 6 GeV?; within
domain accessible at JLab12

@ Magnitude directly related to DCSB " using asymptotic pion poA—""
0 ‘ ‘ ‘
0 5 10 15 20
@ The QCD prediction can be expressed as @Q?
2342 IR
QF(@) © H 16 Lay(@) wd wp = 5/0 de 2 ¢n(2)

@ Using o7 () significantly underestimates experiment

@ Within DSEs there is consistency between the direct pion form factor
calculation and that obtained using the DSE pion PDA

o 15% disagreement explained by higher order/higher-twist corrections

@ We predict that QCD power law behaviour sets in at Q*> ~ 8 GeV?
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Kaon PDAs from Lattice QCD

[R. Arthur, P. A. Boyle, et al., Phys. Rev. D 83, 074505 (2011)]

Meson PDA moments obtained using numerical simulations of lattice-regularised
QCD with Ng =2+ 1 domain-wall fermions and nonperturbative renormalisation
of lattice operators [30]: linear extrapolation to physical pion mass, MS-scheme at
¢ =2 GeV, two lattice volumes. The first error is statistical, the second represents
an estimate of systematic errors, including those from the s-quark mass, discretisa-

tion and renormalisation.

Meson ((x=%)") 163 x 32 4% x 64

F.4 n=2 0.25(1)(2) 0.28(1)(2)
P n=2 025(2)(2) 027(1)(2)
) n=2 025(2)(2) 025(2)(1)
K n=1 0.035(2)(2) 0.036(1)(2)
Kf n=1 0.037(1)(2) 0.043(2)(3)
K n=2 025(1)(2) 0.26(1)(2)
Ki n=2 025(1)(2) 025(2)(2)
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@ For the kaon lattice can determine two non-trivial moments; Generalization:

g ~x*(1— x)ﬁ;

162 x 32

3 % 64

a=056102 B =045T017

a=048"512 B =0.38"017

@ Forkaon (x —7) #0 [z =1 — z] skews PDA
o skewness is a measure of SU(3) flavour breaking
o peak of kaon PDA shifted by 10% from = = 1/2; SU(3) flavour breaking ~ 10%

e DCSB masks flavour breaking; naive expectation m,/m, ~ 25
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Kaon/Pion form factor ratio from Lattice QCD

° QCD prediCtion: [J. Segovia, L. Chang, ICC, et al., Phys. Lett. B 731, 13 (2014)]
Aol . -
Q2 Frs(@?)° 2 ®P16r 2 0y (@) why; Q2 = 4GeV? 163 x 32 243 x 64
WPSZ% fol dx % eps(z) FK (QQ)/FW (QQ) 1211—(1)33 0741%%%

@ From QCD relation can make lattice-based estimate for Fi (Q?)/F,(Q?)

@ What should we expect for this ratio?
e at Q% = 0 charge conservation implies: Fr(0)/Fr(0) =1
e in conformal limit, Q% = oo, must have:  Fi(00)/Fy(00) = f2/f2 ~ /2

e expect Fi(Q?)/F,(Q?) to grow monotonically toward conformal limit; to do
otherwise would require a new dynamically generated mass scale

@ expectation is supported by DSE predictions: Fx /F, = 1.13 at Q% = 4GeV?
@ Central value obtained from 16% x 32 lattice is consistent with expectations
and DSE prediction (albeit with large errors)

@ 243 x 64 lattice result suggests this larger lattice produces a pion PDA which
is too broad
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Nucleon Electromagnetic Form Factors

@ Elastic form factors provide information on the momentum space
distribution of charge and magnetization within the nucleon

@ Accurate form factor measurements are creating a paradigm shift in our
understanding of hadron structure; e.g.

e proton radius puzzle, y1, G, /G nrp ratio and a possible zero in G,
o flavour decomposition and diquark correlations
o tests perturbation QCD scaling predictions

@ In the DSEs the nucleon current is given by:

‘<>E D
I@‘ D =T +Tf; quTh =0

.17 =Q [S7'() - S~ ()]
@ Feedback with experiment can constrain DSE quark—gluon vertex

@ Knowledge of quark—gluon vertex provides a,(Q?) within DSEs

@ also gives the S-function which may shed light on confinement
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[ICC, W. Bentz, A. W. Thomas, to be published] [L. Chang, Y. -X. Liu, C. D. Roberts, PRL 106, 072001 (2011)]
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@ EM properties of a spin-1 point particle are characterized by two quantities:
@ charge: ¢ &  magnetic moment: u
@ Strong gluon cloud dressing produces — from a massless quark — a dressed
quark with M ~ 400 MeV
@ expect gluon dressing to produce non-trival EM structure for a dressed quark
@ analogous to pion dressing on nucleon giving large anomalous magnetic moment
@ A large quark anomalous chromomagnetic moment in the quark-gluon
vertex — produces a large quark anomalous electromagnetic moment
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Proton G /G ), Ratio

[L. Chang, Y. -X. Liu, C. D. Roberts, Phys. Rev. Lett. 106, 072001 (2011)] [ICC, C. D. Roberts, PPNP, in press (2014)]

0.6 T T T T
— with acm/aem term
1.0 4
0.4 = = = without acm/aem term
g
0.2 O}
~
L:} 0.5 4
0.0F )
I
-0.2
0 +
0.4 . . . \
0 2 4 6 8 10
p/M_ Q° (GeV?)

@ Latest results include effect from anomalous chromomagnetic moment term
in the quark—gluon vertex

@ generates large anomalous electromagnetic term in quark—photon vertex

@ Quark anomalous magnetic moment required for good agreement with data
e important for low to moderate 2

@ For massless quarks anomalous chromomagnetic moment is only possible
via DSCB
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Proton G form factor and DCSB Argggne'

[I. C. Cloét, C. D. Roberts and A. W. Thomas, Phys. Rev. Lett. 111, 101803 (2013)]
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@ Find that slight changes in M (p) on the domain 1 < p < 3GeV have a
striking effect on the Gg /G proton form factor ratio
@ position of zero, or lack thereof, in GG is extremely sensitive to underlying
quark-gluon dynamics
@ Zeroin Gg = F; — % F5 largely determined by evolution of Q? F,
@ F5 is sensitive to DCSB through the dynamically generated quark anomalous
electromagnetic moment — vanishes in perturbative limit
o the quicker the perturbative regime is reached the quicker F» — 0
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Proton G g form factor and DCSB

a =20

[I. C. Cloét, C. D. Roberts and A. W. Thomas, Phys. Rev. Lett. 111, 101803 (2013)]
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@ Recall: Gg =F, —

@ Only G is senitive to these small
changes in the mass function

41\[2 Iy

@ Accurate determination of zero
crossing would put important
contraints on quark-gluon
dynamics within DSE framework
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Conclusion

@ QCD and therefore Hadron Physics is unique:
o must confront a fundamental theory in which the elementary degrees-of-freedom

are intangible (confined) and only composites (hadrons) reach detectors

@ QCD will only be solved by deploying a diverse array of experimental and
theoretical methods:

o must define and solve the problems of confinement and its relationship with DCSB

@ These are two of the most important challenges in fundamental Science

@ Both DSEs and lattice QCD agree that the pion PDA is significantly broader
than the asymptotic result
@ using LO evolution find dilation remains significant for Q? > 100 GeV?
e asymptotic form of pion PDA only guaranteed to be valid when ¢7 (z) o< 6(x)

@ Feedback with EM form factor measurements can constrain QCD’s
quark—gluon vertex within the DSE framework

e knowledge of quark—gluon vertex provides as(Q?) within DSEs < confinement
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