

Charge Symmetry Breaking in $dd \rightarrow {}^{4}He\pi^{0}$ with WASA-at-COSY

Volker Hejny Institut für Kernphysik Forschungszentrum Jülich

for the WASA-at-COSY Collaboration

Probing quark mass effects

Hadron physics at COSY energies

- pertubative treatment (in α_s) of QCD not possible
- spontanously broken chiral symmetry \Rightarrow effective field theory

Chiral Pertubation Theory

- shares all symmetries with QCD
- symmetry breaking: tests our understanding of QCD
- extraction of basic QCD parameters

Tool: Isospin Symmetry

- only approximate symmetry in QCD:
 - quark masses
 - electromagnetic interactions

isospin symmetry breaking: experimental handle on quark mass ratio $\frac{m_u - m_d}{m_u + m_d}$

Isospin breaking

Static observables

- pion mass difference $m(\pi^{\pm}) > m(\pi^{0})$ purely electro-magnetic
- nucleon mass difference m_n > m_p
- strong + electro-magnetic

- $\Delta M^{em} = (-0.7 \pm 0.3) \text{ MeV}$
- ΔM^{str} = (2.05 ± 0.3) MeV

Dynamic observables

- πN scattering length e.g. $a(\pi^0 p) a(\pi^0 n) = f(\Delta M^{str})$
 - however: no direct measurement of $\pi^0 N$ large e.m. corrections in $\pi^{\pm} N$
- πNN vertex

Challenges:

- dominated by Δm_{π}
- small corrections on top of isospin conserving signals

Charge Symmetry Breaking

Charge Symmetry

- subset of isospin symmetry:
 - rotation in isospin space, 180° around I₂-axis
 - "interchange" of $u \leftrightarrow d$ quarks: $|u\rangle \rightarrow |d\rangle$, $|d\rangle \rightarrow -|u\rangle$
- pion mass difference does not contribute to CS breaking

"Null experiments": minimizing CS conserving contributions

- np \rightarrow d π^0 forward-backward assymmetry A_{fb}:
 - Opper et al., $A_{fb} = (17.2 \pm 8.0 \pm 5.5) \cdot 10^{-3}$ 0. close to threshold (Q ≈ 2 MeV) 0. (PRL 91 (2003) 212302) 0.
 - leading CSB term: πN rescattering Filin et al.: ChPT in LO $\Delta M^{str} = (1.5 \pm 0.8_{exp} \pm 0.5_{th})$ MeV (PLB 681 (2009) 423)
- dd \rightarrow ⁴He π^0

Charge Symmetry Breaking

Charge Symmetry

- subset of isospin symmetry:
 - rotation in isospin space, 180° around I₂-axis
 - "interchange" of $u \leftrightarrow d$ quarks: $|u\rangle \rightarrow |d\rangle$, $|d\rangle \rightarrow -|u\rangle$
- pion mass difference does not contribute to CS breaking

"Null experiments": minimizing CS conserving contributions

- np \rightarrow $d\pi^0$ forward-backward assymmetry A_{fb}
- dd \rightarrow ⁴He π^0 :
 - $\sigma \propto |M_{CSB}|^2$, complementary to np $\rightarrow d\pi^0$
 - Stephenson et al., σ_{tot} close to threshold σ_{tot} (Q \approx 1.4 MeV) = 12.7 \pm 2.2 pb σ_{tot} (Q \approx 3.0 MeV) = 15.1 \pm 3.1 pb (PRL 91 (2003) 142302)
 - energy dependence consistent with *s*-wave pion production

Further investigations on dd \rightarrow ^{4}He π^{0}

Current status

theory collaboration working on consistent analysis in terms of ChPT of

- forward-backward asymmetry in $np \rightarrow d\pi^0$ Opper et al., ., PRL 91 (2003) 212302
- cross section at threshold of dd \rightarrow ⁴He π^0 Stephenson et al., PRL 91 (2003) 142302

Further input from WASA-at-COSY

- reaction dynamics of dd \rightarrow ³He N π (CSC)
 - \rightarrow differential cross sections: input to fix dd initial state, 4N final state
 - → Phys. Rev. C 88 (2013) 014004
- dd \rightarrow ⁴He π^0 at higher excess energies (p = 1.2 GeV/c, Q = 60 MeV)
 - \rightarrow preliminary results on total cross section and diff. distributions
 - \rightarrow publication in preparation

theoretical analysis of np $\rightarrow d\pi^0$ and dd $\rightarrow {}^4\text{He} \pi^0$ (*s*-wave) once finished: non-trivial ChPT prediction on p-wave contribution NLO calculation \rightarrow expected uncertainty 20% - 30%

Basic analysis: dd \rightarrow ^3He n π^0 / ^4He π^0

- 3.4 x 10⁶ fully reconstructed events
- nearly full coverage of Dalitz plots

1000

°6

0.05

0.15

 $M_{inv}(\gamma,\gamma)$ / GeV/c²

0.1

0.2

0.25

$dd \rightarrow {}^{3}He \ n \ \pi^{0}$

Phys. Rev. C 88 (2013) 014004

Luminosity determination:

 two-body reaction dd → ³He n interpolated data from Bizard et al., PRC22 (1980) 1632: perfect match of expected angular distribution

Further analysis

- 3-body final state, unpolarized:
 9 4 1 = 4 independent variables
 M_{3Hen}, θ_p, θ_q, φ
- two-fold model ansatz:
 - quasi-free contribution dd \rightarrow 3He π^0 + n_{spec}
 - partial decomposition of the 3-body final state (limited to L≤1)
 full model = incoherent sum

$dd \to {}^3He \ n \ \pi^0$

Phys. Rev. C 88 (2013) 014004

Global fit to data:

14.4

14.1

14

14.2

14.3

 $M_{^{3}Hen}^{2}$ [GeV²/c⁴]

$dd \to {}^4\text{He}\pi{}^0\text{: analysis}$

data taken at maximum luminosity:

 \rightarrow L_{int} = (4909 ± 348_{sys}) nb⁻¹ in 2 weeks

- initial Helium and photon detection as for dd \rightarrow ³He n π^0
- event selection:
 - 1) weak condition on ΔE ΔE and $\gamma \gamma$ in calorimeter

$dd \to {}^4\text{He}\pi{}^0\text{: analysis}$

data taken at maximum luminosity:

 \rightarrow L_{int} = (4909 ± 348_{sys}) nb⁻¹ in 2 weeks

- initial Helium and photon detection as for dd \rightarrow ^{3}He n π^{0}
- event selection:
 - 1) weak condition on ΔE ΔE and $\gamma \gamma$ in calorimeter
 - 2) 2-body vs 3-body kinematics: kinematic fit

a) dd
$$\rightarrow$$
 ³He n үү

b) dd \rightarrow ⁴He $\gamma\gamma$

Note: only E-p conservation no π⁰ constraint included!

$dd \rightarrow {}^{4}He\pi^{0}$: total cross section

$dd \rightarrow {}^{4}He\pi^{0}$: angular distributions (1)

$dd \rightarrow {}^{4}He\pi^{0}$: angular distributions (2)

Outlook:

Possible improvements:

- better ³He/⁴He discrimination: σ (³Hen π ⁰) \approx 3·10⁴ σ (⁴He π ⁰)
- more precise energy reconstruction:

currently solely based on ΔE

• benchmark for ⁴He energy reconstruction:

relies now on ΔE from MC simulations (quenching? insensitive material?)

 \rightarrow optimized detector setup

• improved statistics mandatory for a decisive angular distribution

 \rightarrow recent 8 weeks run in February – April 2014

Detector modification

Example: time-of-flight vs energy deposit

Summary & Outlook

- Charge Symmetry Breaking used to access quark mass effects
- Theoretical tool: Chiral Pertubation Theory
- Status
 - high statistics data on dd \rightarrow ^{3}He n $\pi^{0}\text{:}$
 - results on total and differential cross sections
 - data modeled with quasi-free mechanism + partial wave decomposition
 - preliminary results on dd \rightarrow ⁴He π^0 (2 weeks run):
 - $\sigma_{tot} = (118 \pm 18_{stat} \pm 10_{sys} \pm 8_{ext}) \text{ pb at } p = 1.2 \text{ GeV/c} (Q = 60 \text{ MeV})$
 - data consistent with s-wave pion production
 - background well reproduced by simulations
- Outlook
 - 8 weeks production run with an optimized detector setup finished recently