Motivation	Experiment	$N\eta$		Summary

Photoproduction of Mesons from the Quasi–Free Nucleons

Presented by Irakli Keshelashvili

University of Basel

May 29th, 2014

Motivation	Experiment	$^{N\pi^{o}}_{000000000}$	$^{N\eta}$	$N \pi^{o} \pi^{x}$ 00000000	$N\pi^{o}\eta$ 0000	Summary
Outline						

- Motivation
- 2 Experiment
 - Crystal Ball / TAPS at MAMI (Uni. Mainz)
 - \bullet Crystal Barrel / TAPS at ELSA (Uni. Bonn)

3
$$N\pi^{o}$$

• $\gamma d \rightarrow N\pi^{0}(N_{sp.})...$
4 $N\eta$
• $\gamma d \rightarrow N\eta(N_{sp.})$ and $\gamma^{3}He \rightarrow N\eta(X_{sp.})...$
• $\vec{\gamma}\vec{d} \rightarrow N\eta(N_{sp.})...$
5 $N\pi^{o}\pi^{x}$
• $\vec{\gamma}d \rightarrow N\pi^{0}\pi^{0}(N_{sp.})$ and $N\pi^{0}\pi^{\pm}(N_{sp.})...$
6 $N\pi^{o}\eta$
• $\gamma d \rightarrow N\pi^{0}\eta(N_{sp.})...$
7 Summary

First Level of Complication / Unknown NDF

Motivation	Experiment					Summary
0000	00000000000	000000000	0000000000	00000000	0000	00

Low – Lying Excited States and η as an Isospin Filter

Known Excited States - Constituent Quark Model (S. Capstick and W. Roberts)

Motivation	Experiment					Summary
0000	0000000000	00000000	0000000000	0000000	0000	00

Nucleon Resonances from Lattice QCD

Basic features agree with expectations from $SU(3) \otimes O(3)$ symmetry:

- counting of levels consistent with non-relativistic quark model
- no parity doublets
- Lattice results of course in very early state, m_{π} =400 MeV...

Motivation	Experiment			Summary

Experiment

Motivation	Experiment ●O000000000	$N\pi^o$ 000000000	$^{N\eta}$ 000000000000000000000000000000000000	$N\pi^o\pi^x$ 00000000	$N \pi^{o} \eta$ 0000	Summary 00
Exportmor	at. Cotup					

Experiment: Setup

Electron scattering

Bremsstrahlung 1895 Röntgen^(N)

Compton^(N) scattering 1906 Thomson^(N)

Bethe^(N) - Heitler 1932 Anderson^(N)

MotivationExperiment $N\pi^o$ $N\eta$ $N\pi^o\pi^x$ $N\pi^o\eta$ Summary000

MAinzer MIcrotron - MAMI (Continuous wave elecron accelerator)

$\mathsf{E}_e pprox 1.6 \; \mathsf{GeV} \; (I_{unp.} < 100 \mu \mathsf{A} \; \mathsf{or} \; I_{pol.} < 20 \mu \mathsf{A})$

Motivation	Experiment					Summary
0000	000000000000000000000000000000000000000	000000000	00000000000	00000000	0000	00

Glasgow Tagger System

Motivation	Experiment	$N\eta$ 00000000000		Summary

The Crystal Ball / TAPS Detector at MAMI

- Crystal Ball: 672×Nal (16X₀) PMT read-out
- PID: 24×[4mm] φ symetric
 Plastic scintillator barrel
- MWPC: 2×3 layer
- **TAPS**: 370×BaF₂ & 72×PbWO₄ PMT read-out
- VETO: 384×[5mm] Plastic scintillator wall
- Hardware trigger $L1-\Sigma E_i \& L2$ -Multi.

$\sim 4\pi$ acceptance

Motivation	Experiment					Summary
0000	00000000000	000000000	00000000000	00000000	0000	00

Electron Stretcher Accelerator - ELSA

The Crystal Barrel / TAPS Detector at ELSA

Motivation Experiment Summary 000000000000

Frozen Spin Target @ Uni. Bonn

Polarization ~80 %

Bonn: H. Dutz, S. Goertz

Motivation 0000	Experiment ○○○○○○○●○○	$N\pi^o$ 00000000	$^{N \eta}$ 00000000000	$N\pi^o\pi^x$ 00000000	$N\pi^{o}\eta$ 0000	Summary
Simplified	Overview					

Motivation 0000	Experiment ○○○○○○○○●○	$^{N\pi^{o}}_{000000000}$	$^{N \eta}$ 00000000000	$N\pi^o\pi^x$ 00000000	$N \pi^{o} \eta$ 0000	Summary 00	
Reaction Identification							

•Neutral and charged particles:

$$\begin{array}{c|c} \operatorname{decay} & \sigma_p & \sigma_n & \sigma_{\operatorname{incl}} \\ \operatorname{channel} & \gamma p \to \eta p & \gamma n \to \eta n & \gamma N \to \eta N \\ \eta \to 2\gamma & 2n_\eta \& 1c_p & 2n_\eta \& 1n_n & 2n \mid \sigma_p \mid \sigma_n \\ \eta \to 6\gamma & 6n_\eta \& 1c_p & 6n_\eta \& 1n_n & 6n \mid \sigma_p \mid \sigma_n \end{array}$$

$\bullet {\rm Find}$ best combination with χ^2 test:

$$\eta \to 2\gamma \ (\sigma_n, \ \sigma_{incl}): \qquad \qquad \chi^2 = \frac{(m_k(\gamma\gamma) - m_\eta)^2}{(\Delta m_k(\gamma\gamma))^2} \quad k = 1, ..., 3$$
$$\eta \to 6\gamma: \qquad \qquad \chi^2 = \sum_{k=1}^3 \frac{(m_k(\gamma\gamma) - m_{\pi^0})^2}{(\Delta m_k(\gamma\gamma))^2}$$

Invariant Mass Distributions (shown for ³He - data)

- Nntegrate $M_{\gamma\gamma}(E, \cos(\theta))$ between 450 and 630 MeV
- Normalize with photon flux
- Detection efficiency correction (MC)
- Nucleon detection efficiency correction (hydrogen data)

$$\gamma + p \rightarrow \eta(6g) + p \qquad \gamma + p \rightarrow \pi^0(2\gamma) + \pi^+ + n$$

Motivation	Experiment	$N\pi^{o}$		Summary

Results

- $\gamma d \to N \pi^0(N_{sp.})$
- $\gamma d \rightarrow N \eta (N_{sp.})$ and $\gamma^3 He \rightarrow N \eta (X_{sp.})$
- $\vec{\gamma}\vec{d} \rightarrow N\eta(N_{sp.})$
- $\vec{\gamma}d \rightarrow N\pi^0\pi^0(N_{sp.})$ and $N\pi^0\pi^{\pm}(N_{sp.})$
- $\gamma d \rightarrow N \pi^0 \eta(N_{sp.})$

 Motivation
 Experiment
 $N\pi^{o}$ $N\eta$ $N\pi^{o}\pi^{x}$ $N\pi^{o}\eta$ Summary

 0000
 000000000
 000000000
 00000000
 0000
 000
 000

 Ph.D. Work of Manuel Dieterle
 V

PRL 112, 142001 (2014)

PHYSICAL REVIEW LETTERS

week ending 11 APRIL 2014

Photoproduction of π^0 Mesons off Neutrons in the Nucleon Resonance Region

M. Dieterle,¹ I. Keshelashvili,¹ J. Ahrens,² J. R. M. Annand,³ H. J. Arends,² K. Bantawa,⁴ P. A. Bartolome,² R. Beck,²⁵ V. Bekrenev,⁶ A. Braghieri,⁷ D. Branford,⁸ W. J. Briscoe,⁹ J. Brudvik,¹⁰ S. Chreepnya,¹¹ B. Demissie,⁹ E. J. Downie,^{2,39} P. Drexler,¹² L. V. Fil'kov,¹¹ A. Fix,¹³ D. I. Glazier,⁸ D. Hamilton,³ E. Heid,² D. Hornidge,¹⁴ D. Howdle,³ G. M. Huber,¹⁵ I. Jaegle,¹ O. Jahn,² T. C. Jude,⁸ A. Käser,¹ V. L. Kashevarov,^{2,11} R. Kondratiev,¹⁶ M. Korolija,¹⁷ S. P. Kruglov,⁶
B. Krusche,^{1,*} A. Kulbardis,⁶ V. Lisin,¹⁶ K. Livingston,³ I. J. D. MacGregor,³ Y. Maghrbi,¹ J. Mancell,³ D. M. Manley,⁴ Z. Marinickes,⁶ M. Martinez,² J. C. McGeorge,⁵ E. McNicoll,³ D. Mekterovic,¹⁷ V. Metag,¹² S. Micanovic,¹⁷ D. G. Middleton,¹⁴ A. Mushkarenkov,⁷ B. M. K. Neftens,¹⁰ A. Nikolaev,²⁵ R. Novotny,¹² M. Oberle,¹ M. Ostrick,² B. Oussena,^{2,9} P. Pedroni,⁷ F. Pheron,¹ A. Polonski,¹⁶ S. N. Prakhov,¹⁰ J. Robinson,³ G. Rosner,³ T. Rostomyan,¹ S. Schumann,^{2,5} M. H. Sikora,⁸ D. Sober,¹⁸ A. Starostin,¹⁰ I. Supek,¹⁷ M. Thiel,^{2,12} A. Thomas,² M. Unverzagt,^{2,5} D. P. Watts,⁸ D. Werthmüller,¹ and L. Witthauer¹ (Crystal Ball/TAPS experiment at MAMI, A2 Collaboration)

¹Department of Physics, University of Basel, Switzerland

SAID Data Base - http://gwdac.phys.gwu.edu/

Motivation	Experiment	$N\pi^{o}$ 00 \bullet 000000	$N \eta$	$N\pi^o\pi^x$ 00000000	$N\pi^{o}\eta$ 0000	Summary 00
Multipole A	Amplitudes					

Neutron measurement required for complete multipole decomposition

 η (Isoscalar):

$$\begin{aligned} A(\gamma p \to \eta p) &= A^{IS} + A^{IV} \\ A(\gamma n \to \eta n) &= A^{IS} - A^{IV} \end{aligned}$$

 π (lsovector):

$$\begin{aligned} A(\gamma p \to \pi^+ n) &= -\sqrt{\frac{1}{3}} A^{V3} + \sqrt{\frac{2}{3}} \left(A^{IV} - A^{IS} \right) \\ A(\gamma p \to \pi^0 p) &= +\sqrt{\frac{2}{3}} A^{V3} + \sqrt{\frac{1}{3}} \left(A^{IV} - A^{IS} \right) \\ A(\gamma n \to \pi^- p) &= +\sqrt{\frac{1}{3}} A^{V3} - \sqrt{\frac{2}{3}} \left(A^{IV} + A^{IS} \right) \\ - &- - \\ A(\gamma n \to \pi^0 n) &= +\sqrt{\frac{2}{3}} A^{V3} + \sqrt{\frac{1}{3}} \left(A^{IV} + A^{IS} \right) \end{aligned}$$

- MC signal - MC bg - MC total - 1.5σ cut + Data

p

• Compare Q.F.-inclusive cross section with sum of proton and neutron cross sections

 $\sigma(\gamma n \to n\pi^0) + \sigma(\gamma p \to p\pi^0) \approx$ $\approx \sigma(\gamma N \to \pi^0 X)$

- Good agreement between two reconstructions
- Good agreement with previous data
- Neutron identification/detection under control

Motivation 0000	Experiment	Nπ ⁰ 0000000000	$^{N \eta}$ 00000000000	$N\pi^o\pi^x$ 00000000	$N\pi^{o}\eta$ 0000	Summary

Proton Quasi-Free Cross Sections

$$\circ \ \gamma p \to p \pi^0 \quad \triangle \ \gamma n \to n \pi^0$$

--- SAID ····· MAID ---- BnGa

Irakli Keshelashvili (University of Basel) MESON2014 @ KRAKÓW

Motivation	Experiment	$N\pi^o$ 000000 \bullet 00	$^{N\eta}$ 000000000000000000000000000000000000	$N\pi^o\pi^x$ 00000000	$N \pi^{o} \eta$ 0000	Summary
<i>c</i> .:						

Correcting Final State Effects

- $\circ \gamma p \to p \pi^0$ --- SAID \bullet Factor F 1360 MeV 1420 MeV 1360 MeV • 1420 MeV 1480 MeV 1540 MeV 1480 MeV 1540 MeV dσ/dΩ [μb/sr] 1600 MeV 1660 MeV 1600 MeV 1660 MeV Ъ p^{free}/p⁴ -0000 1720 MeV 1780 MeV 1720 MeV 1780 MeV °00000000000 1840 MeV 1840 MeV 1900 MeV 1900 MeV amooon 000 0.5 -1 -0.5 n 0 0 0 $\cos(\theta_{\pi^0}^*)$ $\cos(\theta_{\pi^0}^*)$
- Assuming similar effects $\gamma p(n) \to p(n) \pi^0 \text{ as for}$ $\gamma n(p) \to n(p) \pi^0$
- Normalize to SAID $F = \frac{Q.F.(\gamma p \rightarrow p \pi^0)}{SAID(\gamma p \rightarrow p \pi^0)}$
- Apply to quasi-free neutron data!!!

Irakli Keshelashvili (University of Basel) MESON2014 @ KRAKÓW

W [MeV]

Motivation	Experiment	$N\pi^o$ 00000000	$^{N \eta}$ 00000000000	$N\pi^o\pi^x$ 00000000	$N\pi^{o}\eta$ 0000	Summary

Impact of the Data

• Small changes for I=3/2 low order resonant partial waves (fixed from $\gamma p \to p \pi^0)$

• Big change: $I = 1/2P_{11}(1440)$, $D_{13}(1700)$ (photon coupling changes sign) and non-resonant background contributions from u - & t-channel (mostly *t*-channel, i.e. vector-meson exchange)

Motivation	Experiment	$N\eta$		Summary

Results

•
$$\gamma d \to N \pi^0(N_{sp.})$$

• $\gamma d \to N\eta(N_{sp.})$ and $\gamma^3 He \to N\eta(X_{sp.})$

•
$$\vec{\gamma}\vec{d} \to N\eta(N_{sp.})$$

• $\vec{\gamma}d \rightarrow N\pi^0\pi^0(N_{sp.})$ and $N\pi^0\pi^{\pm}(N_{sp.})$

•
$$\gamma d \to N \pi^0 \eta(N_{sp.})$$

GRAAL collaboration

narrow structure in the XS

 $\gamma + d \rightarrow \eta + n(p)$

GRAAL, V.Kuznetsov et al., hep-ex 0606065

LNS @ Sendai (ELPH)

CBELSA/TAPS @ Bonn

 $W = 1660 MeV \& \Gamma \approx (25 \pm 12 MeV)$

ELSA, I.Jaeglé et al. Eur. Phys. J A47 (2011) 89

Total Cross Sections Vs Incident E_{γ}

 ${}^{3}\text{He}$ L. Witthauer, PhD thesis

MotivationExperiment $N\pi^o$ $N\eta$ $N\pi^o\pi^x$ $N\pi^o\eta$ Summary00

Differential Cross Sections Vs Incident E_{γ}

Cross Sections as function of...

• $\mathbf{W}_{\mathbf{B}}(\mathbf{E}_{\gamma}) : \sqrt{s}$ calculated with 4-momenta of initial state particles:

$$W_B^2 = (P_{\gamma} + P_{N,i})^2 = 2E_{\gamma}m_N + m_N^2$$

- Structures are smeared out because of Fermi motion

• $\mathbf{W}_{\mathbf{R}}(\eta \mathbf{N}) : \sqrt{s}$ calculated with measured 4-momenta of final state particles (η , participant nucleon):

$$W_R^2 = (P_\eta + P_{N,f})^2$$

- No effects from Fermi motion, but exp. resolution for recoil η & N

MetivationExperiment $N\pi^o$ $N\eta$ $N\pi^o\pi^x$ $N\pi^o\eta$ Summary000Diff100000

Differential Cross Sections Vs Reconstructed IM of ηN (W)

 ${}^{3}\text{He}$ L. Witthauer, PhD thesis

0000 000000000 0000000 0000000 0000000 0000 000	Motivation	Experiment	$N\eta$		Summary
			000000000000		

Results

•
$$\gamma d \to N \pi^0(N_{sp.})$$

•
$$\gamma d \to N\eta(N_{sp.})$$
 and $\gamma^3 He \to N\eta(X_{sp.})$

•
$$\vec{\gamma}\vec{d} \to N\eta(N_{sp.})$$

•
$$\vec{\gamma}d \rightarrow N\pi^0\pi^0(N_{sp.})$$
 and $N\pi^0\pi^{\pm}(N_{sp.})$

•
$$\gamma d \to N \pi^0 \eta(N_{sp.})$$

 $\sigma_{_{3/2}}$ $\xrightarrow{+1}$ $^{+1/2}$

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma_0}{d\Omega} (1 \pm P_T P_{\odot} E)$$
$$E = \frac{N_{1/2} - N_{3/2}}{N_{1/2} + N_{3/2}} \frac{1}{P_{\odot} P_T} \frac{1}{d}$$

E for $\vec{\gamma}\vec{p} \rightarrow p\pi^0$, M. Gottschall et al., PRL 112, 012003 (2014)

Motivation Experiment $N\eta$ Summary 000000000000

Double Polarization Observable E – Exclusive (Preliminary)

• $\gamma p \rightarrow p \eta$ • C subtracted --- BnGa - MAID

Motivation	Experiment		$N\pi^{o}\pi^{x}$	Summary

Results

•
$$\gamma d \to N \pi^0(N_{sp.})$$

•
$$\gamma d \to N\eta(N_{sp.})$$
 and $\gamma^3 He \to N\eta(X_{sp.})$

•
$$\vec{\gamma}\vec{d} \to N\eta(N_{sp.})$$

• $\vec{\gamma}d \rightarrow N\pi^0\pi^0(N_{sp.})$ and $N\pi^0\pi^{\pm}(N_{sp.})$

•
$$\gamma d \to N \pi^0 \eta(N_{sp.})$$

Motivation	Experiment			$N\pi^{o}\pi^{x}$		Summary
0000	00000000000	000000000	00000000000	•0000000	0000	00

Ph.D. Work of Markus Oberle

	Physics Letters B 721 (2013) 237-243	
	Contents lists available at SciVerse ScienceDirect	PHYSICS LETTERS 8
	Physics Letters B	
ELSEVIER	www.elsevier.com/locate/physletb	
Measureme of π^0 -pairs	nt of the beam-helicity asymmetry I^{\odot} in the photoproduction off the proton and off the neutron	on .
M. Oberle ^a , B. R. Beck ^e , V. Be	Krusche ^{a,} *, J. Ahrens ^D , J.R.M. Annand ^C , H.J. Arends ^D , K. Bantawa ^d , P.A. Barto ekrenev ^f , H. Berghäuser ^g A. Braghjeri ^h D. Branford ¹ , W.I. Briscoe ¹ , I. Brudwik	olome [®] ,
S. Cherepnya ¹ ,	B. Demissie ^j Eur. Phys. J. A (2014) 50 : 54	THE EUROPEAN
V.L. Kashevaro	v ^{1,b} , I. Keshela:	PHYSICAL JOURNAL A
K. Livingston ^c ,	I.J.D. MacGreg Regular Article – Experimental Physics	
A. Mushkarenk	kov ^h , B.M.K. Ne	
F. Pheron ^a , A. I M.H. Sikora ⁱ	Polonski ^p , S.N.	
D. Werthmülle	r ^a , L. Witthaut Measurement of the beam-helicity as	ymmetry I ^o in the
² Department of Physics, U	Iniversity of Baset, Charles photoproduction of $\pi^{\circ}\pi^{\perp}$ pairs off pro-	tons and off neutrons
	The Crystal Ball at MAMI, TAPS and A2 Collaborations	
	M. Oberle ¹ , J. Ahrens ² , J.R.M. Annand ³ , H.J. Arends ² , K. Bantawa H. Berghäuser ⁷ , A. Braghier ³ , D. Branford ⁹ , W.J. Briscoe ¹⁰ , J. Br M. Dieterle ¹ , E.J. Downic ³ -Al, P. Drezet ⁴ , T. L.V. Filkovi ² , A. Fix ¹ D. Howdle ³ , G.M. Huber ¹⁵ , O. Jahn ² , I. Jaegle ¹ , T.C. Jude ⁴ , A. Kä R. Kondratiev ¹⁶ , M. Korolija ¹⁷ , S.P. Kruglov ⁴ , B. Krusche ^{1,4} , A. Fi I.J.D. MacGregor ¹ , Y. Maginth ¹ , J. Mancell ⁹ , D. M. Manlev ¹ , Z. Mi E. McNicoll ⁹ , D. Mekterovic ¹⁷ , V. Metag ⁷ , S. Micanovic ¹⁷ , D.G. Mid A. Nikolaev ⁵ , R. Novotty ⁷ , M. Ostrick ¹ , S. Oussena ^{1,10} , P. Pedroni ⁸ J. Robinson ³ , G. Rosene ³ , T. Rostomyan ¹⁸ , S. Schumann ² , M.H. Si	⁴⁴ , P.A. Bartolome ⁷ , R. Beck ⁵ , V. Bekrenev ⁶ , udvik ¹¹ , S. Cherepnyal ² , B. Demissie ¹⁰ , ³ , D.I. Glazie ⁷ , E. Heid ² , D. Hornidge ¹⁴ , ser ¹ , V.L. Kashevarov ^{12,2} , I. Keshelashvill ¹ , fulbardis ⁶ , V. Lish ¹⁶ , K. Livingston ³ , ³ , Tinides ¹⁰ , M. Martinez ³ , J.C. McGeorge ³ , dleton ¹⁴ , A. Mushkarenkov ⁸ , B.M.K. Nefkens ¹¹ , ¹⁵ , F. Pheron ¹ , A. Polonsk ¹⁶ , S.N. Prakhov ¹¹ , torn ⁹ , D.I. Sober ¹⁸ , A. Starostin ¹¹ , I. Supek ¹⁷ ,

Motivation	Experiment	$N \pi^{o}$ 000000000	$^{N \eta}$ 00000000000	$N\pi^{o}\pi^{x}$	$N \pi^{o} \eta$ 0000	Summary 00
The Beam	n-Helicitv Asvmm	ietrv				

• Circularly polarized photon beam

$$I^{\odot}(\Phi) = \frac{1}{P_{\gamma}} \frac{d\sigma^+ - d\sigma^-}{d\sigma^+ + d\sigma^-} = \frac{1}{P_{\gamma}} \frac{N^+ - N^-}{N^+ + N^-}$$

- 3 body final state necessary
- Reaction plane: incoming photon and recoil nucleon
- Production plane: outgoing meson-pair
- Parity conservation $\Rightarrow I^{\odot}(\Phi) = -I^{\odot}(2\pi - \Phi)$
- For randomised pions $\Rightarrow I^{\odot}(\Phi) = I^{\odot}(\Phi + \pi)$
- Mass ordering: $m(\pi_1^0,N) \ge m(\pi_2^0,N)$

 Motivation
 Experiment
 $N\pi^{\circ}$ $N\eta$ $N\pi^{\circ}\pi^{x}$ $N\pi^{\circ}\eta$ Summary

 0000
 00000000
 000000000
 00000000
 00000000
 000
 000

 Δm and $\Delta \phi$ for the Charged Channel
 Δm Δm <

Coplanarity: $\Delta \phi$ of nucleon and meson

Missing Mass:
$$\Delta m(\pi\pi) = \left| P_{\gamma} + P_N - P_{\pi_1^0} - P_{\pi_2^0} \right| - m_N$$

Neutral channel doesn't suffer from the background !!!

Irakli Keshelashvili (University of Basel) MESON2014 @ KRAKÓW

Comparison to Previous Results

D. Krambrich et al., Phys. Rev. Lett. 103 (2009) 052002

Motivation	Experiment	$N\pi^o$ 000000000	$N\eta$ 000000000000000000000000000000000000	$N\pi^{o}\pi^{x}$	$N \pi^{o} \eta$ 0000	Summary

 $\pi^0 \pi^0 p$ for Free and Quasi-free Proton

Motivation	Experiment	$N \pi^{o}$ 000000000	$N \eta$	$N\pi^o\pi^x$ 000000000	$N \pi^{o} \eta$ 0000	Summary
Parameters	A_n for Neutral	Channels ($\pi^0\pi^0$	⁰)			

• $I^{\odot}(\Phi) = \sum_{n=1}^{4} A_n \sin(n\Phi)$

- Plot A_n as function of W
- $m(\pi_1^0, N) \ge m(\pi_2^0, N)$
- A₁ for proton reproduced good by most models
- A_2 for **proton** much less
- A₁ for neutron reproduced very good by A. Fix
- A_2 for neutron very poor

700

1200

200 700 200

700 200

700

200

0 700 200 m(π⁰ π^{+/-}) 700 200 700 1200

200 700 200 m(π⁰ π⁰)

0 絶 200

700 200 700

--- P.S. (M.C.) ★ Q.F. proton 🔻 Q.F. neutron 🔹 free proton

Motivation	Experiment		$N \pi^{o} \eta$	Summary

Results

•
$$\gamma d \to N \pi^0(N_{sp.})$$

• $\gamma d \to N \eta(N_{sp.})$ and $\gamma^3 He \to N \eta(X_{sp.})$

•
$$\vec{\gamma}\vec{d} \to N\eta(N_{sp.})$$

• $\vec{\gamma}d \rightarrow N\pi^0\pi^0(N_{sp.})$ and $N\pi^0\pi^{\pm}(N_{sp.})$

• $\gamma d \to N \pi^0 \eta(N_{sp.})$

- Investigated channel: $\gamma p \rightarrow \eta \pi^0 p$
- Result: Reaction is dominated by: $D_{33} \rightarrow \eta \Delta$

• Solid lines are theoretical calculations including only the $D_{\rm 33}$

Neutral Channels

Charged Channels

Charged Channels

Neutral Channels

•
$$\sigma(\pi^c p) = \sigma(\pi^c n) =$$
$$= \frac{1}{2}\sigma(\pi^0 p) = \frac{1}{2}\sigma(\pi^0 n)$$

 A simple theoretical calculation, considering only the Clebsch Gordan coefficients for the isospin couplings shows, that these ratios of the total cross sections suggest a decay-cascade of the form:

 $\begin{array}{l} \Delta^* \to \eta + \Delta^* \to \eta + \pi + N \text{ or } \\ \Delta^* \to \pi + N^* \to \eta + \pi + N \end{array}$

• The specific channel can than be identified via invariant mass distributions

Motivation 0000	Experiment	$^{N\pi^{o}}$ 000000000	$^{N\eta}$ 00000000000	$N\pi^o\pi^x$ 00000000	$N \pi^{o} \eta$ 0000	Summary ●○	
Summary & Outlook							

- $\gamma d \rightarrow N \pi^0(N_{sp.})$ First and very important measurement.
- $\gamma d \rightarrow N \eta(N_{sp.})$ and $\gamma^3 He \rightarrow N \eta(X_{sp.})$ First extraction of diff. distributions and two different nucleus.
- $\vec{\gamma}\vec{d} \rightarrow N\eta(N_{sp.})$ Polarization observable E.
- $\vec{\gamma}d \rightarrow N\pi^0\pi^0(N_{sp.})$ and $N\pi^0\pi^{\pm}(N_{sp.})$ Beam–Helicity Asymmetry.
- $\gamma d \rightarrow N \pi^0 \eta(N_{sp.})$ First measurement on quasi-free neutron and proton.

Motivation	Experiment					Summary
0000	0000000000	000000000	00000000000	00000000	0000	00

Thanks for your attention!

M. Dieterle, D. Werthmüller, L. Witthauer, M. Oberle, A. Käser and I. Keshelashvili Group of Prof. B. Krusche

This work is supported by: Swiss National Fund (SNF)

and Deutsche Forschungsgemeinschaft (DFG)