

#### <u>New results on Coulomb effects</u> <u>in meson production</u> <u>in relativistic heavy ion collisions</u>



work in collaboration with Antoni Szczurek Mariola Kłusek-Gawenda



participant system? (YES)

## 1) Introduction

- Coulomb effects modify the spectra of charged mesons. A.R., A. Szczurek, Phys. Rev. **C75** (2007) 054903, A.R., Acta Phys. Polon. **B42** (2011) 867



#### 2) Azimuthal anisotropies

See also: A. R. and A. Szczurek, Phys. Rev. **C87** (2013) 054909. Technical details: A.R. and A. Szczurek, Phys. Rev. **C75** (2007) 054903. • Directed flow:

$$V_1 \equiv < \cos(\phi - \Psi_{RP}) >$$



• Reflects sidewards collective motion.

$$y = \frac{1}{2} \ln \left( \frac{E + p_L}{E - p_L} \right)$$

• What is the role of Coulomb effects ?



Pb+Pb peripheral,  $\sqrt{s}_{NN}$ =17.3 GeV • Directed flow:  $V_1 \equiv < \cos(\phi - \Psi_{RP}) >$ 0.3 > 0.2  $\pi^+,\pi^-$ 0.1 0 -0.1 pure EM effect :  $d_E = 0 \text{ fm}$  $d_E = 0.5 \text{ fm}$  $d_E = 1 \text{ fm}$ -0.2

2

y/y<sub>beam</sub>

0

-1

-0.3

-2

• Directed flow:  $v_1 \equiv < \cos(\phi - \Psi_{RP}) >$   $r_1 \equiv < \cos(\phi - \Psi_{RP}) >$   $r_2 = 17.3 \text{ GeV}$  $r_1 \equiv \sqrt{s_{NN}} = 17.3 \text{ GeV}$ 



data points from: H. Schlagheck (WA98 Collaboration), Nucl. Phys. A **663**, 725 (2000).

## 2.1) Azimuthal anisotropies – Part II

See also: A. R. and A. Szczurek, arXiv:1405.6860 [nucl-th], May 27, 2014

L. Adamczyk et al. (STAR Collaboration), Phys. Rev. Lett. 112, 162301 (2014)



 $V_1 \equiv < \cos(\phi - \Psi_{RP}) >$ 





#### Rapidity dependence of pion emission







- In heavy ion collisions, Coulomb fields are generated by charged spectators.
- These Coulomb fields not only modify the spectra of charged mesons but also lead to azimuthal distortions.
- These effects are sensitive to the distance d<sub>e</sub> between the pion emission site and the spectator(s).
- d<sub>E</sub> decreases with increasing pion rapidity, reflecting the longitudinal evolution of the system.
- This proves that the spectator-induced Coulomb field constitutes a new source of information on the space-time properties of the system created in the heavy ion collision, completely independent from other sources such as pion interferometry.

#### Thank you!

# Acknowledgments.

This work was supported by the Polish National Science Centre (on the basis of decision no. DEC-2011/03/B/ST2/02634).





- Pb+Pb peripheral,  $\sqrt{s}_{NN}$ =17.3 GeV
- Minimum at  $x_F = 0.15 = m_{\pi}/m_p$

**Repulsion ( for**  $\pi^+$ **)** Attraction ( for  $\pi^-$  )







# <u>Source-size dependence</u> of charged pion ratios (1)

A. Rybicki, habilitation thesis,
Report no. 2040/PH,
H. Niewodniczański Institute of Nuclear
Physics, Polish Academy of Sciences,
Kraków, 2010.



Figure 4.8: Dependence of the  $\pi^+/\pi^-$  ratio in the final state of the peripheral Pb+Pb reaction on the size and shape of the initial pion emission zone. The simulation assumed  $t_E = 1$  fm/c.

## <u>Source-size dependence</u> of charged pion ratios (2)

A. R. and A. Szczurek, Phys. Rev. **C75** (2007) 054903.



 $d_{F} = 0 \text{ fm}$ 



- the collision takes place at a given impact parameter b.
- the spectator systems = uniform spheres (in their rest frames).
- the pion emission single point in space. The emission time t<sub>e</sub> is a free parameter.
- the initial distribution of the emitted pions is assumed similar to N+N collisions (scaled). Full azimuthal symmetry is assumed.
- charged pions are traced in the spectator EM field.

typically 42,000,000 pions. includes retardation, etc.

precise NA49 data on N+N collisions C. Alt et al., Eur. Phys. J. C45 (2006) 343.



#### <u>Dependence on transverse momentum</u>



Pb+Pb peripheral,



Red solid – both spectators

v<sub>1</sub>(projectile) + v<sub>1</sub>(target) = v<sub>1</sub>(both spectators)

#### NA49 / NA61

#### Experiments (data exists or could come): WA98 STAR



#### Experiments (data exists or could come): **WA98 STAR** NA49, Phys.Rev. C68 (2003) 034903



27 Andrzej Rybicki, MESON 2014, Kraków, 29 May – 3 June 2014