

Eta Meson Production in Proton-Deuteron Collisions

MESON 2014: 13th International Workshop on Meson Production, Properties and Interaction

29th May - 3rd June 2014

wissen.leben

WWU Münster

Institut für Kernphysik

Why η-Meson Production Close to Threshold?

• Attractive S-wave ηN interaction

R.S. Bhalerao and L.C. Liu, Phys. Rev. Lett. 54 (1985) 685

• Possible formation of η -nucleus bound states

Q. Haider and L.C. Liu, Phys. Lett. B172 (1986) 257

C. Wilkin, Phys. Rev. C47 (1993) 938

• Broad η -mesic nuclei program at COSY

- A>4: GEM (η⁷Be)
- η^4 He: ANKE, GEM, WASA-at-COSY
- η^{3} He: ANKE, COSY11, GEM, WASA-at-COSY
- ηd: ANKE
- New data from proton-deuteron collisions

Why η -Meson Production Close to Threshold?

• Do bound meson-nucleus systems exist?

- Excitation function close to threshold \rightarrow FSI
- Polarized beam \rightarrow Test of FSI hypothesis, role of spins

Results for the Reaction d+p \rightarrow $^{3}\text{He+}\eta$

- A good candidate for a bound state is the η^3 He-system
 - High precision data from ANKE and COSY-11
 - Observation of strong FSI
 - Strong indication for a pole b at |Q₀| ≈ 0.37 MeV
 - Further evidence for pole hypothesis by angular dependence of dp→η³He

T. Mersmann et al. , Phys. Rev. Lett. 98 (2007) 242301

The d+p \rightarrow $^{3}\text{He+}\eta$ Scattering Amplitude

Extracted scattering amplitude (Q > 0 MeV)

- Scattering amplitude decreases rapidly with increasing final state momentum p_f
- Scattering amplitude almost constant at high energies
 - → strong FSI in η³He system

Consideration of Higher Partial Waves: P-Waves

- Close to threshold: $d\sigma/d\Omega(\theta) = const. \rightarrow s-wave$
- Q > ~ 4 MeV: Contributions ~ $cos(\theta)$ visible $\rightarrow \rho$ -wave

• Asymmetry in the angular distribution (η -meson):

Slope at $\cos(\theta)=0$:

$$\alpha = \frac{d}{d(\cos\theta_{\eta})} \ln\left(\frac{d\sigma}{d\Omega}\right)\Big|_{\cos\theta_{\eta}=0} \qquad \left(\frac{d\sigma}{d\Omega}\right)_{CM} = \frac{\sigma_{tot}}{4\pi} \cdot \left(1 + \alpha \cdot \cos\theta_{CM}\right)_{CM}$$

Consideration of Higher Partial Waves: P-Waves

- Slope might arises from the interference between the *s*- and *p*-waves in the η³He system
- Indication of a strong phase variation of the s-wave at low Q
- Data (σ_{total} and dσ/dΩ) can be described well by assumption of a pole close to threshold

$$\left(\frac{d\sigma}{d\Omega}\right)_{CM} = \frac{\sigma_{tot}}{4\pi} \cdot \left(1 + \alpha \cdot \cos\theta_{CM}\right)$$

C. Wilkin et al., Phys. Rev. B 649 (2007) 92

Consideration of Higher Partial Waves: P-Waves

• Assumption: Only *s*- and *p*-waves Production operator:

C. Wilkin et al., PLB 654 (2007) 92

$$\hat{f} = A\vec{\varepsilon} \cdot \hat{p}_{p} + iB(\vec{\varepsilon} \times \vec{\sigma}) \cdot \hat{p}_{p} + C\vec{\varepsilon} \cdot \vec{p}_{\eta} + iD(\vec{\varepsilon} \times \vec{\sigma}) \cdot \vec{p}_{\eta}$$

- A, B: s-wave amplitudes
- *C*, *D*: *p*-wave amplitudes
- ε : polarisation vector of the deuteron

$$\frac{d\sigma}{d\Omega} = \frac{p_{\eta}}{p_{p}} \overline{\left|f\right|^{2}} = \frac{p_{\eta}}{3p_{p}} I$$

$$I = |A|^{2} + 2|B|^{2} + p_{\eta}^{2}|C|^{2} + 2p_{\eta}^{2}|D|^{2} + 2p_{\eta}\operatorname{Re}(A * C + 2B * D)\cos\theta_{\eta}$$

Consideration of Higher Partial Waves: P-Waves

• Resulting asymmetry factor:

$$\alpha = 2p_{\eta} \frac{\operatorname{Re}(A * C + 2B * D)}{|A|^{2} + 2|B|^{2} + p_{\eta}^{2}|C|^{2} + 2p_{\eta}^{2}|D|^{2}}$$

Assumption:

- Same s-wave amplitudes:
- Same *p*-wave amplitudes:

$$\sigma = 4\pi \frac{p_{\eta}}{p_{p}} \left[\left| f_{s} \right|^{2} + p_{\eta}^{2} \left| C \right|^{2} \right]$$

 $A = B = f_s$ energy dependence due to FSI

$$C = D = const.$$

$$\alpha = 2p_{\eta} \frac{\operatorname{Re}(f_{s}^{*}C)}{\left|f_{s}\right|^{2} + p_{\eta}^{2}\left|C\right|^{2}}$$

wissen.leben WWU Münster

Compare: dp- and γ^3 He-Scattering

 Different initial states and production mechanism, but same final state

Compare: dp- and γ^3 He-Scattering

- Scattering amplitudes show similar energy dependence
- Strong hint for a strong FSI between He-nuclei and ηmesons

Compare: dp- and γ^3 He-Scattering

1VIUI JU

Compare: dp- and γ^3 He-Scattering

Need of Further Data

- Excitation function(s) and differential cross sections for the $\eta-^{3}\text{He}$ final state are compatible with the presence of a pole close to threshold
- Further input is needed to investigate e.g. the role of the spin of the entrance channel
- Very close to threshold the d+p \rightarrow ³He+ η reaction is dominated by an s-wave ³He+ η system
- ANKE: Studies with tensor polarised deuterons $\vec{dp} \rightarrow ^{3}He + \eta$

Possible spins: $S_{dp} = 1/2 \text{ or } 3/2$

Polarized Measurements

Production amplitude for $dp \rightarrow {}^{3}He + \eta (\pi^{0})$:

$$f_B = \overline{u}_{\tau} \overrightarrow{p}_p \cdot (A \overrightarrow{\varepsilon}_d + i B \overrightarrow{\varepsilon}_d \times \overrightarrow{\sigma}) u_p$$

Determination of the energy dependence of the amplitudes A and B by measurement of:

$$\frac{d\sigma}{d\Omega} = \frac{1}{3} \frac{p_{\eta}}{p_{p}} \left[\left| A \right|^{2} + 2 \left| B \right|^{2} \right] \qquad T_{20} = \sqrt{2} \left[\frac{\left| B \right|^{2} - \left| A \right|^{2}}{\left| A \right|^{2} + 2 \left| B \right|^{2}} \right]$$
$$A |^{2} = \frac{p_{p}}{p_{\eta}} (1 - \sqrt{2}T_{20}) \frac{d\sigma}{d\Omega} \qquad |B|^{2} = \frac{p_{p}}{p_{\eta}} (1 + \frac{1}{\sqrt{2}}T_{20}) \frac{d\sigma}{d\Omega}$$
$$F_{20} = \frac{2 \cdot \sqrt{2}}{p_{zz}} \cdot \frac{d\sigma_{0} / d\Omega(\vartheta) - d\sigma_{\uparrow} / d\Omega(\vartheta)}{d\sigma_{0} / d\Omega(\vartheta)} \qquad \vartheta = 0^{0} or 180^{0}$$

omonte

Polarized Measurements

UNIVERSITÄT

Assumption for $dp \rightarrow {}^{3}He+\eta$:

- Negligible effect of ISI
- Energy dependence of |f |² only given by FSI
 - \rightarrow Shape of excitation function independent of spins
 - \rightarrow Same energy dependence of amplitudes $|A|^2$ and $|B|^2$

$$|A|^{2} = |A_{0}|^{2} \cdot FSI(p_{\eta}) \implies T_{20} = \sqrt{2} \left[\frac{|B_{0}|^{2} - |A_{0}|^{2}}{|A_{0}|^{2} + 2|B_{0}|^{2}} \right] \cdot \frac{FSI(p_{\eta})}{FSI(p_{\eta})} = \text{const.}$$

• Measure T_{20} as function of the excess energy

Alfons Khoukaz

Recent results from ANKE: $d+p \rightarrow {}^{3}He+\eta$

• S-Wave amplitudes $|A|^2$ and $|B|^2$ are of similar size

Recent Results: $d+p \rightarrow {}^{3}He+\eta$

Energy dependence of *|f |*² known from "old" unpolarized measurements

 $\rightarrow |A|^2(p_f)$ and $|B|^2(p_f)$ can be calculated

$$\frac{d\sigma}{d\Omega} = \frac{1}{3} \frac{p_{\eta}}{p_{p}} \left[\left| A \right|^{2} + 2 \left| B \right|^{2} \right]$$
$$A |^{2} = \frac{p_{p}}{p_{\eta}} (1 - \sqrt{2}T_{20}) \frac{d\sigma}{d\Omega}$$
$$B |^{2} = \frac{p_{p}}{p_{\eta}} (1 + \frac{1}{\sqrt{2}}T_{20}) \frac{d\sigma}{d\Omega}$$

M. Papenbrock, nucl-ex/1404.5425, accepted by PLB

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER

Recent Results: $d+p \rightarrow {}^{3}He+\eta$

• Allow for a linear energy dependence of T_{20} and $|A|^2/|B|^2$:

→ Possible energy variation of $|A|^2(p_f)$ and $|B|^2(p_f)$ on the scale of 0.75/0.014 MeV ≈ 50 MeV

wissen.leben WWU Münste

Recent Results: $d+p \rightarrow {}^{3}He+\eta$

- No significant different energy dependence of $|A|^2$ and $|B|^2$
- Remarkable excitation function of d+p \rightarrow ³He+ η still an indication for very strong FSI effect

wissen.leben WWU Münster

Angular Dependence of T₂₀

• Asymmetry parameter:

$$= \frac{dT_{20}}{d\cos\vartheta} \bigg|_{\cos\vartheta=0}$$

- sensitive to interferences between even and odd η partial waves

α

• odd function of p_{η} with α (Q=0)=0

 No sign for any s-p interference here

But:

• Unpolarized data show already at Q = 4 MeV a non-isotropy $d\sigma/d\Omega$

Ansatz for Structure of Amplitudes A and B

$$A = A_0 \left[FSI(p_{\eta}) + \alpha p_{\eta} \cos \vartheta + \beta p_{\eta}^2 (3\cos^2 \vartheta - 1)/2 \right]$$
$$B = B_0 \left[FSI(p_{\eta}) + \alpha p_{\eta} \cos \vartheta + \beta p_{\eta}^2 (3\cos^2 \vartheta - 1)/2 \right]$$

M. Papenbrock, nucl-ex/1404.5425, accepted by PLB

- FSI term influences only the s-wave term
- A proportional to $B \rightarrow T_{20}$ independent of p_{η} and ϑ
- Ansatz allows for observed non-isotropy of $d\sigma/d\Omega$ at higher excess energies

Ansatz for Structure of Amplitudes A and B

$$A = A_0 \left[FSI(p_{\eta}) + \alpha p_{\eta} \cos \vartheta + \beta p_{\eta}^2 (3\cos^2 \vartheta - 1)/2 \right]$$
$$B = B_0 \left[FSI(p_{\eta}) + \alpha p_{\eta} \cos \vartheta + \beta p_{\eta}^2 (3\cos^2 \vartheta - 1)/2 \right]$$

- Unpolarized data show linearity in $d\sigma/d\Omega$ for Q>4 MeV
- Can be explained by cancellation of interference between s and d waves and the square of p waves

 \rightarrow Important new information on $|f|^2$

The Reaction d+p \rightarrow $^{3}\text{He+}\eta$ at Higher Q-Values

- Good understanding of the production mechanism is important for an even better investigation of the FSI effects at threshold and/or of possible bound states
- Threshold data are not sufficient for solid investigations
 - FSI effects dominate very close to threshold
 - \rightarrow data at higher excess energies (>10 MeV) important
- New differential cross section data from WASA-at-COSY recently published (Q = 48.8 MeV & 59.8 MeV)

Recent Results from WASA-at-COSY

- Angular distributions show strong anisotropy
- Precise determination of total cross section ratio

But

 Theoretical models (*e.g.* twostep process) completely fail to explain total & differential cross sections

Development of Angular Distributions

Predictions from a Two-Step Model

Fig. 1. Diagram of η production in the $pd \rightarrow {}^{3}\text{He}\eta$ reaction with a two step process. The ellipse indicates the final state interaction of ${}^{3}\text{He}$ and η .

The Reaction d+p \rightarrow ³He+ η at Higher Q-Values

• Recent data might indicate a cross section variation at higher excess energies, i.e. at 20 MeV...60 MeV

The Reaction d+p \rightarrow ³He+ η at Higher Q-Values

• Recent data might indicate a cross section variation at higher excess energies, i.e. at 20 MeV...60 MeV

The Reaction d+p \rightarrow $^{3}\text{He+}\eta$ at Higher Q-Values

- Current data base for Q > 20 MeV not sufficient for solid investigations → new data needed
- Very recently new high statistics data have been recorded at WASA-at-COSY at 15 Q-values, i.e. in the interval Q = 14 MeV – 88 MeV
- Precise total and differential cross sections can be expected for the future (>100 kevents per energy!)
- Solid data base for further investigations on
 - Production processes
 - Possible cross section structures

WASA-at-COSY Beam Time: May 2014

Nils Hüsken, private communication

The Reaction d+p \rightarrow $^{3}\text{He+}\eta$ at Higher Q-Values

P. Adlarson et al., accepted by EPJA

wissen.leben WWU Münster

Outlook: $pd \rightarrow p_{sp}d\eta$

- Threshold enhancement
 σ/PS ↔ FSI calculations
- Filled symbols: pd→pdη taken below NN→NNη threshold
- \rightarrow far from quasi-free (controversial)

TABLE II. Results of the AGS and three different approximate calculations of $A_{\eta d}$ with $\alpha = 3$.316 fm ⁻¹ .
---	-------------------------

	ηN input	Exact A_{nd} (fm)		Approximate A_{nd} (fm)	
Ref.	$a_{\eta N}$ (fm)	AGS	MST I [8]	MST II [8]	FRA
[20]	0.25 + i0.16	0.73+i0.56	0.66 + i0.71	0.66+ <i>i</i> 0.58	0.65 + i0.70
[2]	0.27 + i0.22	$0.71 \pm i0.84$	0.57 + i0.97	0.64 + i0.81	0.59 + i0.96
[21]	0.291 + i0.360	0.38 + i1.36	0.17 + i1.35	0.42 + i1.25	0.21 + i1.35
[3]	0.30 + i0.30	0.61 + i1.22	0.39 + i1.28	0.58 + i1.11	0.42 + i1.27
[21]	0.430 + i0.394	0.50 + i2.07	0.14 + i1.91	0.65 + i1.73	0.24 + i1.88
[2]	0.44 + i0.30	1.15 + i1.89	0.63 + i1.93	1.01 + i1.50	0.68 + i1.86
[20]	0.46 + i0.29	1.31 + i1.99	0.72 + i2.04	1.11 + i1.54	0.76+ <i>i</i> 1.96
[22]	0.476 + i0.279	1.49 + i2.06	0.81 + i2.15	1.22 + i1.56	0.84 + i2.05
[23]	0.51 + i0.21	$2.37 \pm i1.77$	1.48 + i2.31	1.65 + i1.39	1.38 + i 2.22
[3]	0.55 + i0.30	1.64 + i2.99	0.61 + i2.73	1.40 + i1.98	0.69 + i2.51
[21]	0.579 + i0.399	0.34 + i3.31	-0.13 + i2.64	0.93 + i2.41	0.13 + i2.52
[24]	0.62 + i0.30	1.80 + i4.30	0.36 + i3.36	1.65 + i2.41	0.55 + i2.95
[22]	0.876 + i0.274	-8.81 + i4.30	-2.76+i4.24	2.42 + i5.55	-0.67 + i3.98
[22]	0.888 + i0.274	$-8.63 \pm i3.49$	-2.90+i4.12	2.37 + i5.79	-0.73 + i3.99
[25]	0.98 + i0.37	-4.69+i1.59	-2.75+i2.77	-0.06+i6.20	-1.18 + i3.59

N.V. Shevchenko et al., Phys. Rev. C 58 (1998) 3055

Outlook: $pd \rightarrow p_{sp}d\eta$

New data from ANKE/COSY are expected to allow for

- a scattering length $|a_{dn}|$ determination with a precision of ~5%
- the determination of angular distributions

in the excess energy range Q = 0...100 MeV

• First signals: Subtraction from two data sets obtained at different beam momenta, but analyzed assuming the same beam momentum

Summary

- New data on η meson production in pd-collisions give important information on $\eta\text{-nucleus systems}$
- Results from measurements with polarized beams
 - support the strong ${}^{3}\text{He+}\eta$ FSI interpretation
 - show no spin-dependent contributions on a scale of ~MeV above threshold
 - give new insight into the structure of the relevant production amplitudes
- Data at higher excess energies might indicate an unexpected cross section structure
- New data have been recorded recently and will allow for more detailed experimental and theoretical investigations

Thank you very much....

の街

η

$$I^{G}(J^{PC}) = 0^{+}(0^{-+})$$

We have omitted some results that have been superseded by later experiments. The omitted results may be found in our 1988 edition Physics Letters **B204** (1988).

η MASS

Recent measurements resolve the obvious inconsistency in previous η mass measurements in favor of the higher value first reported by NA48 (LAI 02). We use only precise measurements consistent with this higher mass value for our η mass average.

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT		
547.862±0.018 OUR AVERAGE							
$547.873 \!\pm\! 0.005 \!\pm\! 0.027$	1M	GOSLAWSKI	12	SPEC	$d p ightarrow ~^3$ He η		
$547.874 \pm 0.007 \pm 0.029$		AMBROSINO	07 B	KLOE	$e^+e^- \rightarrow \phi \rightarrow \eta \gamma$		
$547.785 \!\pm\! 0.017 \!\pm\! 0.057$	16k	MILLER	07	CLEO	$\psi(2S) \rightarrow J/\psi \eta$		
$547.843 \!\pm\! 0.030 \!\pm\! 0.041$	1134	LAI	02	NA48	$\eta \rightarrow 3\pi^0$		
 We do not use the following data for averages, fits, limits, etc. 							
$547.311 \!\pm\! 0.028 \!\pm\! 0.032$		¹ ABDEL-BARY	05	SPEC	$d p \rightarrow {}^{3}$ He η		
547.12 $\pm 0.06 \pm 0.25$		KRUSCHE	95D	SPEC	$\gamma p \rightarrow \eta p$, threshold		
547.30 ± 0.15		PLOUIN	92	SPEC	$d p \rightarrow {}^{3}$ He η		
547.45 ± 0.25		DUANE	74	SPEC	$\pi^- p \rightarrow n$ neutrals		
548.2 ±0.65		FOSTER	65C	HBC			
549.0 ±0.7	148	FOELSCHE	64	HBC			
548.0 ±1.0	91	ALFF	62	HBC			
549.0 ±1.2	53	BASTIEN	62	HBC			

¹ABDEL-BARY 05 disagrees significantly with recent measurements of similar or better precision. See comment in the header.

wissen.leben WWU Münster

Westfälische Wilhelms-Universität Münster

The COSY-Accelerator at Jülich

COSY (Cooler Synchrotron)

Energy range

- 0.045 2.8 GeV (p)
- 0.023 2.3 GeV (d) (momentum 3.7 GeV/c)

Beam cooling

- Electron cooling
- Stochastic cooling

Polarisation

• p, d beams & targets

Beams

• internal, external

Experiments, Detectors

• ANKE, TOF, WASA, ...

The Experiments ANKE and WASA-at-COSY

Scattering Theory and Final State Interaction

- The scattering length can deliver informationen about possible bound states
- Conditions for bound η^3 He state:
 - Existence of a pole in the complex p_f plane

$$f_{s} = \frac{f_{\text{prod}}}{1 - i \cdot a \cdot p_{f} + \frac{1}{2}a \cdot r \cdot p_{f}^{2}} \qquad a \equiv a_{r} + ia$$

$$r \equiv r_{r} + ir_{i}$$

· As well as

$$a_r < 0, \qquad a_i > 0, \qquad R = \frac{|a_i|}{|a_r|} < 1$$

wissen.leben WWU Münste

η –³He Scattering Length

Fit to data delivers information about the complex $\eta\text{--}{}^{3}\text{He}$ scattering length:

$$\left(\frac{d\sigma(\vartheta)}{d\Omega}\right) \cdot \frac{p_i}{p_f} = \left|f_{\text{scat}}\right|^2 = \left|f_{\text{prod}} \cdot FSI\right|^2 = \left|f_{\text{prod}}\right|^2 \cdot \left|FSI\right|^2$$
Result:
$$a = \left[\pm \left(10.7 \pm 0.8^{+0.1}_{-0.5}\right) + i\left(1.5 \pm 2.6^{+1.0}_{-0.9}\right)\right] \text{fm} \checkmark FSI = \frac{1}{1 - i \cdot a \cdot p_f + \frac{1}{2}a \cdot r_0 \cdot p_f^2}$$
Notice: Determination of $|a_r|!$

WISSEN.leben

η –³He-Interaction: Determination of Pols

The Reaction $d^+p \rightarrow {}^{3}He^+\eta$ at ANKE

- Alternating injection of unpolarized and tensor polarized deuterons in COSY
- Ramped COSY beam: Q = -5 MeV ... +10 MeV (300 s)
- Full geometrical acceptance of ANKE for $d+p \rightarrow {}^{3}He+\eta$
- Determination of p_{zz} by, e.g., $d+p \rightarrow (pp)+n$ (analyzing powers known)

Tensor Polarizations

- Three different polarizations used for the experiment 1.) Nominal: $p_{zz} = -1$, $p_z = +1/3$ Measured: $p_{zz} = -0.635 \pm 0.087$
- 2.) Nominal: $p_{zz} = +1$, $p_z = -1$ Measured: $p_{zz} = 0.529 \pm 0.077$
- 3.) Nominal: $p_{zz} = +1$, $p_z = +1$ Measured: $p_{zz} = 0.217 \pm 0.082$