Complete next-to-next-to-leading order calculation of NN \rightarrow NN π in chiral EFT

in collaboration with V. Baru, E. Epelbaum, C. Hanhart, H. Krebs, A. E. Kudryavtsev, and F. Myhrer

Outline:

- Introduction: chiral EFT and NN \rightarrow NN π
- Why is pion production interesting?
- High accuracy pion production operator
- Importance of Delta(1232)-resonance
- Summary and outlook

Phys.Rev. C 85 (2012) 054001 Phys.Rev. C 88 (2013) 064003

Method and goal

Approaches to QCD at low energies:

- Phenomenological models
- Lattice calculations
- Chiral effective field theory

Method and goal

Approaches to QCD at low energies:

- Phenomenological models
- Lattice calculations
- Chiral effective field theory

Chiral EFT - effective field theory of QCD below I GeV

- most general Lagrangian compatible with symmetries of QCD
- effective degrees of freedom: pions, nucleons, Delta(1232)-resonance
- systematic expansion in small momenta and small masses
- suited for investigations of $\pi\pi$, π N, NN interactions and nuclear forces Weinberg, Gasser, Leutwyler, Bernard, Meißner, Epelbaum, Glöckle, ...
- successful application to pion reactions on few-nucleon systems: $\pi A \rightarrow \pi A (A=2,3,4), \pi d \rightarrow \gamma nn, \gamma d \rightarrow \pi NN,...$ Weinberg, Beane, Hanhart, Meißner, Phillips, Baru, ...

Our goal is to study NN \rightarrow NN π within chiral EFT

Specifics of pion production

NN interactions are non-perturbative [deuteron]

Hybrid chiral EFT method:

- I. Calculate irreducible production operator perturbatively in chiral EFT
- 2. Convolute it with non-perturbative NN wave functions

realistic phenomenological NN WF: CD-Bonn, CCF, AV18, ...

Large transferred momenta

• NN momenta in CMS are large enough to produce a pion $|\vec{p}| \sim \sqrt{m_\pi m_N} \sim 360~{
m MeV-}$ new scale

Special counting: Momentum Counting Scheme (MCS) expansion parameter $\chi_{MCS} \sim \sqrt{\frac{m_{\pi}}{m_N}}$

• Explicit Delta(1232)-resonance $m_{\Delta} - m_N \sim 280 \text{ MeV} \sim |\vec{p}|$

- First inelastic process in nucleon-nucleon interactions
- Several channels: $pp \rightarrow pp \pi^0$ and $pp \rightarrow d\pi^+$ cross sections differ by an order of magnitude $\sigma_{tot}(pp \rightarrow pp\pi^0) \simeq 3 \,\mu b$ $\sigma_{tot}(pp \rightarrow d\pi^+) \simeq 43 \,\mu b$ $T_{lab} = 293.5 \,\text{MeV}$
- Building block for more complicated processes:

 $T_{\rm lab} = 293.5 {
m ~MeV}$ COSY-TOF (2003)

• Charge symmetry breaking in $pn \rightarrow d\pi^0$

Charge symmetry – invariance under interchange of u- and d-quarks

- Approximate symmetry of QCD
- Explicitly broken by quark mass difference and electromagnetic effects
- On the level of hadrons \rightarrow invariance under interchange of p and n

Charge symmetry – invariance under interchange of u- and d-quarks

- Approximate symmetry of QCD
- Explicitly broken by quark mass difference and electromagnetic effects
- On the level of hadrons \rightarrow invariance under interchange of p and n

Charge symmetry breaking in $pn \rightarrow d\pi^0$: Opper et al. (2003), v.Kolck et al (2000), Bolton and Miller (2009), AF et al.(2009)

- Forward backward-asymmetry $A_{fb} \propto \left(\frac{d\sigma}{d\Omega}(\theta) \frac{d\sigma}{d\Omega}(\pi \theta)\right) / \frac{d\sigma}{d\Omega}(\theta)$
- Experiment: $A_{fb} = (17, 2 \pm 8 \pm 5, 5) 10^{-4}$ TRIUMF (2003)

Charge symmetry – invariance under interchange of u- and d-quarks

- Approximate symmetry of QCD
- Explicitly broken by quark mass difference and electromagnetic effects
- On the level of hadrons \rightarrow invariance under interchange of p and n

Charge symmetry breaking in $pn \rightarrow d\pi^0$: Opper et al. (2003), v.Kolck et al (2000), Bolton and Miller (2009), AF et al.(2009)

- Interchange of p and n changes differential cross section
- Forward backward-asymmetry $A_{fb} \propto \left(\frac{d\sigma}{d\Omega}(\theta) \frac{d\sigma}{d\Omega}(\pi \theta)\right) / \frac{d\sigma}{d\Omega}(\theta)$
- Experiment: $A_{fb} = (17, 2 \pm 8 \pm 5, 5) 10^{-4}$ TRIUMF (2003)

• Theory
$$A_{fb} \propto \frac{\operatorname{Re}(M_{s-wave}^{\operatorname{CSB}} M_{p-wave}^{\operatorname{CS}^*})}{|M_{s-wave}^{\operatorname{CS}}|^2} \propto \frac{(m_p - m_n)^{\operatorname{str}}}{|M_{s-wave}^{\operatorname{CS}}|^2}$$

Charge symmetry – invariance under interchange of u- and d-quarks

- Approximate symmetry of QCD
- Explicitly broken by quark mass difference and electromagnetic effects
- On the level of hadrons \rightarrow invariance under interchange of p and n

Charge symmetry breaking in $pn \rightarrow d\pi^0$: Opper et al. (2003), v.Kolck et al (2000), Bolton and Miller (2009), AF et al.(2009)

- Interchange of p and n changes differential cross section
- Forward backward-asymmetry $A_{fb} \propto \left(\frac{d\sigma}{d\Omega}(\theta) \frac{d\sigma}{d\Omega}(\pi \theta)\right) / \frac{d\sigma}{d\Omega}(\theta)$
- Experiment: $A_{fb} = (17, 2 \pm 8 \pm 5, 5) 10^{-4}$ TRIUMF (2003)

• Theory
$$A_{fb} \propto \frac{\operatorname{Re}(M_{s-wave}^{\mathrm{CSB}} M_{p-wave}^{\mathrm{CS}^*})}{|M_{s-wave}^{\mathrm{CS}}|^2} \propto \frac{(m_p - m_n)^{\mathrm{str}}}{|M_{s-wave}^{\mathrm{CS}}|^2}$$

• s-wave amplitude $M_{\text{s-wave}}^{\text{CS}}$ is important prerequisite

to extract $(m_p - m_n)^{str}$ – strong part of p – n mass difference

s-wave pion production

At threshold only s-wave gives non-zero contribution

General s-wave production amplitude at threshold

$$M_{\rm th}(NN \to NN\pi) = \mathsf{A} \left(\vec{\sigma}_1 \times \vec{\sigma}_2\right) \cdot \vec{p} \ (\tau_1 + \tau_2) \cdot \phi^* \\ + \mathsf{B} \ (\vec{\sigma}_1 + \vec{\sigma}_2) \cdot \vec{p} \ (\tau_1 \times \tau_2) \cdot \phi^*$$

Amplitudes A and B contribute to different reaction channels

- A contributes to $pp \rightarrow pp \pi^0$
- B contributes to $pp \rightarrow d\pi^+$

Goal: derive pion production operators A and B within chiral EFT

s-wave pion production operators

For $pp \rightarrow pp \pi^0 LO$ rescattering contribution is forbidden, NLO is zero

 \Rightarrow effects of NNLO loops are very important

NNLO loop-diagrams

• Topologies of NNLO diagrams:

- I/m_N correction should be included in every vertex
 → Lots of terms and lengthy calculation
- Efficient method: collect $\pi N \rightarrow \pi \pi N$ subgraphs

NNLO loop-diagrams: calculation method

Collecting subgraphs – efficient way to calculate NNLO loop diagrams

Operator \mathbf{T} is the sum of all $\pi N \rightarrow \pi \pi N$ subgraphs

We found that for s-wave pion production at threshold:

NNLO loop-diagrams: results

• Put [few NNLO terms] into common structures

- → Get full NNLO loop operator
- → Very compact expression
- NNLO loop production operator (simplified in Dim.Reg.):

$$iM_{nucl}^{\text{Sym.}} = \frac{g_A^3}{f_\pi^5} v \cdot q \,\tau_+^a \left(i\varepsilon^{\alpha\mu\nu\beta} v_\alpha k_{1\mu} S_{1\nu} S_{2\beta} \right) \left(-2I_{\pi\pi} \right) \longrightarrow \mathsf{A}$$

+
$$\frac{g_A^3}{f_\pi^5} v \cdot q \,\tau_\times^a (S_1 + S_2) \cdot k_1 \left(-\frac{19}{24} I_{\pi\pi} + \frac{5}{9} \frac{1}{(4\pi)^2} \right) \longrightarrow \mathsf{B}$$

+
$$\frac{g_A}{f_\pi^5} v \cdot q \,\tau_\times^a (S_1 + S_2) \cdot k_1 \left(\frac{1}{6} I_{\pi\pi} - \frac{1}{18} \frac{1}{(4\pi)^2} \right) \longrightarrow \mathsf{B}$$

with only one basic integral: $I_{\pi\pi} = \frac{\mu^{\epsilon}}{i} \int \frac{d^{4-\epsilon}l}{(2\pi)^{4-\epsilon}} \frac{1}{(l^2 - m_{\pi}^2 + i0)((l+k_1)^2 - m_{\pi}^2 + i0)}$

Inclusion of Delta(1232) explicitly Motivation

For NN \rightarrow NN π Delta-resonance contribution is important

- Typical momenta in NN \rightarrow NN π is about p~360 MeV
- Delta-nucleon mass difference m_{Δ} - $m_N \approx 280 \text{ MeV} \rightarrow \text{same order as } p$
- → Delta(1232) should be included as a dynamic degree of freedom

Additional NNLO loop-diagrams with delta:

Explicit Delta: groups and cancellations

- Same calculation method as for pure nucleon case: selecting groups
- Cancellation patterns for s-wave pion production:

• Finite remainder survives like in NN case

Explicit inclusion of Delta in NN \rightarrow NN π

Result:

NNLO loop-corrections to NN \rightarrow NNT operator due to explicit Δ (1232) $iM_{\Delta\text{-loops}}^{\text{NNLO}} = \frac{g_A g_{\pi N\Delta}^2}{f_{\pi}^5} v \cdot q \tau_+^a \left(i \varepsilon^{\alpha \mu \nu \beta} v_\alpha k_{1\mu} S_{1\nu} S_{2\beta}\right)$ $\times \left\{ \frac{2}{9} \left(I_{\pi \pi} + \frac{1}{2} \frac{J_{\pi \Delta}}{\Delta} + \Delta J_{\pi \pi \Delta} + \frac{2}{(4\pi)^2} \right) + \frac{1}{18} k_1^2 J_{\pi \pi N \Delta} \right\} \longrightarrow \mathbb{A}$ $+ \frac{g_A g_{\pi N \Delta}^2}{f_{\pi}^5} v \cdot q \tau_{\times} (S_1 + S_2) \cdot k_1$ $\times \left\{ \frac{5}{9} \left(I_{\pi \pi} + \frac{1}{2} \frac{J_{\pi \Delta}}{\Delta} + \Delta J_{\pi \pi \Delta} + \frac{2}{(4\pi)^2} \right) + \frac{1}{18} k_1^2 J_{\pi \pi N \Delta} \longrightarrow \mathbb{B} \right\}$ $+ \frac{8}{9} \frac{\delta^2}{k_1^2} \left(I_{\pi \pi} + \frac{1}{2} \frac{J_{\pi \Delta}}{\Delta} + \Delta J_{\pi \pi \Delta} + \frac{2}{(4\pi)^2} \right) - \frac{2}{27} \left(I_{\pi \pi} + \frac{1}{2} \frac{J_{\pi \Delta}}{\Delta} + \frac{1}{3} \frac{2}{(4\pi)^2} \right) \right\}.$

Correct analytic behavior:

If $m_{\Delta} \rightarrow \infty$ then the contribution of Delta vanishes (decoupling of Delta) Appelquist, Carazzone (1975)

No additional unknown LECs

Comparison of Delta- and nucleon-loops

Ratio of long-range loop-contributions: nucleon / Delta

- Explicitly proves MCS counting estimation: delta~p
- Sum of Delta and nucleon-loop contributions:

In A: net NNLO effect ~ A_N – of natural size in MCS In B: net NNLO effect is smaller than MCS expectations due to cancellations

→ Both facts are consistent with indications from data:
 For B there is already a good description of data at NLO
 For A we probe NNLO contributions directly (LO + NLO ≈ 0)

Summary and outlook

The reaction $NN \rightarrow NN\pi$ in Chiral EFT

- Tool to study charge symmetry breaking ($pn \rightarrow d\pi^0$)
- Building block for more complicated reactions (dd $\rightarrow \alpha \pi^0$, 3NF,...)
- Cross section puzzle (different cross sections in different channels)

Current results:

- s-wave pion production operator at threshold up to N²LO MCS (6%) including explicit Delta(1232)
- Loop-diagrams with Delta are needed for quantitative understanding of both $pp\!\rightarrow\!pp\pi^0$ and $pp\!\rightarrow\!d\pi^+$

Next step

 Convolution with nucleon-nucleon wave functions and calculation of the observables

$\pi N \rightarrow \pi N$ vertex and nucleon propagator

Leading order $\pi N \rightarrow \pi N$ vertex (Weinberg-Tomozawa vertex)

$$V_{\pi N \to \pi N} = \frac{1}{4f_{\pi}^2} \epsilon_{abc} \tau^c (\not k + \not q)$$
$$k = q - p + p'$$

can be identically rewritten as:

$$V_{\pi N \to \pi N} = \frac{1}{4f_{\pi}^{2}} \epsilon_{abc} \tau^{c} (2\not q - \not p + \not p')$$

$$= \frac{1}{4f_{\pi}^{2}} \epsilon_{abc} \tau^{c} (2\not q - (\not p - m_{N}) + (\not p' - m_{N}))$$

$$(\text{Remaining 2q term}) \qquad (\text{incoming nucleon} \\ \text{propagator}) \qquad (\text{outgoing nucleon} \\ \text{propagator})$$

Parts of $\pi N \rightarrow \pi N$ vertex can cancel nucleon propagators