QCD sum rules for D and B mesons in a strongly interacting medium

T. Buchheim, T. Hilger, B. Kämpfer

Mitglied der Helmholtz-Gemeinschaft

Motivation D and B Mesons

quark contents:

 $\begin{array}{ll}
 D^{+} \ (c\bar{d}) \ , & B^{+} \ (b\bar{d}) \\
 D^{0} \ (c\bar{u}) \ , & B^{0} \ (b\bar{u}) \\
 D^{+} \ (c\bar{s}) \ , & B^{+} \ (b\bar{s})
 \end{array}$

[modified figure from desy.de/~ameyer/hq/node38.html]

Why D and B mesons ?

- input parameters for investigations of exotic charmed mesons (X, Y_(b), Z_(b), etc.)
- probes of hot and dense nuclear matter via medium modifications
 - good reconstruction at LHC, FAIR
 - recent interest [Blaschke et al., PRD 85 (2012)], [He et al., PRL 110 (2013)],

[Tolos et al., PRD 88 (2013)], [Yasui et al., PRC 87 (2013)]

Motivation

Chiral Symmetry Breaking / Restoration in Medium

medium modification of D and B mesons

changing order parameters of spontaneous chiral symmetry breaking

vacuum – (spontaneous) chiral symmetry breaking:

order parameter $\langle \bar{q}q \rangle \neq 0$

further chirally odd condensates

mass splitting of chiral partner mesons

medium modifications:

non-zero temperature (T) $\langle \bar{q}q \rangle_{T,n} = \langle \bar{q}q \rangle \left(1 - \frac{T^2}{8f_{\pi}^2} - \frac{\sigma_N n}{m_{\pi}^2 f_{\pi}^2}\right)$ and baryon density (n)

signal of chiral symmetry restoration

Mitglied der Helmholtz-Gemeinschaft

Motivation

Chiral Symmetry Breaking / Restoration in Medium

medium modification of D and B mesons

QCD Sum Rules

changing order parameters of spontaneous chiral symmetry breaking

vacuum – (spontaneous) chiral symmetry breaking:

order parameter $\langle \bar{q}q \rangle \neq 0$

further chirally odd condensates

mass splitting of chiral partner mesons

medium modifications:

non-zero temperature (T) $\langle \bar{q}q \rangle_{T,n} = \langle \bar{q}q \rangle \left(1 - \frac{T^2}{8f_{\pi}^2} - \frac{\sigma_N n}{m_{\pi}^2 f_{\pi}^2}\right)$ and baryon density (n)

signal of chiral symmetry restoration

QCD Sum Rules in Medium

causal current-current correlator
$$\Pi(q) = \int d^4x \, e^{iqx} \langle \mathrm{T}\left[j(x)j^{\dagger}(0)\right] \rangle$$

$$\begin{array}{cccc} \pi & \rho & \omega & J/\psi & a_1 D & B \\ p & n & \Delta & \Lambda \end{array}$$

adrania d a f

 ∞

dispersion relation (from analyticity)

$$\Pi(q_0, \vec{q}) = \frac{1}{\pi} \int_{-\infty}^{\infty} d\omega \frac{\mathrm{Im}\Pi(\omega, \vec{q})}{\omega - q_0}$$

phenomenology

 $\Pi_{\rm OPE}(q_0)$

Wick rotation of OPE side ensures $q^2 < 0$

 $\int_{-\infty}^{\infty} d\omega \frac{\text{discontinuity}(\omega)}{\omega - q_0}$

Mitglied der Helmholtz-Gemeinschaf

In-Medium OPE

$$\begin{aligned} \Pi_{\rm OPE}(q) &= \sum_{n} C_n(q) \langle O_n \rangle \\ &= C_0(q) \mathbbm{1} + C_3(q) \langle \bar{q}q \rangle + C_4(q) \langle G^2 \rangle + C_5(q) \langle \bar{q}Gq \rangle \\ &+ C_{6,q}(q) \langle \bar{q}q\bar{q}q \rangle + C_{6,G}(q) \langle G^3 \rangle + \dots \end{aligned}$$

heavy-light mesons (qQ) [Hilger+Buchheim]

 $m_Q \langle \bar{q}q \rangle_{T,n}$ \blacktriangleright sizable impact on medium modification of D and B mesons

light mesons (qq) [recollection]

 $m_q \langle \bar{q}q \rangle_{T,n}$ \blacktriangleright suppressed, four-quark condensates are important instead $\langle \bar{q}q\bar{q}q \rangle_{\text{odd}}$ identified in ρ OPE [Hilger et al., PLB 709 (2012)]

Numerical Evaluation: pseudo-scalar D meson

utilizing in-medium OPE up to mass dimension 5

[Hilger et al., PRC 79 (2009)]

issue: associate production of $c\bar{c}$ vs. in-medium masses

Mitglied der Helmholtz-Gemeinschaft

Mitglied der Helmholtz-Gemeinschaft

Wilson Coefficients

 $\Pi_{\rm OPE}(q) = \sum_{i} C_k(q) \langle \mathcal{O}_k \rangle$ k

$C_k(q) =$	\sum_{l}	$\int C_{kl} L_{kl}$					К		
000+		\mathcal{C}_{kl}^{s}				L_{kl}^s			
	k	l = 1	l = 2		l = 3	l = 1	l=2	l = 3	
	1	$-\frac{1}{3}\frac{1}{(q^2-m_Q^2)^2}\left(1-\frac{q^2}{q^2-m_Q^2}\right)$	$\frac{2}{9} \frac{2}{(q^2 - m_Q^2)}$)3	$-\frac{8}{3}\frac{1}{(q^2-m_Q^2)^4}$	1	$q^2 - 4\frac{(vq)^2}{v^2}$	$\frac{3}{8}q^4 - 2\frac{q^2(vq)^2}{v^2} + \frac{(vq)^4}{v^4}$	
	2	0	$-\frac{4}{9}\frac{1}{(q^2-m^2)}$	$\frac{2}{2}$ 3	$\frac{8}{3} \frac{1}{(q^2 - m_O^2)^4}$		$q^2 - 4\frac{(vq)^2}{v^2}$	$q^4 - 7\frac{q^2(vq)^2}{v^2} + 6\frac{(vq)^4}{v^4}$	
	3	0	$-\frac{4}{3}\frac{m_Q}{(q^2-m_Q^2)}$	$\frac{2}{Q}^{3}$	$\frac{8}{3} \frac{m_Q}{(q^2 - m_Q^2)^4}$		$\frac{(vq)}{v^2}$	$\frac{(vq)}{v^2}\left(q^2 - \frac{(vq)^2}{v^2}\right)$	
	4	0	$\frac{2}{9}\frac{1}{q^6}$		$-\frac{8}{3}\frac{1}{q^8}$		$q^2 - 4\frac{(vq)^2}{v^2}$	$\frac{3}{8}q^4 - 2\frac{q^2(vq)^2}{v^2} + \frac{(vq)^4}{v^4}$	
	5	0	$-\frac{4}{9}\frac{1}{q^6}$		$\frac{8}{3}\frac{1}{q^8}$		$q^2 - 4\frac{(vq)^2}{v^2}$	$q^4 - 7\frac{q^2(vq)^2}{v^2} + 6\frac{(vq)^4}{v^4}$	
***		\mathcal{C}^{s}_{kl}			L_{kl}^s				
	k	l = 1	l = 2	l = 1	l = 2				
+	1	$\frac{1}{3} \frac{1}{(q^2 - m_Q^2)^2} \left(2 - \frac{q^2}{q^2 - m_Q^2} \right)$	$-\frac{1}{9}\frac{1}{(q^2-m_Q^2)^3}$	1	$q^2 - 4\frac{(vq)^2}{v^2}$				
	2	0	$\frac{2}{9} \frac{1}{(q^2 - m_Q^2)^3}$		$q^2 - 4\frac{(vq)^2}{v^2}$				
	3	0	$\frac{2}{3} \frac{m_Q}{(q^2 - m_Q^2)^3}$		$\frac{(vq)}{v^2}$				
	4	$rac{1}{3}rac{1}{q^4}$	$-\frac{1}{9}\frac{1}{q^6}$	1	$q^2 - 4\frac{(vq)^2}{v^2}$				
	5	0	$\frac{2}{9}\frac{1}{q^6}$		$q^2 - 4\frac{(vq)^2}{v^2}$	C	concept	HZDR	

Mitglied der Helmholtz-Gemeinschaft

Four-Quark Condensates

- no numerical values factorization ansatz ? :
 - justified by large- N_c arguments for vacuum and finite densities only [Leupold, PLB 616 (2005)]

- spoils behaviour under chiral transformations

- in qQ sector, e.g. D and B mesons:
 - 27 condensates in medium
 - heavy-light condensates
 - use and extend heavy-quark

expansion method (HQE)

medium behaviour ?

k	$\left< \mathcal{O}_k \right>_{(\mathbb{1})}$	$\left< \mathcal{O}_k \right>_{(t^A)}$
1	$\langle:\bar{q}q\bar{Q}Q:\rangle$	$\langle:\bar{q}t^Aq\bar{Q}t^AQ:\rangle$
2	$\langle:\bar{q}\gamma_{\nu}q\bar{Q}\gamma^{\nu}Q:\rangle$	$\langle:\bar{q}\gamma_{\nu}t^{A}q\bar{Q}\gamma^{\nu}t^{A}Q:\rangle$
3	$\langle:\bar{q}\sigma_{\nu\rho}q\bar{Q}\sigma^{\nu\rho}Q:\rangle$	$\langle:\bar{q}\sigma_{\nu\rho}t^Aq\bar{Q}\sigma^{\nu\rho}t^AQ:\rangle$
4	$\langle :\bar{q}\gamma_5\gamma_\nu q\bar{Q}\gamma_5\gamma^\nu Q : \rangle$	$\langle:\bar{q}\gamma_5\gamma_{\nu}t^Aq\bar{Q}\gamma_5\gamma^{\nu}t^AQ:\rangle$
5	$\langle:\bar{q}\gamma_5 q\bar{Q}\gamma_5 Q:\rangle$	$\langle:\bar{q}\gamma_5 t^A q \bar{Q}\gamma_5 t^A Q:\rangle$
6	$\langle:\bar{q}\psi q\bar{Q}\psi Q:\rangle/v^2$	$\langle:\bar{q}\psi t^Aq\bar{Q}\psi t^AQ:\rangle/v^2$
7	$\langle:\bar{q}\sigma^{\sigma\omega}q\bar{Q}\sigma^{\nu\rho}Q:\rangle g_{\nu\omega}v_{\sigma}v_{\rho}/v^2$	$\langle:\bar{q}\sigma^{\sigma\omega}t^Aq\bar{Q}\sigma^{\nu\rho}t^AQ:\rangle g_{\nu\omega}v_\sigma v_\rho/v^2$
8	$\langle:\bar{q}\gamma_5\psi q\bar{Q}\gamma_5\psi Q:\rangle/v^2$	$\langle:\bar{q}\gamma_5\psi t^Aq\bar{Q}\gamma_5\psi t^AQ:\rangle/v^2$
9	$\langle:\bar{q}\psi q\bar{Q}Q:\rangle$	$\langle:\bar{q}\psi t^Aq\bar{Q}t^AQ:\rangle$
10	$\langle:\bar{q}q\bar{Q}\psi Q:\rangle$	$\langle:\bar{q}t^Aq\bar{Q}\psi t^AQ:\rangle$
11	$\langle:\bar{q}\sigma^{\sigma\omega}q\bar{Q}\gamma_5\gamma^{\nu}Q:\rangle\varepsilon_{\alpha\nu\sigma\omega}v^{\alpha}$	$\langle:\bar{q}\sigma^{\sigma\omega}t^Aq\bar{Q}\gamma_5\gamma^{\nu}t^AQ:\rangle\varepsilon_{\alpha\nu\sigma\omega}v^{\alpha}$
12	$\langle:\bar{q}\gamma_5\gamma^{\nu}q\bar{Q}\sigma^{\sigma\omega}Q:\rangle\varepsilon_{\alpha\nu\sigma\omega}v^{\alpha}$	$\langle :\bar{q}\gamma_5\gamma^{\nu}t^Aq\bar{Q}\sigma^{\sigma\omega}t^AQ:\rangle\varepsilon_{\alpha\nu\sigma\omega}v^{\alpha}$

Mitalied der Helmholtz-Gemeinsch:

Numerical Evaluation: pseudo-scalar D meson

Mitglied der Helmholtz-Gemeinschat

Summary

- medium modifications of D and B mesons can be traced back to changing condensates within the QCD sum rule approach
- chiral condensate dominates D meson sum rules
- four-quark condensates contributions are important for ρ and ω , but subleading for D mesons
 - \rightarrow
- spectral properties obtained in [Hilger et al., PRC 79 (2009)] hold

Mitalied der Helmholtz-Gemeinschat

Outlook

Chirally Odd Condensates in Weinberg Sum Rules

Example: ρ meson

Weinberg Sum Rules (WSR) of ho and a_1 mesons – degeneracy of spectral functions

 $\int ds \, \frac{1}{s} \Delta \rho(s) = f_{\pi}^{2}$ $\int ds \, \Delta \rho(s) = -2m_{q} \langle \bar{q}q \rangle$ $\int ds \, s \Delta \rho(s) = -2\pi \alpha_{s} \langle \bar{q}q\bar{q}q \rangle_{\text{odd}}$

with
$$\Delta \rho = \rho_{\rm V} - \rho_{\rm A}$$

fixed by microscopic calculation in had. eff. field theory

ansatz with parameters selected by minimization of inequalities in the WSR

[Hohler, Rapp, PLB 731 (2014)]

Back up

Mitglied der Helmholtz-Gemeinschaft

QCD Sum Rules in Vacuum

causal current-current correlator
$$\Pi(q) = \int d^4x \, e^{iqx} \langle \mathrm{T}\left[j(x)j^{\dagger}(0)\right] \rangle$$

dispersion relation (from analyticity of $\Pi(q)$) $\Pi(q^2) = \frac{1}{\pi} \int_{0}^{\infty} ds \frac{\text{Im}\Pi(s)}{s-q^2}$

$$\Pi_{\text{OPE}}(q^2) = \int_{0}^{\infty} \frac{\operatorname{spectral density}(s)}{s - q^2}$$

Mitglied der Helmholtz-Gemeinschaft

OPE: loop expansion

$$\Pi_{\text{OPE}}(q) = \int d^4x \, e^{ipx} \langle \mathcal{T} \left[j(x) j^{\dagger}(0) \left(\mathbb{1} + \frac{(i)^2}{2!} \int d^4y_1 d^4y_2 \mathcal{L}_{\text{int}}(y_1) \mathcal{L}_{\text{int}}(y_2) + \dots \right) \right] \rangle$$
$$= \Pi_{\alpha_s^0}(q) + \Pi_{\alpha_s^1} + \dots$$

with reduced interaction Lagrangian:

$$\mathcal{L}_{\rm int}(y) = g\bar{q}(y)\gamma^{\mu}t^{A}q(y)G^{A}_{\mu}(y) + (q \longrightarrow Q)$$

OPE: QCD quark propagator

background field method in Fock-Schwinger gauge

$$S(p) = \sum_{i=0}^{\infty} S^{(i)}(p) \qquad S^{(i)}(p) = -S^{(i-1)}(p)\gamma^{\mu}\tilde{A}_{\mu}S^{(0)}(p), \ i \ge 1$$

with derivative operator

 \sim

$$\tilde{A}_{\mu} = -\sum_{j=0}^{\infty} g \frac{(-i)^{j}}{j!(j+2)} D_{\vec{\alpha}_{j}} G_{\mu\nu} \partial^{\nu} \partial^{\vec{\alpha}_{j}}$$

free quark propagator

and 2 Wick uncontracted non-local quark operators

construction of condensates

OPE

Mitglied der Helmholtz-Gemeinschaft

Four-Quark Condensates

	2000 to the the			*	***
•	$\swarrow \qquad \qquad$	$\langle e \rangle^h = 4 \langle \mathcal{O}_k \rangle^h_{(1)} - 3 \langle \mathcal{O}_k \rangle^h_{(t^A)}$		• 000	
k	$\langle \mathcal{O}_k angle_{(\mathbb{1})}^h$	$\langle \mathcal{O}_k angle_{(t^A)}^h$		k	$\langle \mathcal{O}_k angle^s$
1	$\langle:\bar{q}q\bar{Q}Q:\rangle$	$\langle:\bar{q}t^Aq\bar{Q}t^AQ:\rangle$		1	$\langle :\bar{q}\gamma^{\nu}t^{A}q\sum\bar{q}_{f}\gamma_{\nu}t^{A}q_{f}:\rangle$
2	$\langle:\bar{q}\gamma_{\nu}q\bar{Q}\gamma^{\nu}Q:\rangle$	$\langle:\bar{q}\gamma_{\nu}t^{A}q\bar{Q}\gamma^{\nu}t^{A}Q:\rangle$		0	$\int \frac{f}{\overline{\alpha} abt^{A} \alpha \sum \overline{\alpha} abt^{A} \alpha abt^{A} \alpha abt^{A}}$
3	$\langle:\bar{q}\sigma_{\nu\rho}q\bar{Q}\sigma^{\nu\rho}Q:\rangle$	$\langle:\bar{q}\sigma_{\nu\rho}t^{A}q\bar{Q}\sigma^{\nu\rho}t^{A}Q:\rangle$ medium	n	2	$\langle :q\psi i \ q \sum_{f} q_{f}\psi i \ q_{f} : \rangle / v$
4	$\langle:\bar{q}\gamma_5\gamma_\nu q\bar{Q}\gamma_5\gamma^\nu Q:\rangle$	$\langle:\bar{q}\gamma_5\gamma_{\nu}t^Aq\bar{Q}\gamma_5\gamma^{\nu}t^AQ:\rangle$		3	$\langle:\bar{q}t^Aq\sum \bar{q}_f\psi t^Aq_f:\rangle$
5	$\langle:\bar{q}\gamma_5 q\bar{Q}\gamma_5 Q:\rangle$	$\langle:\bar{q}\gamma_5 t^A q \bar{Q}\gamma_5 t^A Q:\rangle$	\backslash		$f \qquad \qquad$
6	$\langle:\bar{q}\psi q\bar{Q}\psi Q:\rangle/v^2$	$\langle:\bar{q}\psi t^A q \bar{Q}\psi t^A Q:\rangle/v^2$		4	$\langle :Q\gamma^{\nu}t^{\mu}Q\sum_{f}\bar{q}_{f}\gamma_{\nu}t^{\mu}q_{f}:\rangle$
7	$\langle:\bar{q}\sigma^{\sigma\omega}q\bar{Q}\sigma^{\nu\rho}Q:\rangle g_{\nu\omega}v_{\sigma}v_{\rho}/v^2$	$\langle:\bar{q}\sigma^{\sigma\omega}t^Aq\bar{Q}\sigma^{\nu\rho}t^AQ:\rangle g_{\nu\omega}v_\sigma v_\rho/v^2$		5	$\langle :\bar{Q}\psi t^A Q \sum \bar{q}_f \psi t^A q_f : \rangle / v^2$
8	$\langle:\bar{q}\gamma_5\psi q\bar{Q}\gamma_5\psi Q:\rangle/v^2$	$\langle:\bar{q}\gamma_5\psi t^Aq\bar{Q}\gamma_5\psi t^AQ:\rangle/v^2$		0	f
9	$\langle:\bar{q}\psi q\bar{Q}Q:\rangle$	$\langle :\bar{q}\psi t^{A}q\bar{Q}t^{A}Q:\rangle$		6	$\langle :Qt^{*}Q\sum_{f}q_{f}\psi t^{*}q_{f}:\rangle$
10	$\langle:\bar{q}q\bar{Q}\psi Q:\rangle$	$\langle:\bar{q}t^Aq\bar{Q}\psi t^AQ:\rangle$,
11	$\langle:\bar{q}\sigma^{\sigma\omega}q\bar{Q}\gamma_5\gamma^{\nu}Q:\rangle\varepsilon_{\alpha\nu\sigma\omega}v^{\alpha}$	$\langle:\bar{q}\sigma^{\sigma\omega}t^Aq\bar{Q}\gamma_5\gamma^{\nu}t^AQ:\rangle\varepsilon_{\alpha\nu\sigma\omega}v^{\alpha}$			
12	$\langle:\bar{q}\gamma_5\gamma^{\nu}q\bar{Q}\sigma^{\sigma\omega}Q:\rangle\varepsilon_{\alpha\nu\sigma\omega}v^{\alpha}$	$\langle:\bar{q}\gamma_5\gamma^{\nu}t^Aq\bar{Q}\sigma^{\sigma\omega}t^AQ:\rangle\varepsilon_{\alpha\nu\sigma\omega}v^{\alpha}$		DRE	

concept

How to handle heavy quarks in four-quark condensates? 4 Approaches:

neglecting condensates containing heavy quarks, factorization

factorization and subsequent heavy-quark expansion

heavy-quark expansion and subsequent factorization

lattice calculations

Factorization of Four-Quark Condensats

colorless hadronic states and the QCD vacuum

vacuum

$$\langle \bar{q}\Gamma_1 t^A q \bar{q}\Gamma_2 t^A q \rangle = \sum_n c_n (\Gamma_1, \Gamma_2, t^A) \langle \bar{q}q | n \rangle \langle n | \bar{q}q \rangle$$
$$\approx c_0 (\Gamma_1, \Gamma_2, t^A) \langle \bar{q}q \rangle^2$$

medium

reduction of light four-quark condensates:

$$\langle \bar{q}\Gamma_1 t^A q \bar{q}\Gamma_2 t^A q \rangle = a \langle \bar{q}q \rangle^2 + b \langle \bar{q}q \rangle \langle \bar{q}\psi q \rangle + c \langle \bar{q}\psi q \rangle^2$$

reduction of heavy-light four-quark condensates:

$$\begin{split} \langle \bar{q}\Gamma_1 t^A q \bar{Q}\Gamma_2 t^A Q \rangle &= A \langle \bar{q}q \rangle \langle \bar{Q}Q \rangle + B \langle \bar{q}\psi q \rangle \langle \bar{Q}Q \rangle \\ &+ C \langle \bar{q}q \rangle \langle \bar{Q}\psi Q \rangle + D \langle \bar{q}\psi q \rangle \langle \bar{Q}\psi Q \rangle \end{split}$$

Heavy-Quark Expansion (HQE)

 $\begin{aligned} & \text{heavy two-quark condensate:} \qquad & [\text{Generalis, Broadhurst, PLB139 (1984)}] \\ & \langle \bar{Q}Q \rangle = \underbrace{\bigotimes}_{\otimes} \langle G^2 \rangle + \underbrace{\bigotimes}_{\otimes} \langle G^3 \rangle + \underbrace{\bigotimes}_{\otimes} \langle G^3 \rangle + \underbrace{\bigotimes}_{f} \langle \sum_f \bar{q}_f q_f \sum_{f'} \bar{q}_{f'} q_{f'} \rangle + \dots \\ & \text{leading order:} \qquad & \langle \bar{Q}Q \rangle = -\frac{g^2}{48\pi^2 m_Q} \langle G^2 \rangle + \mathcal{O}(1/m_Q^3) \end{aligned}$

heavy-light four-quark condensate:

$$\langle \bar{q}Aq\bar{Q}BQ\rangle = (\downarrow \downarrow) \langle \bar{q}q \sum_{f} \bar{q}_{f}q_{f} \rangle + (\downarrow \downarrow) \langle \bar{q}qG^{2} \rangle + \dots$$

leading order:

$$\langle \bar{q}\gamma_{\nu}t^{A}q\sum_{f}\bar{q}_{f}\gamma^{\nu}t^{A}q_{f}\rangle, \langle \bar{q}\psi t^{A}q\sum_{f}\bar{q}_{f}\psi t^{A}q_{f}\rangle/v^{2}, \langle \bar{q}t^{A}q\sum_{f}\bar{q}_{f}\psi t^{A}q_{f}\rangle$$

with HQE coefficiens of order $1/m_Q^0$

DRESDEN

Chirally Odd Condensates

besides $\langle \bar{q}q \rangle$ further candidates for order parameters

condensates not invariant under chiral transformations chirally odd condensates, e.g. chiral condensate

$$\begin{split} \varphi \dots N_f \ \text{vector} \\ \varphi &= \varphi_{\mathrm{L}} + \varphi_{\mathrm{R}} , \qquad \varphi_{\mathrm{L,R}} = P_{\mathrm{L,R}} \varphi = \frac{1}{2} (1 \mp \gamma_5) \varphi \\ \text{chiral transformations} \\ \varphi_{\mathrm{L,R}} &\longrightarrow e^{-i\Theta_{\mathrm{L,R}}^a \tau_a} \varphi_{\mathrm{L,R}} , \qquad \tau_a \text{ generators of } \mathrm{SU}(N_f) \end{split}$$

recover vector (V) and axial-vector (A) transformations for $\,\Theta^a_{
m L} = -\Theta^a_{
m R} = \Theta^a$

V:
$$\varphi \longrightarrow e^{-i\Theta^a \tau_a} \varphi$$
 A: $\varphi \longrightarrow e^{-i\Theta^a \tau_a \gamma_5} \varphi$

test chiral condensate

$$\langle \bar{\varphi}\varphi \rangle = \langle \bar{\varphi}_{\mathrm{L}}\varphi_{\mathrm{R}}\rangle + \langle \bar{\varphi}_{\mathrm{R}}\varphi_{\mathrm{L}}\rangle \longrightarrow \langle \bar{\varphi}_{\mathrm{L}}e^{-i(\Theta_{\mathrm{R}}^{a} - \Theta_{\mathrm{L}}^{a})\tau_{a}}\varphi_{\mathrm{R}}\rangle + (\mathrm{L} \longleftrightarrow \mathrm{R})$$

Translation to D and B Mesons

[Hilger et al., PRC 84 (2011)]

$$\varphi = \begin{pmatrix} u \\ d \\ c, b \end{pmatrix}$$
 chiral transformations restricted to light part ζ Gell-Mann metrices $\varphi_{L,R} \longrightarrow e^{-i\Theta_{L,R}^a \tau_a} \varphi_{L,R}, \quad \tau_a = \lambda_a/2$ with special choice $\Theta_{L,R} = (\Theta_{L,R}^1, \Theta_{L,R}^2, \Theta_{L,R}^3, 0, \dots, 0)$

leaves Lagrangian $\bar{\varphi}M\varphi$, $M = \operatorname{diag}(0, 0, m_{c,b})$ invariant

mixing of chiral partner meson currents under corresponding axial transformations

observed splitting of chiral partner spectra $\frac{m_P}{m_S} \sim \frac{1800}{2300} \qquad \frac{m_V}{m_A} \sim \frac{2000}{2400}$

spontaneous symmetry breaking, driven by order parameters,

e.g. $\langle \bar{q}q \rangle$, $\langle \bar{q}q \bar{q}q \rangle_{
m odd}$

Extension of Weinberg Sum Rules for D and B mesons

Weinberg-Type Sum Rules for qQ Mesons:

set up to condensates of mass dimension 5 for P/S and V/A

[Hilger et al., PRC 84 (2011)]

- our goal: extension to mass dimension 6
 - identified for P/S by its transformation properties

 $\langle \bar{q}q\bar{q}q\rangle_{\rm odd} = \langle (\bar{\varphi}_{\rm R}\lambda^A\varphi_{\rm L})(\bar{\varphi}_{\rm L}\psi\lambda^A\varphi_{\rm L})\rangle + \langle (\bar{\varphi}_{\rm L}\lambda^A\varphi_{\rm R})(\bar{\varphi}_{\rm L}\psi\lambda^A\varphi_{\rm L})\rangle + ({\rm L}\longleftrightarrow{\rm R})$

quantifies difference of chiral partner spectra

chiral restoration scenario in a strongly interacting medium

 $\langle \bar{q}q\rangle \longrightarrow 0$, $\langle \bar{q}q\bar{q}q\rangle_{\rm odd} \longrightarrow 0$, etc.

drive degeneracy of chiral partner spectra, cf. [Hohler, Rapp, PLB 731 (2014)]

