The KLOE-2 experiment at DA ΦNE

Michał Silarski INFN Frascati

on behalf of the KLOE-2 collaboration

MESON 2016, Kraków, 06.06.2016

The DAFNE Φ-factory

- \Box e⁺e⁻ collider @ $\sqrt{s} = M_{\omega} = 1019.4$ MeV
- □ LAB momentum $p_{\phi} \sim 15 \text{ MeV/c}$
- $\sigma_{\text{peak}} \sim 3 \ \mu b$
- Separate e⁺e[−] rings to reduce beam-beam interaction

Large cylindrical drift chamber

- Uniform tracking and vertexing in all volume
- Helium based gas mixture (90% He – 10% IsoC₄H₁₀)
- □ Stereo wire geometry

$$\sigma_p/p$$
 = 0.4 %

$$\sigma_{xy} = 150 \ \mu m; \ \sigma_z = 2 \ mm$$

$$\sigma_{vtx} \sim 3 \text{ mm}$$

 $\sigma(M_{\pi\pi}) \sim 1 \text{ MeV}$

Lead/scintillating-fiber calorimeter

- Hermetical coverage
- High efficiency for low energy photons

$\sigma_{\rm E}/{\rm E} = 5.7\% / \sqrt{\rm E(GeV)}$ $\sigma_{\rm t} = 57 \text{ ps} / \sqrt{\rm E(GeV)} \oplus 100 \text{ ps}$

□ Taggers for leptons momenta measurement in the $e^+e^- \rightarrow e^+e^-\gamma^*\gamma^* \rightarrow e^+e^-X$ reaction

LET: E_e ~ 150-400 MeV

- Inside KLOE detector
- 20 LYSO crystals in a matrix of
 6 x 7.5 x 12 cm³ readout by SiPM
- $\sigma_{\rm E}/{\rm E} < 10\%$ for E>150 MeV

KLOE upgrades: γγ taggers

□ Taggers for leptons momenta measurement in the $e^+e^- \rightarrow e^+e^-\gamma^*\gamma^* \rightarrow e^+e^-X$ reaction

LET: $E_e \sim 150-400 \text{ MeV}$

- Inside KLOE detector
- 20 LYSO crystals in a matrix of
 6 x 7.5 x 12 cm³ readout by SiPM
- $\sigma_{\rm E}/{\rm E} < 10\%$ for E>150 MeV

HET: E_e > **400 MeV**

- Plastic scintillator hodoscopes
- Placed after first dipoles (11 m from IP)
- Capable to resolve the RF frequency online and cross-correlate the signal with KLOE trigger
- $\sigma_{\rm E} \sim 2.5$ MeV; $\sigma_{\rm T} \sim 200$ ps

Acta Phys. Pol. B 46, 81 (2015) NIM A 617, 266 (2010) NIM A 617, 81 (2010)

KLOE upgrades: IR detectors

QCALT

- Scintillator tiles +tungsten slabs red out by SiPM's
- ***** Low-beta quadrupoles: coverage for K_L decays

CCALT

- LYSO crystals+ SiPM read-out
- ♦ Increase acceptance for γ 's from IP (24°→11°)
- \clubsuit Can be used as fast luminometer for DA ΦNE

INNER TRACKER

- First cilindrical GEM detector
- ✤ 4 layers with 700 mm active length
- Better vertex reconstruction near IP
- ✤ Larger acceptance for low p_t tracks
- Increased sensitivity for the kaon interferometry measurements

Acta Phys. Pol. B 46, 87 (2015) QCALT: NIMA 617, 105 (2010) CCALT: NIM A 718, 81 (2013)

Acta Phys. Pol. B 46, 73 (2015) NIMA 628 (2011),194

KLOE-2 data-taking

KLOE-2 data-taking

- <u>One of the best days:</u>
 13.01.2016
- ✤ <u>On average:</u>
- $L_{inst} > 1.8 \cdot 10^{32} cm^{-2} s^{-1}$
- ✤ ECAL rates ~ 500 kHz
- DC currents < 3 mA</p>
- IT L1 currents < 3 μ A

KLOE-2 Physics Program

✤ Goal: collect at least 5 fb⁻¹ in the next 2 years to complete a rich physics program:

γγ physics

 \succ π⁰ width and π⁰→γγ^{*} transition form factor in the space-like region

Light meson spectroscopy

- Properties of scalar/vector mesons
- Rare η decays
- \succ η' physics

] Kaon physics

- Test of CPT (and QM) in correlated kaon decays
- ➢ Tests of CP & CPT in K_s decays
- Test of SM (CKM unitarity, lepton universality)
- ➢ Test of ChPT (K_s decays)

Dark forces searches (Light bosons @ 0(1 GeV))

Hadronic cross section ($\alpha_{em}(M_Z)$ and (g-2))

Kaon interferometry at the Φ-factory

 $\blacktriangleright \phi$ decays provide entangled kaons pairs:

$$\phi > = \frac{1}{\sqrt{2}} \left(|K^0 > |\overline{K^0} > -|\overline{K^0} > |K^0 > \right) = N(|K_S(\vec{p}) > |K_L(-\vec{p}) > -|K_S(-\vec{p}) > |K_L(\vec{p}) >)$$

$$N = \frac{\sqrt{(1+|\varepsilon_S|^2)(1+|\varepsilon_L|^2)}}{(1-\varepsilon_S\varepsilon_L)}$$

The intensity of kaon decays into final states f₁ and f₂ at proper times t₁ and t₂:

Complete destructive quantum interference prevents the two kaons from decaying into the same final state at the same time

Interference patterns for different kaon decays provide studies of different symmetries:

$$\phi \to K_S K_L \to \pi^+ \pi^- \pi^0 \pi^0 \Longrightarrow \frac{\varepsilon'}{\varepsilon} \text{ (CPV)}$$

$$\phi \to K_S K_L \to \pi^{\pm} l^{\pm} \nu \pi^0 \pi^0 \pi^0, \pi\pi \Longrightarrow \text{T violation}$$

$$\phi \to K_S K_L \to \pi^- l^+ \nu \pi^+ l^- \bar{\nu} \Longrightarrow \text{CPT and } \Delta S = \Delta Q \text{ rule}$$

$$\phi \to K_S K_L \to \pi^{\pm} l^{\mp} \nu \pi \pi \Longrightarrow \text{CPT and } \Delta S = \Delta Q \text{ rule}$$

$$\phi \to K_S K_L \to \pi^+ \pi^- \pi^+ \pi^- \text{CPT, Quantum Mechanics}$$

PLB 642(2006) 315 J.Phys.Conf.Ser.171(2009) 012008 **CPT and Lorentz symmetry tests**

$$I(\pi^+\pi^-,\pi^+\pi^-,\Delta\tau) \propto |\eta_1|^2 e^{\Gamma_L|\Delta\tau|} + |\eta_2|^2 e^{-\Gamma_S|\Delta\tau|} - 2|\eta_1||\eta_2|e^{\frac{-(\Gamma_S+\Gamma_L)}{2}|\Delta\tau|}\cos(\Delta m|\Delta\tau|)$$

$$\eta_{1(2)} = \varepsilon - \delta(\vec{p}_{K_{1(2)}})$$

★ According to the SME and anti-CPT theorem, CPT violation should appear together with Lorentz Invariance breaking ⇒ direction dependent modulation of δ:

 $\delta \simeq i \sin \phi_{SW} e^{i \phi_{SW}} \gamma_K (\Delta a_0 - \vec{\beta}_K \Delta \vec{a}) / \Delta m$

KLOE obtained the best results for the CPT and Lorentz violation parameters and with new data we plan to increase further the sensitivity

$$\Delta a_0 = (-6.0 \pm 7.7_{stat} \pm 3.1_{sys}) \ 10^{-18} \text{ GeV}$$

$$\Delta a_x = (0.9 \pm 1.5_{stat} \pm 0.6_{sys}) \ 10^{-18} \text{ GeV}$$

$$\Delta a_y = (-2.0 \pm 1.5_{stat} \pm 0.5_{sys}) \ 10^{-18} \text{ GeV}$$

$$\Delta a_z = (3.1 \pm 1.7_{stat} \pm 0.6_{sys}) \ 10^{-18} \text{ GeV}$$

PLB 730 (2014) 89

V. A. Kostelecký Phys. Rev. D 64, 076001, O. W. Greenberg Phys. Rev. Lett. 89, 231602

Rare K_S decays & CPV

- ★ $K_S \rightarrow \pi^0 \pi^0 \pi^0$: unambiguous sign of CP violation
- ★ $K_S \rightarrow \pi^+\pi^-\pi^0$: CPV for for L=0,2, but contains also conserving amplitude

$$\eta_{000} = \frac{\langle \pi^0 \pi^0 \pi^0 | H | K_S \rangle}{\langle \pi^0 \pi^0 \pi^0 | H | K_L \rangle} = \varepsilon + \varepsilon'_{000} \qquad \qquad \eta_{+-0} = \frac{\langle \pi^+ \pi^- \pi^0 | H | K_S \rangle}{\langle \pi^+ \pi^- \pi^0 | H | K_L \rangle} = \varepsilon + \varepsilon'_{+-0}$$

♦ In the lowest order of the χPT: $ε'_{000} = ε'_{+-0} = -2ε'$

$$Im(\eta_{+-0}) = -0.002 \pm 0.009;$$
 $Im(\eta_{000}) = (-0.1 \pm 1.6) \cdot 10^{-2}$

• KLOE set the best upper limit on $|\eta_{000}|$:

$$BR(K_S \to 3\pi^0) < 2.6 \cdot 10^{-8} \Rightarrow |\eta_{000}| = \sqrt{\frac{\tau_L H}{\tau_S H}}$$

N. Babusci et al., Phys. Lett. B 723 (2013) 54

- **♦** Uncertainties of both η_{000} and η_{+-0} contribute to phase of ε
- ★ Current experimental accuracy on BR(K_S → π⁺π⁻π⁰) is 30% (CPLEAR, NA48 and E621)
- ★ First direct search for K_S → π⁺π⁻π⁰ is ongoing with the old KLOE data set (with expected accuracy lower than 20 %)
- With KLOE-2 data we expect to improve sensitivity for both branching ratios

- * χ PT and C symmetry test
- New independent measurement,
 - $4.48 \cdot 10^6$ events
- Overall efficiency 37.6% with 0.96% residual background contamination

- DATA 10⁶ 1 MC SUM Signal 10⁵ \checkmark χ PT and C symmetry test ω π⁰ bka sum other bkg 10^{4} New independent measurement, 10³ $4.48 \cdot 10^6$ events 10² 10 ✤ Overall efficiency 37.6% with 0.96% residual $\times 10^{3}$ background contamination -200 50 -250 -150-100-50 0 $P_{\pi^0}^2$ (MeV²) ≻ 25000 0.8 $|A(X, Y)|^2$ **0.6**E 20000 0.4 $\approx 1 + aY + bY^2 + cX + dX^2 + eXY + fY^3$ 0.2 15000 0 $+ gX^2Y + \cdots$ -0.2E 10000 -0.4 $X = \sqrt{3} \frac{T_{\pi^+} T_{\pi^-}}{Q_n}; Y = \frac{3T_{\pi^0}}{Q_n} - 1; Q_{\eta} = T_{\pi^+} T_{\pi^-} T_{\pi^0}$ -0.6 5000 -0.8 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 Х

✤ Dalitz plot fit including the *g* parameter:

 $a = -1.095 \pm 0.003^{+0.003}_{-0.002}$ $b = +0.145 \pm 0.003 \pm 0.005$ $d = +0.081 \pm 0.003^{+0.006}_{-0.005}$ $f = +0.141 \pm 0.007^{+0.007}_{-0.008}$ $g = -0.044 \pm 0.009^{+0.012}_{-0.013}$

\diamond Results assuming *g* =0:

 $a = -1.104 \pm 0.003 \pm 0.002$ $b = +0.142 \pm 0.003^{+0.005}_{-0.004}$ $d = +0.073 \pm 0.003^{+0.004}_{-0.003}$ $f = +0.154 \pm 0.006^{+0.004}_{-0.005}$

Charge asymmetries:

$$A_{LR} = (-5.0 \pm 4.5^{+5.0}_{-11}) \cdot 10^{-4}$$
$$A_Q = (+1.8 \pm 4.5^{+4.8}_{-2.3}) \cdot 10^{-4}$$
$$A_S = (-0.4 \pm 4.5^{+3.1}_{-3.5}) \cdot 10^{-4}$$

- Meson Transition Form Factors
- Test on the theoretical description of meson structure
- Light-by-Light contribution to a_{μ}
- Used to determine upper limit in dark forces searches

- The first measurement of the transition
 form factor |Fφ_π(q)|
- ✤ ~ 9500 signal events selected
- Main background: radiative bhabha
 scattering and Φ → π⁰ γ

BR $(\phi \to \pi^0 e^+ e^-) = (1.35 \pm 0.05 ^{+0.05}_{-0.10}) \times 10^{-5}$

Needed to validate non-VMD models of form factors

★ 31000 signal events selected with $\eta \rightarrow 3\pi^0$ (~3% of K_SK_L events contamination)

C. Terschlusen and S. Leupold,, Phys. Lett. B 691, 191-201 (2010) KLOE fit ($\Lambda \pm 1\sigma$) VMD expectation

 $b_{\eta,\Phi} = (1.17 \pm 0.10^{+0.07}_{-0.11}) GeV^{-2}$

 $BR(\Phi \rightarrow \eta e e) = (1.075 \pm 0.007 \pm 0.038) x 10^{-4}$

- Search for dark forces
- Associated production of U and γ ,
 - $e^+e^- \rightarrow U\gamma$ with:

 \circ U $\rightarrow \mu^+\mu^-$

 \circ U $\rightarrow \pi^+\pi^-$

- U → e^+e^- Phys. Lett. B 736 (2014) 459
 - Phys. Lett. B750 (2015) 633

Phys. Lett. B757 (2016) 356

♦ $\Phi \rightarrow \eta U$ with U $\rightarrow e^+e^-$

and $\eta \rightarrow \pi^+\pi^-\pi^0 / \pi^0\pi^0$ Phys

Phys. Lett. B 747 (2015) 365

Search for dark forces

- KLOE-2 has inherited a very good quality data set which is still analysed in view of many different physics topics
- The new data-taking with upgraded detector started in November 2014 giving unique opportunity to improve the exsisting results and extend the physics program of KLOE
- Our goal is to reach at least 5 fb⁻¹ of integrated luminosity in the next two years
- The data-taking is progessing according to the expectations with continous increase of the DAΦNE performance

SPARES

A Φ -factory offers the possibility to select pure kaon beams:

 K_s tagged by K_L interaction in EmC Efficiency ~ 30% K_s angular resolution: ~ 1° (0.3° in φ)

 K_S momentum resolution: ~ 2 MeV

 K_L tagged by $K_S \rightarrow \pi^+\pi^-$ vertex at IP Efficiency ~ 70% K_L angular resolution: ~ 1° K_L momentum resolution: ~ 2 MeV

Choice of the reference frame: the Zaxis along the Earth's rotation axis (accounting for the sidereal time dependence due to the Earth rotation)

CPT and Lorentz symmetry tests

→ Measurement of the $\phi \to K_S K_L \to \pi^+ \pi^- \pi^+ \pi^-$

- Events preselection requiring 2 reconstructed vertices with two tracks and:

$$\sqrt{E^{2}_{miss} + \vec{p}^{2}_{miss}} < 10 \text{ MeV}$$

$$> -50 \text{ MeV}^{2}/c^{4} < M^{2}_{miss} < 10 \text{ MeV}^{2}/c^{4}$$

$$> \left| p^{*}_{1,2} - p^{*}_{0} \right| < 10 \text{ MeV/c} \left(p^{*}_{0} = \sqrt{\frac{s}{4} - m^{2}_{K}} \right)$$

- A global kinematic fit applied to improve the kaon decay length reconstruction
- ➤ Cut on the pion opening angle $\cos \vartheta < -0.975$ (events with deteriorated time resolution)
- ✓ Vertices inside the beam pipe (reduction of the K_s regeneration background) ⇒ $\Delta \tau \in [-12\tau_s; -12\tau_s]$
- ► The residual background contamination: regeneration (2%) and $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-(0.5\%)$

- ➤ Kaons were ordered according to their z momenta component
- > Data sample analyzed for different intervals of sidereal time and kaon emission angle: $4_{sidereal} \ge 8 I(\Delta \tau)$ distributions
- Simultaneous fit to all distributions taking into account the 4π background subtraction and data/MC efficiency correction for regeneration

CPT and Lorentz symmetry tests

192 Data points fit simultaneously with 5 free parameters; χ^2_{Fit} /ndof = 211/187 (P=10%)

DA ONE upgrade

	DAΦNE (KLOE run)	DAΦNE Upgrade
I _{bunch} (mA)	13	13
N _{bunch}	110	110
β _y * (cm)	1.7	0.65
β _x * (cm)	170	20
σ _y * (μ m)	7	2.6
σ _x * (μm)	700	200
σ _z (mm)	25	20
θ_{cross} (mrad) (half)	12.5	25
Ф _{Piwinski}	0.45	2.5
L (cm ⁻² s ⁻¹)	1.5x10 ³²	>5x10 ³²

 \succ L_{new} ~ 3 × L_{old}

 $\sum Ldt = 1 \text{ pb}^{-1}/\text{hour}$

DAΦNE upgrade

Luminosity vs Current Product

$$I(\pi^{+}\pi^{-},\pi^{+}\pi^{-},\Delta\tau) \\ \propto e^{-(\Gamma_{S}+\Gamma_{L})|\Delta\tau|} \left[|\eta_{1}|^{2}e^{\frac{-\Delta\Gamma}{2}\Delta\tau} + |\eta_{2}|^{2}e^{\frac{-\Delta\Gamma}{2}\Delta\tau} - 2\Re e(\eta_{1}\eta_{2}^{*}e^{-i\Delta m\Delta\tau}) \right]$$

Introduction

Time evolution of the $K^0 \leftrightarrow \overline{K^0}$ system in the rest frame:

$$i\frac{\partial}{\partial t}\left(\frac{|K^{0}\rangle}{|K^{0}\rangle}\right) = \mathbf{H}\left(\frac{|K^{0}\rangle}{|K^{0}\rangle}\right) = \left[\mathbf{M} - \frac{i}{2}\mathbf{\Gamma}\right]\left(\frac{|K^{0}\rangle}{|K^{0}\rangle}\right)$$

$$\boldsymbol{\Gamma} = \begin{pmatrix} \Gamma_{11} & \Gamma_{12} \\ \Gamma_{12}^* & \Gamma_{22} \end{pmatrix} \qquad \boldsymbol{M} = \begin{pmatrix} M_{11} & M_{12} \\ M_{12}^* & M_{22} \end{pmatrix}$$

> The eigenstates of **H**:

$$|K_{S}\rangle = \frac{1}{\sqrt{1+|\varepsilon_{S}|^{2}}} (|K_{1}\rangle + \varepsilon_{S}|K_{2}\rangle) (\tau = 0.9 \cdot 10^{-10} \text{ s; } c\tau = 2.68 \text{ cm})$$

$$|K_{L}\rangle = \frac{1}{\sqrt{1+|\varepsilon_{L}|^{2}}} (|K_{2}\rangle + \varepsilon_{L}|K_{1}\rangle) (\tau = 5.1 \cdot 10^{-8} \text{ s; } c\tau = 155 \text{ cm})$$