

Coherent photo-production of ρ^0 mesons in ultra-peripheral Pb+Pb collisions at the LHC, measured by ALICE

Christoph Mayer for the ALICE Collaboration

Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences (PAN) 31-342 Kraków

13th International Workshop on Meson Production, Properties and Interaction Kraków, Poland

Overview

Two main topics:

- Coherent photo-production of ρ^0 in Pb-Pb
 - \blacktriangleright There are several model predictions varying by a factor ≈ 2
 - Nuclear breakup in coincidence with photo-production
- Two-photon production of electron pairs in Pb-Pb
 - QED process
 - Measurements can constrain higher-order corrections

Ultra-peripheral Pb-Pb Collisions Motivation

- Ultra-peripheral collisions (UPC): impact parameter $b > 2R_A$
 - \longrightarrow hadronic interactions are strongly suppressed
 - \longrightarrow electro-magnetic interactions
- UPC interactions:
 - ▶ Photon-Nucleus, *e.g.*, Pb+Pb \rightarrow Pb+Pb + J/ Ψ , ρ^0
 - ▶ Photon-Photon, e.g., $\gamma\gamma \rightarrow e^+e^-$
- Strong electromagnetic field around lead ions: number of photons $\sim Z^2$
- ρ^0 : photons *do not* see the color sub-structure of nucleons
 - disambiguation between models with different cross section predictions
- $\gamma\gamma$: can constrain the size of perturbative higher order corrections

Ultra-peripheral Pb-Pb Collisions

Exclusive Vector Meson Production

- Coherent
 - Photon couples coherently to all the nucleons
 - $\langle p_T \rangle \sim$ 60 MeV/*c*
 - target nucleus normally^a does not break up
- Incoherent
 - Photon couples to a part of the nucleus
 - $\langle p_T \rangle \sim 500 \text{ MeV}/c$
 - target nucleus normally^a does break up

^{*a*}in \approx 80% of the events

There are several models for ρ^0 photo-production in Pb-Pb at the LHC:

- Frankfurt, Strikman, Zhalov (GDL). Phys. Lett. B 537 (2002) 51; Phys. Rev. C67 (2003) 034901; Phys. Lett. B710 (2012) 647.
- Gonçalves, Machado (GM). Phys. Rev. C84 (2011) 011902.
- Klein, Nystrand (STARLIGHT), Phys. Rev. C60 (1999) 014903, http://starlight.hepforge.org/.
- Szczurek et al.: work in progress

 ρ^0 photo-production in Pb-Pb **Motivation**

The ALICE Detector

Data Selection

Data Sample: 2010 Pb-Pb, 2.76 TeV, $\mathcal{L}^{\text{int.}} \sim 0.2 \ \mu b^{-1}$

Trigger:

- Veto in VZERO-C (2.8 < η < 5.1)</p>
- Veto in VZERO-A (-3.7 < η < -1.7)
- $N \ge 2$ hits in SPD
- $N \ge 2$ fired trigger pads in TOF

Offline Event Selection:

- Vertex: |v_z| < 10 cm</p>
- Two good tracks, Pion PID using TPC dE/dx
- Kinematic Cuts:
 - pion pair-rapidity $|y(\pi^+\pi^-)| < 0.5$
 - pair- $p_T < 0.15$ (coherent)
- Opposite-sign events: signal, Like-sign events: background

ALICE UPC ρ^0

 $-t \approx p_T^2$ distribution for photonuclear ρ^0 production at RHIC. Note: The default STARLIGHT $R_{Au} = 6.38$ fm

(STAR collaboration *J. Phys. Conf. Ser.* 389 (2012) 012042)

ALI-PREL-78388

- Data narrower than MC (same observation at RHIC)
- Experimental resolution has a negligible effect on the width (check: comparing MC generated and MC reconstructed)
- Acc×Eff is flat as function of p_T in the coherent range 0-0.15 GeV/c.
- Cross-check for incoh. contribution: fit of exp. functions to the p_T^2 distribution

C. Mayer (IFJ)

ALICE UPC ρ^0

28.05.2014 8 / 20

ρ^0 photo-production in Pb-Pb Acc. imes Eff. estimation

• We use a MC generator which is flat in invariant mass:

- flat $M(\pi^+\pi^-) \in [2 \cdot m_\pi, 1.5 \text{ GeV/c}^2]$
- flat $p_T(\pi^+\pi^-) \in [0, 0.15]$ GeV/c
- flat $y(\pi^+\pi^-) \in [-0.5, 0.5]$
- $\frac{d\theta}{d\cos\theta} \sim \sin^2\theta$ (leading term for spin-1)
- The correction is performed for each bin in invariant mass
- Acc×eff has been cross-checked with STARLIGHT
- Sharp decrease of acc×eff below 0.8 GeV/c²: TOF trigger condition

ALICE UPC ρ^0

ρ^0 photo-production in Pb-Pb Shape of the minv spectrum

The acc. \times eff. corrected minv spectrum is fitted using

$$\frac{\mathrm{d}\sigma}{\mathrm{d}m_{\pi\pi}} = \left| \boldsymbol{A} \frac{\sqrt{m_{\pi\pi} M_{\rho^0} \Gamma(m_{\pi\pi})}}{m_{\pi\pi}^2 - M_{\rho^0}^2 + i M_{\rho^0} \Gamma(m_{\pi\pi})} + \boldsymbol{B} \right|^2$$

with minv-dependent width:

$$\Gamma(m_{\pi\pi}) = \Gamma_{\rho^0} \frac{M_{\rho^0}}{m_{\pi\pi}} \left(\frac{m_{\pi\pi}^2 - 4m_{\pi}^2}{M_{\rho^0}^2 - 4m_{\pi}^2} \right)^{3/2}$$

- A is the amplitude of the Breit-Wigner function
- B is the amplitude of the non-resonant continuum $\pi^+\pi^-$ production

This formula was previously used by the STAR¹ and H1² collaborations

¹*Phys. Rev.* C77 (2008) 034910

²Nucl. Phys. B436 (1996) 3

Diff. cross section w.r.t. invariant mass

Cross section obtained by integrating the resonant contribution over $[2m_{\pi}, M_{\rho^0} + 5\Gamma_{\rho^0}]$. Same range in M_{ρ^0} as used by STAR and ZEUS.

 $\left. \frac{\mathrm{d}\sigma(\rho^0)^{\mathrm{coh.}}}{\mathrm{d}y} \right|_{|y|<0.5} = \left(420 \pm 10(\mathrm{stat.})^{+39}_{-55}(\mathrm{sys.}) \right) \, \mathrm{mb}$

GDL – Proper QM Glauber calculation for scaling $\sigma(\gamma p) \rightarrow \sigma(\gamma A)$, uses Donnachie-Landshoff model for $\sigma(\gamma p)$

GM – Based in the color dipole model with saturation implemented by the Color Glass Condensate formalism

STARLIGHT – Scales the exp. measured γp cross section using a Glauber model, neglecting the elastic nuclear cross section

ρ^0 photo-production in Pb-Pb Comparison to Models

The total cross section is obtained by integrating over all rapidities:

 $\sigma(\rho^0)^{\text{coh.}} = \left(4.3 \pm 0.1(\text{stat.})^{+0.6}_{-0.5}(\text{sys.})\right) \text{ b}$

- Enables comparison with STAR results
- Additional sys. error from the shape of *dσ/dy*: difference between GM and STARLIGHT models
- STAR Collaboration Data: Phys. Rev. Lett. 89 (2002) 272302; Phys. Rev. C77 (2008) 034910; Phys. Rev. C85 (2012) 014910.

C. Mayer (IFJ)

Nuclear Breakup

- The strong fields associated with heavy-ions lead to large probabilities for exchanging additional photons when a ρ⁰ is produced at small impact parameters.
- These photons will excite one or both of the nuclei (typically GDR excitations) and lead to break up³
- The ALICE zero-degree calorimeters (ZDC) can measure single neutron emission:

³Baltz, Klein, and Nystrand, Phys. Rev. Lett. 89 (2002) 012301

C. Mayer (IFJ)

ALICE UPC ρ

28.05.2014 14 / 20

Nuclear Breakup - comparison with models

Breakup modes:

0n0n	No break up
Xn	One or both nuclei break up
0nXn	One of the nuclei breaks up
XnXn	Both nuclei do break up

ALICE measurement:

The neutrons are detected in the ZDCs

All events	7293		STARLIGHT	RSZ
0N0N	6175	$(84.7 \pm 0.4(\text{stat})^{+0.4}_{-1.9}(\text{sys}))\%$	79% (-2.9 <i>σ</i>)	84% (−0.4 <i>σ</i>)
XN	1174	$(16.1 \pm 0.4(\text{stat})^{+2.2}_{-0.5}(\text{sys}))\%$	21% (+2.2 σ)	16% (-0.2σ)
0NXN	958	$(13.1 \pm 0.4(\text{stat})^{+0.9}_{-0.3}(\text{sys}))\%$	16% (+2.9 σ)	12% (-2.2σ)
XNXN	231	$(3.2 \pm 0.2(\text{stat})^{+0.4}_{-0.1}(\text{sys})))\%$	5.2% (+4.5 <i>σ</i>)	3 .7% (+1.1 <i>σ</i>)

STARLIGHT: Baltz, Klein, Nystrand, *Phys. Rev. Lett.* 89 (2002) 012301. RSZ: Rebyakova, Strikman, Zhalov, *Phys. Lett.* B710 (2012) 647.

C. Mayer (IFJ)

ALICE UPC ρ

Two-photon production of electron pair in Pb-Pb ALICE 2011 data

Topology cut in trigger: $M_{e^+e^-} > 2.2 \text{ GeV}/c^2$

ALICE Collaboration, EPJC 73 (2013) 2617 (Central Barrel).

C. Mayer (IFJ)

ALICE UPC ρ

28.05.2014 16 / 20

Two-photon production of electron pair in Pb-Pb ALICE 2010 data

With 2010 data this range can be extended down to 0.6 GeV/c^2 :

And the results can be combined to cover the range $M_{e^+e^-} \in [0.6, 10] \text{ GeV}/c^2$:

Two-photon production of electron pair in Pb-Pb ALICE EPJC 73 (2013) 2617

- γγ → e⁺e⁻ STABI IGHT

√s,,,, = 2.76 TeV

ALI-PREL-69133

- The transverse-momentum distribution is well -described by the STARLIGHT Monte-Carlo simulation for $0.6 \leq M_{e^+e^-} < 10.0 \text{ GeV}/c^2$.
 - Left: 2010 Pb-Pb data
 - Right: 2011 Pb-Pb data (EPJC paper)
- Broadening of pair- p_T with increasing $M_{e^+e^-}$

0.2 dN/dp_T (h_{1,2}| < 0.9, e⁺e p, (ĞeV/č) √s_{NN} = 2.76 TeV (a.u. ALICE PbPb $\gamma\gamma \rightarrow e^+e^-$ STABLIGHT < 0.9, 3.7 dp/dp¹ (l¹, ² 0.4 e⁺e`p_(GeV/ AT.T-PREL-47295

ALICE PbPb

Conclusions

- ALICE has made the first measurement of coherent photo-production of ρ^0 in Pb-Pb collisions at the LHC.
 - Cross section for ρ⁰ is in agreement with STARLIGHT and GM, about a factor of 2 below GDL. Similar to what was observed at RHIC.
- Two photon cross section
 - ► Good agreement with STARLIGHT Monte Carlo (leading order QED).
 - Sets constraints on the contribution from higher-order terms (\sqrt{Z} coupling).
- Recent ALICE UPC results not shown here:
 - First measurement of coherent photo-production of Ψ(2S) in Pb-Pb collisions at the LHC.
 - Coherent photo-production of J/Ψ in p-Pb collisions \longrightarrow last slide

Outlook: UPC J/ Ψ measured in p-Pb collisions ^{2013 data}

- Measurement of J/Ψ production over a wide range in Bjorken-x is possible
- Kinematic range of HERA extended both to the lower and higher γp energies
- Analyses for semi-forward and for mid-rapidity: work in progress

ALICE UPC ρ^0

< 回 > < 回 > < 回 >