Images of Dynamical Chiral Symmetry Breaking

Ian Cloët **Argonne National Laboratory**

Collaborators

Lei Chang Craig Roberts Sebastian Schmidt Jorge Segovia – ANL Peter Tandy

Adelaide – ANL Jülich Kent State

MESON 2014 Krakow, 29 May – 3 June 2014

The Challenge of QCD

- QCD is the only known example in nature of a fundamental quantum field theory that is innately non-perturbative
 - *a priori* no idea what such a theory can produce
- Solving QCD will have profound implications for our understanding of the natural world
 - e.g. it will explain how massless gluons and light quarks bind together to form hadrons, and thereby explain the origin of $\sim 98\%$ of the mass in the visible universe
 - given QCDs complexity, the best promise for progress is a strong interplay between experiment and theory
- QCD is characterized by two emergent phenomena:
 - confinement & dynamical chiral symmetry breaking (DCSB)
 - a world without DCSB would be profoundly different, e.g. $m_{\pi} \sim m_{\rho}$
- Must discover the origin of confinement, its relationship to DCSB and understand how these phenomenon influence hadronic obserables

QCDs Dyson-Schwinger Equations

- The equations of motion of QCD \iff QCDs Dyson–Schwinger equations
 - an infinite tower of coupled integral equations
 - must implement a symmetry preserving truncation
 - The most important DSE is QCDs gap equation \implies quark propagator

• ingredients - dressed gluon propagator & dressed quark-gluon vertex

$$S(p) = \frac{Z(p^2)}{i \not p + M(p^2)}$$

• S(p) has correct perturbative limit

- mass function, $M(p^2)$, exhibits dynamical mass generation
- complex conjugate poles
 - no real mass shell \Longrightarrow confinement

Pion's Parton Distribution Amplitude

- pion's PDA $\varphi_{\pi}(x)$: is a probability amplitude that describes the momentum distribution of a quark and antiquark in the bound-state's valence Fock state
 - it's a function of the lightcone momentum fraction $x = \frac{k^+}{p^+}$ and the scale Q^2

PDAs enter numerous hard exclusive scattering processes

Pion's Parton Distribution Amplitude

- **pion's PDA** $\varphi_{\pi}(x)$: *is a probability amplitude that describes the momentum distribution of a quark and antiquark in the bound-state's valence Fock state*
 - it's a function of the lightcone momentum fraction $x = \frac{k^+}{p^+}$ and the scale Q^2
- The pion's PDA is defined by

$$f_{\pi} \varphi_{\pi}(x) = Z_2 \int \frac{d^4k}{(2\pi)^2} \,\delta\left(k^+ - x \,p^+\right) \operatorname{Tr}\left[\gamma^+ \gamma_5 \,S(k) \,\Gamma_{\pi}(k,p) \,S(k-p)\right]$$

• $S(k) \Gamma_{\pi}(k,p) S(k-p)$ is the pion's Bethe-Salpeter wave function

- in the non-relativistic limit it corresponds to the Schrodinger wave function
- φ_π(x): is the axial-vector projection of the pion's Bethe-Salpeter wave function onto the light-front [pseudo-scalar projection also non-zero]
- Pion PDA is interesting because it is calculable in perturbative QCD and, e.g., in this regime governs the Q² dependence of the pion form factor

$$Q^2 F_{\pi}(Q^2) \xrightarrow{Q^2 \to \infty} 16 \pi f_{\pi}^2 \alpha_s(Q^2) \qquad \Longleftrightarrow \qquad \varphi_{\pi}^{\text{asy}}(x) = 6 x (1-x)$$

QCD Evolution & Asymptotic PDA

ERBL (Q^2) evolution for pion PDA [c.f. DGLAP equations for PDFs]

$$\mu \frac{d}{d\mu} \, \varphi(x,\mu) = \int_0^1 dy \, V(x,y) \, \varphi(y,\mu)$$

This evolution equation has a solution of the form

$$\varphi_{\pi}(x,Q^2) = 6 x (1-x) \left[1 + \sum_{n=2,4,\dots} a_n^{3/2}(Q^2) C_n^{3/2}(2x-1) \right]$$

- α = 3/2 because in Q² → ∞ limit QCD is invariant under the collinear conformal group SL(2; ℝ)
- Gegenbauer- $\alpha = 3/2$ polynomials are irreducible representations $SL(2;\mathbb{R})$
- The coefficients of the Gegenbauer polynomials, $a_{\pi}^{3/2}(Q^2)$, evolve logarithmically to zero as $Q^2 \to \infty$: $\varphi_{\pi}(x) \to \varphi_{\pi}^{asy}(x) = 6 x (1-x)$
- At what scales is this a good approximation to the pion PDA

• E.g., AdS/QCD find $\varphi_{\pi}(x) \sim x^{1/2} (1-x)^{1/2}$ at $Q^2 = 1 \text{ GeV}^2$ expansion in terms of $C_n^{3/2}(2x-1)$ convergences slowly: $a_{32}^{3/2}/a_2^{3/2} \sim 10\%$

Pion PDA from the DSEs

Both DSE results, each using a different Bethe-Salpeter kernel, exhibit a pronounced broadening compared with the asymptotic pion PDA

- scale of calculation is given by renormalization point $\zeta = 2 \,\text{GeV}$
- Broading of the pion's PDA is directly linked to DCSB
- As we shall see the dilation of pion's PDA will influence the Q^2 evolution of the pion's electromagnetic form factor

Pion PDA from lattice QCD

Standard practice to fit first coefficient of "asymptotic expansion" to moment

$$\varphi_{\pi}(x,Q^2) = 6 x (1-x) \left[1 + \sum_{n=2,4,\dots} a_n^{3/2}(Q^2) C_n^{3/2}(2x-1) \right]$$

- however this expansion is guaranteed to converge rapidly only when $Q^2
 ightarrow \infty$
- this procedure results in a *double-humped* pion PDA
- Advocate using a generalized expansion

$$\varphi_{\pi}(x,Q^2) = N_{\alpha} x^{\alpha - 1/2} (1-x)^{\alpha - 1/2} \left[1 + \sum_{n=2, 4, \dots} a_n^{\alpha}(Q^2) C_n^{\alpha}(2x-1) \right]$$

• Find $\varphi_{\pi} \simeq x^{\alpha} (1-x)^{\alpha}$, $\alpha = 0.35^{+0.32}_{-0.22}$; good agreement with DSE: $\alpha \simeq 0.30$ table of contents MESON 29 May - 3 June 8/20

Pion PDA from lattice QCD

Standard practice to fit first coefficient of "asymptotic expansion" to moment

$$\varphi_{\pi}(x,Q^2) = 6 x (1-x) \left[1 + \sum_{n=2,4,\dots} a_n^{3/2}(Q^2) C_n^{3/2}(2x-1) \right]$$

- however this expansion is guaranteed to converge rapidly only when $Q^2 o \infty$
- this procedure results in a *double-humped* pion PDA
- Advocate using a generalized expansion

$$\varphi_{\pi}(x,Q^2) = N_{\alpha} x^{\alpha - 1/2} \left[1 + \sum_{n=2, 4, \dots} a_n^{\alpha}(Q^2) C_n^{\alpha}(2x-1) \right]$$

• Find $\varphi_{\pi} \simeq x^{\alpha}(1-x)^{\alpha}$, $\alpha = 0.35^{+0.32}_{-0.24}$; good agreement with DSE: $\alpha \simeq 0.30$

When is the Pion's PDA Asymptotic

• Under leading order Q^2 evolution the pion PDA remains broad to well above $Q^2 > 100 \text{ GeV}^2$, compared with $\varphi_{\pi}^{\text{asy}}(x) = 6 x (1 - x)$

• Consequently, the asymptotic form of the pion PDA is a poor approximation at all energy scales that are either currently accessible or foreseeable in experiments on pion elastic and transition form factors

• Importantly, $\varphi_{\pi}^{\text{asy}}(x)$ is only guaranteed be an accurate approximation to $\varphi_{\pi}(x)$ when pion valence quark PDF satisfies: $q_{v}^{\pi}(x) \sim \delta(x)$

This is far from valid at forseeable energy scales

When is the Pion's Valence PDF Asymptotic

LO QCD evolution of momentum fraction carried by valence quarks

$$\left\langle x \, q_v(x) \right\rangle(Q^2) = \left(\frac{\alpha_s(Q^2)}{\alpha_s(Q_0^2)}\right)^{\gamma_{qq}^{(0)2}/(2\beta_0)} \left\langle x \, q_v(x) \right\rangle(Q_0^2) \quad \text{where} \quad \frac{\gamma_{qq}^{(0)2}}{2\beta_0} > 0$$

• therefore, as $Q^2 \to \infty$ we have $\langle x q_v(x) \rangle \to 0$ implies $q_v(x) = \delta(x)$

• At LHC energies valence quarks still carry 20% of pion momentum

• the gluon distribution saturates at $\langle x g(x) \rangle \sim 55\%$

Asymptotia is a long way away!

table of contents

Pion Elastic Form Factor

- Extended the pre-experiment DSE prediction to Q² > 4 GeV²
- Predict max at Q² ≈ 6 GeV²; within domain accessible at JLab12
- Magnitude directly related to DCSB

$$Q^2 F_{\pi}(Q^2) \overset{Q^2 \gg \Lambda^2_{
m QCD}}{\sim} 16 \pi f_{\pi}^2 \, lpha_s(Q^2) \, m{w}_{\pi}^2; \qquad m{w}_{\pi} = rac{1}{3} \int_0^1 dx \, rac{1}{x} \, arphi_{\pi}(x) \, dx$$

- Using $\varphi_{\pi}^{asy}(x)$ significantly underestimates experiment
- Within DSEs there is consistency between the direct pion form factor calculation and that obtained using the DSE pion PDA
 - 15% disagreement explained by higher order/higher-twist corrections

• We predict that QCD power law behaviour sets in at $Q^2 \sim 8 \, {
m GeV^2}$

Kaon PDAs from Lattice QCD

[R. Arthur, P. A. Boyle, et al., Phys. Rev. D 83, 074505 (2011)]

Meson PDA moments obtained using numerical simulations of lattice-regularised QCD with $N_f = 2 + 1$ domain-wall fermions and nonperturbative renormalisation of lattice operators [30]: linear extrapolation to physical pion mass, MS-scheme at $\zeta = 2$ GeV, two lattice volumes. The first error is statistical, the second represents an estimate of systematic errors, including those from the s-quark mass, discretisation and renormalisation.

Meson	$\langle (x - \bar{x})^n \rangle$	$16^3 \times 32$	$24^3 \times 64$
π	n = 2	0.25(1)(2)	0.28(1)(2)
ρ_{\parallel}	n = 2	0.25(2)(2)	0.27(1)(2)
ϕ	n = 2	0.25(2)(2)	0.25(2)(1)
K	n = 1	0.035(2)(2)	0.036(1)(2)
K*	n = 1	0.037(1)(2)	0.043(2)(3)
ĸ	n = 2	0.25(1)(2)	0.26(1)(2)
K [*]	n = 2	0.25(1)(2)	0.25(2)(2)

For the kaon lattice can determine two non-trivial moments; Generalization:

$(2, 2) m^{\alpha} (1, m)^{\beta}$	$16^3 \times 32$	$\alpha = 0.56^{+0.21}_{-0.18}$	$\beta = 0.45^{+0.19}_{-0.16}$
$\varphi_K \cong x \ (1-x)^{r} ;$	$24^3 \times 64$	$\alpha = 0.48^{+0.19}_{-0.16}$	$\beta = 0.38^{+0.17}_{-0.15}$

For kaon $\langle x - \bar{x} \rangle \neq 0$ [$\bar{x} = 1 - x$] skews PDA

- skewness is a measure of SU(3) flavour breaking
- peak of kaon PDA shifted by 10% from x = 1/2; SU(3) flavour breaking $\sim 10\%$
- DCSB masks flavour breaking; naive expectation $m_s/m_q \simeq 25$

[J. Segovia, L. Chang, ICC, et al., Phys. Lett. B 731, 13 (2014)]

Kaon/Pion form factor ratio from Lattice QCD

QCD prediction:

[J. Segovia, L. Chang, ICC, et al., Phys. Lett. B 731, 13 (2014)]

- From QCD relation can make lattice-based estimate for $F_K(Q^2)/F_{\pi}(Q^2)$
- What should we expect for this ratio?
 - at $Q^2 = 0$ charge conservation implies: $F_K(0)/F_{\pi}(0) = 1$
 - in conformal limit, $Q^2 = \infty$, must have: $F_K(\infty)/F_{\pi}(\infty) = f_K^2/f_{\pi}^2 \simeq \sqrt{2}$
 - expect $F_K(Q^2)/F_{\pi}(Q^2)$ to grow monotonically toward conformal limit; to do otherwise would require a new dynamically generated mass scale
 - expectation is supported by DSE predictions: $F_K/F_{\pi} = 1.13$ at $Q^2 = 4 \,\text{GeV}^2$
- Central value obtained from 16³ × 32 lattice is consistent with expectations and DSE prediction (albeit with large errors)
- 24³ × 64 lattice result suggests this larger lattice produces a pion PDA which is too broad

Nucleon Electromagnetic Form Factors

- Elastic form factors provide information on the *momentum space* distribution of charge and magnetization within the nucleon
- Accurate form factor measurements are creating a paradigm shift in our understanding of hadron structure; e.g.
 - proton radius puzzle, $\mu_p G_{Ep}/G_{Mp}$ ratio and a possible zero in G_{Ep}
 - flavour decomposition and diquark correlations
 - tests perturbation QCD scaling predictions
- In the DSEs the nucleon current is given by:

- Feedback with experiment can constrain DSE quark-gluon vertex
- Solution Knowledge of quark–gluon vertex provides $\alpha_s(Q^2)$ within DSEs
 - also gives the β -function which may shed light on confinement

Dressed Quarks are not Point Particles

EM properties of a spin-¹/₂ point particle are characterized by two quantities:
 charge: e & magnetic moment: μ

Strong gluon cloud dressing produces – from a massless quark – a dressed quark with $M \sim 400 \,\text{MeV}$

• expect gluon dressing to produce non-trival EM structure for a dressed quark

• analogous to pion dressing on nucleon giving large anomalous magnetic moment

• A large quark anomalous chromomagnetic moment in the quark-gluon vertex – *produces a large quark anomalous electromagnetic moment*

Proton G_E/G_M **Ratio**

[L. Chang, Y. -X. Liu, C. D. Roberts, Phys. Rev. Lett. 106, 072001 (2011)]

[ICC, C. D. Roberts, PPNP, in press (2014)]

- Latest results include effect from anomalous chromomagnetic moment term in the quark–gluon vertex
 - generates large anomalous electromagnetic term in quark-photon vertex

• Quark anomalous magnetic moment required for good agreement with data

- important for low to moderate Q^2
- For massless quarks anomalous chromomagnetic moment is only possible via DSCB

Proton G_E form factor and **DCSB**

Find that slight changes in M(p) on the domain $1 \leq p \leq 3$ GeV have a striking effect on the G_E/G_M proton form factor ratio

• position of zero, or lack thereof, in G_E is extremely sensitive to underlying quark-gluon dynamics

• Zero in $G_E = F_1 - \frac{Q^2}{4M_N^2} F_2$ largely determined by evolution of $Q^2 F_2$

- F₂ is sensitive to DCSB through the dynamically generated quark anomalous electromagnetic moment *vanishes in perturbative limit*
- the quicker the perturbative regime is reached the quicker $F_2 \rightarrow 0$

Proton G_E form factor and **DCSB**

- Recall: $G_E = F_1 \frac{Q^2}{4 M_N^2} F_2$
- Only G_E is senitive to these small changes in the mass function
- Accurate determination of zero crossing would put important contraints on quark-gluon dynamics within DSE framework

Conclusion

- QCD and therefore Hadron Physics is unique:
 - must confront a fundamental theory in which the elementary degrees-of-freedom are intangible (confined) and only composites (hadrons) reach detectors
- QCD will only be solved by deploying a diverse array of experimental and theoretical methods:
 - must define and solve the problems of confinement and its relationship with DCSB
- These are two of the most important challenges in fundamental Science
- Both DSEs and lattice QCD agree that the pion PDA is significantly broader than the asymptotic result
 - using LO evolution find dilation remains significant for $Q^2 > 100 \,{\rm GeV^2}$
 - asymptotic form of pion PDA only guaranteed to be valid when $q_v^{\pi}(x) \propto \delta(x)$
- Feedback with EM form factor measurements can constrain QCD's quark–gluon vertex within the DSE framework
 - knowledge of quark–gluon vertex provides $\alpha_s(Q^2)$ within DSEs \Leftrightarrow confinement