

Pion-nucleon scattering: from chiral perturbation theory to Roy-Steiner equations

Bastian Kubis

Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) Bethe Center for Theoretical Physics

Universität Bonn, Germany

Outline

Why is pion-nucleon scattering important?

Chiral perturbation theory

• phase shift analyses with chiral amplitudes

A new dispersive analysis: Roy–Steiner equations

• phase shifts, σ -term, and low-energy constants

in collaboration with M. Hoferichter, J. Ruiz de Elvira, and U.-G. Meißner PRL 115 (2015) 092301, PRL 115 (2015) 192301, Phys. Rept. 625 (2016) 1, arXiv:1602.07688

Chiral pion-nucleon interaction

• simplest process for chiral pion interaction with nucleons

leading-order O(p) = O(M_π) predictions for πN:
 scattering lengths:

$$a^{-} = \frac{M_{\pi}m_{N}}{8\pi(m_{N} + M_{\pi})F_{\pi}^{2}} + \mathcal{O}(M_{\pi}^{3}) \qquad a^{+} = \mathcal{O}(M_{\pi}^{2})$$

Weinberg 1966

Goldberger–Treiman relation:

$$g_{\pi N} = \frac{g_A m_N}{F_\pi}$$

Chiral pion-nucleon interaction

• simplest process for chiral pion interaction with nucleons

- next-to-leading order $\mathcal{O}(p^2)$: low-energy constants (LECs) c_{1-4} effectively incorporate effects of the $\Delta(1232)$ resonance: low mass $m_{\Delta} - m_N \approx 2M_{\pi}$ and strong couplings
- determination of c_i very important for nuclear physics: πN important for NN / determines longest-range 3N forces

The pion–nucleon σ -term

• scalar form factor of the nucleon:

$$\langle N(p')|\hat{m}(\bar{u}u+\bar{d}d)|N(p)\rangle = \sigma(t)\bar{u}(p')u(p) \qquad t = (p-p')^2$$
$$\sigma_{\pi N} \equiv \sigma(0) = \frac{\hat{m}}{2m_N} \langle N|\bar{u}u+\bar{d}d|N\rangle \qquad \hat{m} = \frac{m_u+m_d}{2}$$

• $\sigma_{\pi N}$ determines light quark contribution to nucleon mass: Feynman–Hellmann theorem

$$\sigma_{\pi N} = \hat{m} \frac{\partial m_N}{\partial \hat{m}} = -4c_1 M_\pi^2 + \mathcal{O}(M_\pi^3)$$

 \longrightarrow at leading order, related to the chiral coupling c_1

• $\sigma_{\pi N}$ determines scalar couplings wanted for direct-detection dark matter searches e.g. Ellis et al. 2008

Extracting LECs from pion-nucleon scattering

Mojžiš 1997, Fettes et al. 1998–2000, Ellis et al. 1998–2003 Alarcón et al. 2011–2013, Chen et al. 2013, Krebs et al. 2012, Gasparyan, Lutz 2010

Strategy:

- fit results of phase shift analyses:
 - $\,\triangleright\,$ Karlsruhe–Helsinki (KH) \longrightarrow dispersion theory based
 - Koch, Pietarinen 1980, Höhler 1983
 - $\triangleright \ \text{GWU/SAID} \ (\text{GW}) \longrightarrow \text{modern data input} \qquad \text{Workman et al. 2012}$
 - ▷ Matsinos et al. (EM)

Matsinos et al. 2006

Extracting LECs from pion-nucleon scattering

Mojžiš 1997, Fettes et al. 1998–2000, Ellis et al. 1998–2003

Alarcón et al. 2011–2013, Chen et al. 2013, Krebs et al. 2012, Gasparyan, Lutz 2010

Strategy:

- fit results of phase shift analyses:
 - $\,\triangleright\,$ Karlsruhe–Helsinki (KH) \longrightarrow dispersion theory based
 - Koch, Pietarinen 1980, Höhler 1983
 - \triangleright GWU/SAID (GW) \longrightarrow modern data input Workman et al. 2012
 - ▷ Matsinos et al. (EM)

Matsinos et al. 2006

- # of parameters: $\mathcal{O}(p^2)$: 4 c_i $\mathcal{O}(p^3)$: 4 d_i (+ d_{18} from GT discrepancy) $\mathcal{O}(p^4)$: 5 e_i
- use chiral low-energy theorems to extract $\sigma_{\pi N}$

Extracting LECs from pion-nucleon scattering

Mojžiš 1997, Fettes et al. 1998–2000, Ellis et al. 1998–2003

Alarcón et al. 2011–2013, Chen et al. 2013, Krebs et al. 2012, Gasparyan, Lutz 2010

Strategy:

- fit results of phase shift analyses:
 - $\,\triangleright\,$ Karlsruhe–Helsinki (KH) \longrightarrow dispersion theory based
 - Koch, Pietarinen 1980, Höhler 1983
 - \triangleright GWU/SAID (GW) \longrightarrow modern data input Workman et al. 2012
 - Matsinos et al. (EM)

Matsinos et al. 2006

- # of parameters: $\mathcal{O}(p^2)$: 4 c_i $\mathcal{O}(p^3)$: 4 d_i (+ d_{18} from GT discrepancy) $\mathcal{O}(p^4)$: 5 e_i
- use chiral low-energy theorems to extract $\sigma_{\pi N}$
- ChPT obeys unitarity only perturbatively de-facto unitarisation to calculate phase shifts from real parts:

$$\delta = \arctan\left(\frac{|\mathbf{p}|}{8\pi\sqrt{s}}\operatorname{Re} T\right) \approx \frac{|\mathbf{p}|}{8\pi\sqrt{s}}\operatorname{Re} T$$

Convergence of the chiral expansion

Krebs, Gasparyan, Epelbaum 2012

- fitted up to $p_{Lab} = 150 \text{ MeV} = \sqrt{s} \approx 1.13 \text{ GeV}$, maximum energy shown $p_{Lab} = 200 \text{ MeV} = \sqrt{s} \approx 1.17 \text{ GeV}$
- convergence assessed using LECs from highest-order fit
- D-waves also fitted

ChPT with and without explicit $\Delta(1232)$

On the chiral extractions of $\sigma_{\pi N}$

The Cheng–Dashen theorem

 isoscalar amplitude at CD point related to scalar form factor

$$\underbrace{F_{\pi}^2 \bar{D}^+ (s = u, t = 2M_{\pi}^2)}_{F_{\pi}^2 (d_{00}^+ + 2M_{\pi}^2 d_{01}^+) + \Delta_D} = \underbrace{\sigma(2M_{\pi}^2)}_{\sigma_{\pi N} + \Delta_{\sigma}} + \Delta_R$$

 $|\Delta_R| \lesssim 2 \,\mathrm{MeV}$ Bernard et al. 1996

On the chiral extractions of $\sigma_{\pi N}$

The Cheng–Dashen theorem

 isoscalar amplitude at CD point related to scalar form factor

$$\underbrace{F_{\pi}^2 \bar{D}^+ (s = u, t = 2M_{\pi}^2)}_{F_{\pi}^2 (d_{00}^+ + 2M_{\pi}^2 d_{01}^+) + \Delta_D} = \underbrace{\sigma(2M_{\pi}^2)}_{\sigma_{\pi N} + \Delta_\sigma} + \Delta_R$$

 $|\Delta_R| \lesssim 2 \, {\sf MeV}$ Bernard et al. 1996

- ChPT fulfils all these relations perturbatively only is known to fail at one loop for Δ_D , Δ_σ : Gasser, Leutwyler, Sainio 1991 curvature d_{02}^+ not reproduced at one loop Alarcón et al. 2013
- we're lucky: $\Delta_D \Delta_\sigma = (-1.8 \pm 0.2)$ MeV cancels to large extent
- one-loop ChPT does not describe pion-nucleon scattering accurately in the whole low-energy region

On the chiral extractions of $\sigma_{\pi N}$

The Cheng–Dashen theorem

 isoscalar amplitude at CD point related to scalar form factor

$$\underbrace{F_{\pi}^2 \bar{D}^+ (s = u, t = 2M_{\pi}^2)}_{F_{\pi}^2 (d_{00}^+ + 2M_{\pi}^2 d_{01}^+) + \Delta_D} = \underbrace{\sigma(2M_{\pi}^2)}_{\sigma_{\pi N} + \Delta_\sigma} + \Delta_R$$

 $|\Delta_{R}| \lesssim 2 \, {\sf MeV}$ Bernard et al. 1996

- ChPT fulfils all these relations perturbatively only is known to fail at one loop for Δ_D , Δ_σ : Gasser, Leutwyler, Sainio 1991 curvature d_{02}^+ not reproduced at one loop Alarcón et al. 2013
- we're lucky: $\Delta_D \Delta_\sigma = (-1.8 \pm 0.2)$ MeV cancels to large extent
- \rightarrow update dispersive analysis, Roy–Steiner equations

Hoferichter, Ruiz de Elvira, BK, Meißner

The well-known paradigm: $\pi\pi$ Roy equations

Roy equations = coupled system of partial-wave dispersion relations + crossing symmetry + unitarity

• twice-subtracted fixed-*t* dispersion relation:

$$T(s,t) = c(t) + \frac{1}{\pi} \int_{4M_{\pi}^2}^{\infty} ds' \left\{ \underbrace{\frac{s^2}{s'^2(s'-s)}}_{s\text{-channel cut}} + \underbrace{\frac{u^2}{s'^2(s'-u)}}_{u\text{-channel cut}} \right\} \operatorname{Im} T(s',t)$$

• subtraction function c(t) determined from crossing symmetry

The well-known paradigm: $\pi\pi$ Roy equations

Roy equations = coupled system of partial-wave dispersion relations + crossing symmetry + unitarity

• twice-subtracted fixed-*t* dispersion relation:

$$T(s,t) = c(t) + \frac{1}{\pi} \int_{4M_{\pi}^2}^{\infty} ds' \left\{ \underbrace{\frac{s^2}{s'^2(s'-s)}}_{s\text{-channel cut}} + \underbrace{\frac{u^2}{s'^2(s'-u)}}_{u\text{-channel cut}} \right\} \operatorname{Im} T(s',t)$$

- subtraction function c(t) determined from crossing symmetry
- project onto partial waves t^I_J(s) (angular momentum J, isospin I)
 expand ImT(s', t) in partial waves

$$t_{J}^{I}(s) = \mathsf{polynomial}(a_{0}^{0}, a_{0}^{2}) + \sum_{I'=0}^{2} \sum_{J'=0}^{\infty} \int_{4M_{\pi}^{2}}^{\infty} ds' K_{JJ'}^{II'}(s, s') \mathrm{Im} t_{J'}^{I'}(s')$$

kernel functions $K_{JJ'}^{II'}(s, s')$ known analytically

Roy 1971

$\pi\pi$ Roy equations

• elastic unitarity:

$$t_J^I(s) = \frac{e^{2i\delta_J^I(s)} - 1}{2i\sigma} \qquad \sigma = \sqrt{1 - \frac{4M_\pi^2}{s}}$$

 \rightarrow coupled integral equations for phase shifts

• example: $\pi\pi I = 0$ S-wave phase shift & inelasticity

Pion-nucleon scattering, crossing symmetry

Pion-nucleon scattering, crossing symmetry

Complications

- crossing links two different processes, $\pi N \to \pi N$ and $\pi \pi \to \overline{N}N$ \rightarrow use hyperbolic (instead of fixed-t) DR (Roy-Steiner)
- large pseudophysical region in the *t*-channel: $t = 4M_{\pi}^2 \longrightarrow 4m_N^2$, $\bar{K}K$ intermediate states ($f_0(980)$)

Roy–Steiner equations for pion–nucleon scattering

Limited range of validity:

$$\sqrt{s} \le \sqrt{s_m} = 1.38 \,\mathrm{GeV}$$

Input / constraints:

- S-, P-waves above matching point s > s_m (t > t_m)
- inelasticities
- higher waves (D-, F-...)
- scattering lengths from hadronic atoms Baru et al. 2011

$$\sqrt{t} \le \sqrt{t_m} = 2.00 \,\mathrm{GeV}$$

Output:

- S- and P-waves at low energies $s < s_m$, $t < t_m$
- subthreshold parameters
 - ▷ pion–nucleon σ -term
 - nucleon form factor spectral functions

Roy–Steiner equations for pion–nucleon scattering

Limited range of validity:

$$\sqrt{s} \le \sqrt{s_m} = 1.38 \,\mathrm{GeV}$$

Input / constraints:

- S-, P-waves above matching point s > s_m (t > t_m)
- inelasticities
- higher waves (D-, F-...)
- scattering lengths from hadronic atoms Baru et al. 2011

Important analysis steps:

• full analytic system

 $\sqrt{t} \le \sqrt{t_m} = 2.00 \,\mathrm{GeV}$

Output:

- S- and P-waves at low energies $s < s_m$, $t < t_m$
- subthreshold parameters
 - \triangleright pion–nucleon σ -term
 - nucleon form factor spectral functions

Ditsche, Hoferichter, BK, Meißner 2012

• improved *t*-channel S-wave ($\pi\pi \leftrightarrow \bar{K}K \leftrightarrow \bar{N}N$)

Hoferichter, Ditsche, BK, Meißner 2012

• solving for the *s*-channel πN partial waves + self-consistent iteration Hoferichter, Ruiz de Elvira, BK, Meißner 2015

Roy–Steiner equations for pion–nucleon scattering

Limited range of validity:

$$\sqrt{s} \le \sqrt{s_m} = 1.38 \,\mathrm{GeV}$$

Input / constraints:

- S-, P-waves above matching point s > s_m (t > t_m)
- inelasticities
- higher waves (D-, F-...)
- scattering lengths from hadronic atoms Baru et al. 2011

Important analysis steps:

• full analytic system

 $\sqrt{t} \le \sqrt{t_m} = 2.00 \,\mathrm{GeV}$

Output:

- S- and P-waves at low energies $s < s_m$, $t < t_m$
- subthreshold parameters
 - \triangleright pion–nucleon σ -term
 - nucleon form factor spectral functions

Ditsche, Hoferichter, BK, Meißner 2012

• improved *t*-channel S-wave ($\pi\pi \leftrightarrow \bar{K}K \leftrightarrow \bar{N}N$)

Hoferichter, Ditsche, BK, Meißner 2012

• solving for the *s*-channel πN partial waves + self-consistent iteration Hoferichter, Ruiz de Elvira, BK, Meißner 2015

cf. Gasser, Lyubovitskij, Rusetsky 2008

• pionic hydrogen πH , pionic deuterium πD : atoms with $e^- \rightarrow \pi^-$ calculate energy levels as for hydrogen in quantum mechanics!

cf. Gasser, Lyubovitskij, Rusetsky 2008

- pionic hydrogen πH , pionic deuterium πD : atoms with $e^- \rightarrow \pi^-$ calculate energy levels as for hydrogen in quantum mechanics!
- energy levels perturbed by strong interactions:
 - ▷ ground state instable, decays: $\pi^- p \rightarrow \pi^0 n \longrightarrow \text{width } \Gamma_{1s}$
 - \triangleright ground state energy shift ϵ_{1s}
- linked to πN scattering at threshold:

$$\epsilon_{1s} \propto T(\pi^- p \to \pi^- p) \propto a_0^+ + a_0^-$$

$$\Gamma_{1s} \propto |T(\pi^- p \to \pi^0 n)|^2 \propto |a_0^-|^2$$

Deser, Goldberger, Baumann, Thirring 1954

• πD : add. information from energy shift (diff. isospin combination)

Measurements of πH and πD

PSI 1995-2010

 $\epsilon_{1s} = (7.120 \pm 0.012) \, \text{eV} \quad \Gamma_{1s} = (0.823 \pm 0.019) \, \text{eV} \quad \epsilon_{1s}^D = (2.356 \pm 0.031) \, \text{eV}$

Measurements of πH and πD $\epsilon_{1s} = (7.120 \pm 0.012) \, \text{eV} \quad \Gamma_{1s} = (0.823 \pm 0.019) \, \text{eV} \quad \epsilon_{1s}^D = (2.356 \pm 0.031) \, \text{eV}$

PSI 1995-2010

Theory to match this accuracy requires

- isospin breaking in πN
- three-body corrections in πD
- isospin breaking in πD

Hoferichter, BK, Meißner 2009

Weinberg 1992, ...

Baru et al. 2011

Measurements of πH and πD

 $\epsilon_{1s} = (7.120 \pm 0.012) \, \text{eV} \quad \Gamma_{1s} = (0.823 \pm 0.019) \, \text{eV} \quad \epsilon_{1s}^D = (2.356 \pm 0.031) \, \text{eV}$

Theory to match this accuracy requires

- isospin breaking in πN
- three-body corrections in πD
- isospin breaking in πD

Hoferichter, BK, Meißner 2009

Weinberg 1992, ...

Baru et al. 2011

PSI 1995-2010

$$a_0^- = (86.1 \pm 0.9) \cdot 10^{-3} M_\pi^{-1}$$
$$a_0^+ = (7.6 \pm 3.1) \cdot 10^{-3} M_\pi^{-1}$$

but:
$$\frac{1}{2}(a_{\pi^-p} + a_{\pi^+p})$$

= $(-1.1 \pm 0.9) \cdot 10^{-3} M_{\pi}^{-1}$

→ large isospin-breaking effects in isoscalar sector Baru et al. 2011

Solving the coupled system: paradigms, uncertainties

An update on Karlsruhe–Helsinki (KH) with modern input

- πN scattering lengths extracted from hadronic atoms
- Goldberger–Miyazawa–Oehme sum rule from those:

 $g_{\pi N}^2/4\pi = 13.7 \pm 0.2$ Baru et al. 2011 in perfect agreement with NN extractions Navarro Pérez et al. 2016 compare: $g_{\pi N}^2/4\pi = 14.28$ Höhler 1983

 \longrightarrow check: always reproduce KH results with KH input

• modern s-channel partial waves from SAID above s_m

Solving the coupled system: paradigms, uncertainties

An update on Karlsruhe–Helsinki (KH) with modern input

- πN scattering lengths extracted from hadronic atoms
- Goldberger–Miyazawa–Oehme sum rule from those:

 $g_{\pi N}^2/4\pi = 13.7 \pm 0.2$ Baru et al. 2011 in perfect agreement with *NN* extractions Navarro Pérez et al. 2016 compare: $g_{\pi N}^2/4\pi = 14.28$ Höhler 1983

 \longrightarrow check: always reproduce KH results with KH input

• modern s-channel partial waves from SAID above s_m

Dominant uncertainties

- near threshold: S-wave scattering lengths
- intermediate energies: significant correlations between 10 subtraction constants = subthreshold parameters ("flat minima")
- "large" energies: matching point uncertainties
- rather well under control: high-energy input, higher partial waves

Results: s-channel solution

LHS+RHS of Roy–Steiner eqs. *before* / LHS+RHS *after* fit/iteration

Results: s-channel solution, uncertainties

Results: *t*-channel S-, P-, D-waves (compared to KH)

$$\sigma_{\pi N} = F_{\pi}^2 (d_{00}^+ + 2M_{\pi}^2 d_{01}^+) + \Delta_D - \Delta_\sigma - \Delta_R$$

$$\sigma_{\pi N} = F_{\pi}^2 (d_{00}^+ + 2M_{\pi}^2 d_{01}^+) + \Delta_D - \Delta_\sigma - \Delta_R$$

- subthreshold parameters output of the Roy–Steiner equations
 - $d_{00}^{+} = -1.36(3)M_{\pi}^{-1} \qquad [\text{KH:} -1.46(10)M_{\pi}^{-1}]$ $d_{01}^{+} = -1.16(2)M_{\pi}^{-3} \qquad [\text{KH:} -1.14(2)M_{\pi}^{-3}]$

•
$$\Delta_D - \Delta_\sigma = (-1.8 \pm 0.2) \,\mathrm{MeV}$$

• $|\Delta_R| \lesssim 2 \,\mathrm{MeV}$

Hoferichter et al. 2012

Bernard, Kaiser, Meißner 1996

• isospin breaking in the CD theorem shifts $\sigma_{\pi N}$ by $+3.0 \,\text{MeV}$

$$\sigma_{\pi N} = F_{\pi}^2 (d_{00}^+ + 2M_{\pi}^2 d_{01}^+) + \Delta_D - \Delta_\sigma - \Delta_R$$

- subthreshold parameters output of the Roy–Steiner equations
 - $d_{00}^{+} = -1.36(3)M_{\pi}^{-1} \qquad [\text{KH:} -1.46(10)M_{\pi}^{-1}]$ $d_{01}^{+} = -1.16(2)M_{\pi}^{-3} \qquad [\text{KH:} -1.14(2)M_{\pi}^{-3}]$

•
$$\Delta_D - \Delta_\sigma = (-1.8 \pm 0.2) \,\mathrm{MeV}$$

• $|\Delta_R| \lesssim 2 \,\mathrm{MeV}$

Hoferichter et al. 2012

Bernard, Kaiser, Meißner 1996

- isospin breaking in the CD theorem shifts $\sigma_{\pi N}$ by $+3.0 \,\text{MeV}$
- full result:

 $\sigma_{\pi N} = (59.1 \pm 1.9_{\text{RS}} \pm 3.0_{\text{LET}}) \,\text{MeV} = (59.1 \pm 3.5) \,\text{MeV}$

Hoferichter, Ruiz de Elvira, BK, Meißner 2015

$$\sigma_{\pi N} = F_{\pi}^2 (d_{00}^+ + 2M_{\pi}^2 d_{01}^+) + \Delta_D - \Delta_\sigma - \Delta_R$$

- subthreshold parameters output of the Roy–Steiner equations
 - $d_{00}^{+} = -1.36(3)M_{\pi}^{-1} \qquad [\text{KH:} -1.46(10)M_{\pi}^{-1}]$ $d_{01}^{+} = -1.16(2)M_{\pi}^{-3} \qquad [\text{KH:} -1.14(2)M_{\pi}^{-3}]$

•
$$\Delta_D - \Delta_\sigma = (-1.8 \pm 0.2) \,\mathrm{MeV}$$

• $|\Delta_R| \lesssim 2 \,\mathrm{MeV}$

Hoferichter et al. 2012

Bernard, Kaiser, Meißner 1996

- isospin breaking in the CD theorem shifts $\sigma_{\pi N}$ by $+3.0 \,\text{MeV}$
- full result:

 $\sigma_{\pi N} = (59.1 \pm 1.9_{\text{RS}} \pm 3.0_{\text{LET}}) \,\text{MeV} = (59.1 \pm 3.5) \,\text{MeV}$

Hoferichter, Ruiz de Elvira, BK, Meißner 2015

• KH input $\longrightarrow \sigma_{\pi N} \approx 46 \,\text{MeV}$

Gasser, Leutwyler, Sainio 1991

• compare also $\sigma_{\pi N} \approx (64 \pm 8) \text{ MeV}$

Pavan et al. 2002

Nucleon strangeness

• relate $\sigma_{\pi N}$ to strangeness content of the nucleon:

$$\sigma_{\pi N} = \frac{\hat{m}}{2m_N} \frac{\langle N | \bar{u}u + \bar{d}d - 2\bar{s}s | N \rangle}{1 - y} , \quad y = \frac{2\langle N | \bar{s}s | N \rangle}{\langle N | \bar{u}u + \bar{d}d | N \rangle}$$

 $(m_s - \hat{m})(\bar{u}u + \bar{d}d - 2\bar{s}s) \subset \mathcal{L}_{QCD}$ produces SU(3) mass splittings:

$$\sigma_{\pi N} = \frac{\sigma_0}{1-y} , \quad \sigma_0 = \frac{\hat{m}}{m_s - \hat{m}} \left(m_{\Xi} + m_{\Sigma} - 2m_N \right) \simeq 26 \text{ MeV}$$

higher-order corrections: $\sigma_0 \rightarrow (36 \pm 7)$ MeV Borasoy, Meißner 1997

• OZI rule, lattice: *y* likely very small

Nucleon strangeness

• relate $\sigma_{\pi N}$ to strangeness content of the nucleon:

$$\sigma_{\pi N} = \frac{\hat{m}}{2m_N} \frac{\langle N | \bar{u}u + \bar{d}d - 2\bar{s}s | N \rangle}{1 - y} , \quad y = \frac{2\langle N | \bar{s}s | N \rangle}{\langle N | \bar{u}u + \bar{d}d | N \rangle}$$

 $(m_s - \hat{m})(\bar{u}u + \bar{d}d - 2\bar{s}s) \subset \mathcal{L}_{QCD}$ produces SU(3) mass splittings:

$$\sigma_{\pi N} = \frac{\sigma_0}{1-y} , \quad \sigma_0 = \frac{\hat{m}}{m_s - \hat{m}} \left(m_{\Xi} + m_{\Sigma} - 2m_N \right) \simeq 26 \text{ MeV}$$

higher-order corrections: $\sigma_0 \rightarrow (36 \pm 7)$ MeV Borasoy, Meißner 1997

- OZI rule, lattice: *y* likely very small
- potentially large effects > from the decuplet

From relativistic corrections

may increase to $\sigma_0 = (58 \pm 8)$ MeV Alarcón et al. 2014

Nucleon strangeness

• relate $\sigma_{\pi N}$ to strangeness content of the nucleon:

$$\sigma_{\pi N} = \frac{\hat{m}}{2m_N} \frac{\langle N | \bar{u}u + \bar{d}d - 2\bar{s}s | N \rangle}{1 - y} , \quad y = \frac{2\langle N | \bar{s}s | N \rangle}{\langle N | \bar{u}u + \bar{d}d | N \rangle}$$

 $(m_s - \hat{m})(\bar{u}u + \bar{d}d - 2\bar{s}s) \subset \mathcal{L}_{QCD}$ produces SU(3) mass splittings:

$$\sigma_{\pi N} = \frac{\sigma_0}{1-y}$$
, $\sigma_0 = \frac{\hat{m}}{m_s - \hat{m}} (m_{\Xi} + m_{\Sigma} - 2m_N) \simeq 26 \text{ MeV}$

higher-order corrections: $\sigma_0 \rightarrow (36 \pm 7)$ MeV Borasoy, Meißner 1997

- OZI rule, lattice: *y* likely very small
- potentially large effects > from the decuplet

From relativistic corrections

may increase to $\sigma_0 = (58 \pm 8)$ MeV Alarcón et al. 2014

• conclusion:

 $\triangleright \sigma_{\pi N} = (59.1 \pm 3.5)$ MeV not incompatible with small y

 \triangleright chiral convergence of σ_0 (hence $\langle N | \bar{s}s | N \rangle$) very doubtful

Comparison to lattice results – a puzzle (1)

• 4 new lattice calculations of $\sigma_{\pi N}$ at physical M_{π} since Hoferichter, Ruiz de Elvira, BK, Meißner 2015

$\sigma_{\pi N} [{\sf MeV}]$	collaboration	tension to RS
38(3)(3)	BMW 2015	3.8σ
44.4(3.2)(4.5)	χ QCD 2015	2.2σ
$37.2(2.6)\binom{+1.0}{-0.6}$	ETMC 2016	4.9σ
35.0(6.1)	RQCD 2016	3.4σ

Comparison to lattice results – a puzzle (1)

• 4 new lattice calculations of $\sigma_{\pi N}$ at physical M_{π} since Hoferichter, Ruiz de Elvira, BK, Meißner 2015

$\sigma_{\pi N} [{\sf MeV}]$	collaboration	tension to RS
38(3)(3)	BMW 2015	3.8σ
44.4(3.2)(4.5)	χ QCD 2015	2.2σ
$37.2(2.6)\binom{+1.0}{-0.6}$	ETMC 2016	4.9σ
35.0(6.1)	RQCD 2016	3.4σ

• robust correlation between $\sigma_{\pi N}$ and scattering lengths:

$$\sigma_{\pi N} = (59.1 \pm 3.1) \text{ MeV} + \sum_{I} c_{I} \left(a_{0}^{I} - \bar{a}_{0}^{I} \right),$$

$$c_{1/2} = 0.242 \text{ MeV} \times 10^{3} M_{\pi} \qquad c_{3/2} = 0.874 \text{ MeV} \times 10^{3} M_{\pi}$$

$$\bar{a}_{0}^{1/2} = (169.8 \pm 2.0) \times 10^{-3} M_{\pi}^{-1} \quad \bar{a}_{0}^{3/2} = (-86.3 \pm 1.8) \times 10^{-3} M_{\pi}^{-1}$$

$$\longrightarrow \text{ expansion around reference values from } \pi H \text{ and } \pi D$$

B. Kubis, Roy–Steiner analysis of pion–nucleon scattering – p. 21

Comparison to lattice results – a puzzle (2)

• lattice $\sigma_{\pi N}$ as additional constraint in scattering lengths plane

- \longrightarrow lattice $\sigma_{\pi N}$ clearly at odds with hadronic atoms results
- \rightarrow suggestion: determine πN scattering lengths on the lattice Hoferichter, Ruiz de Elvira, BK, Meißner 2016

Chiral low-energy constants

- chiral expansion expected to work best at subthreshold point:
 - maximal distance from threshold singularities
 - $\triangleright \pi N$ amplitude can be expanded as polynomial

Chiral low-energy constants

- chiral expansion expected to work best at subthreshold point:
 ▷ maximal distance from threshold singularities
 ▷ πN amplitude can be expanded as polynomial
- chiral πN amplitude to $\mathcal{O}(p^4)$ 13 low-energy constants
- Roy–Steiner system contains 10 subtraction constants
 - calculate remaining 3 from sum rules
 - ▷ invert the system to solve for LECs

Chiral low-energy constants

- chiral expansion expected to work best at subthreshold point:
 ▷ maximal distance from threshold singularities
 ▷ πN amplitude can be expanded as polynomial
- chiral πN amplitude to $\mathcal{O}(p^4)$ 13 low-energy constants
- Roy–Steiner system contains 10 subtraction constants
 - calculate remaining 3 from sum rules
 - invert the system to solve for LECs

	LO	NLO	NNLO
$c_1 \left[GeV^{-1} ight]$	-0.74 ± 0.02	-1.07 ± 0.02	-1.11 ± 0.03
$c_2 \left[GeV^{-1} ight]$	1.81 ± 0.03	3.20 ± 0.03	3.13 ± 0.03
$c_3 [{ m GeV}^{-1}]$	-3.61 ± 0.05	-5.32 ± 0.05	-5.61 ± 0.06
$c_4 \left[GeV^{-1} ight]$	2.17 ± 0.03	3.56 ± 0.03	4.26 ± 0.04

 \longrightarrow subthreshold errors tiny, chiral expansion dominates uncertainty

Summary

Pion-nucleon Roy-Steiner equations

- allow to determine low-energy πN scattering with precision
 - obeying analyticity, unitarity, crossing symmetry
 - new input on scattering lengths from hadronic atoms
- provide πN phase shifts with systematic uncertainties
- similarly: t-channel $\pi\pi \to N\bar{N}$ spectral functions
- phenomenological determination of sigma term:

 $\sigma_{\pi N} = 59.1 \pm 3.5 \,{\rm MeV}$

currently at odds with lattice QCD results

- consistency check: Karlsruhe–Helsinki input leads to Karlsruhe–Helsinki results
- chiral low-energy constants obtained algebraically from subtreshold coefficients → to be used in chiral NN potentials

Roy–Steiner equations: information flowchart

The "ruler plot" vs. ChPT

- pion mass dependence of m_N , using
 - $\triangleright c_1$ from subthreshold matching to Roy–Steiner solution
 - \triangleright combination of e_i from $\sigma_{\pi N}$

thanks to A. Walker-Loud for providing the lattice data

Including the $\Delta(1232)$ explicitly in ChPT

• large Δ effects slow down convergence of chiral series:

$$c_2^{\Delta} \approx 3.8$$
 $c_3^{\Delta} \approx -3.8$ $c_4^{\Delta} \approx 1.9$

Bernard, Kaiser, Meißner 1997

- N and Δ become degenerate in the large- N_c limit \longrightarrow include Δ as explicit degrees of freedom Jenkins, Manohar 1991
- consistent EFT counting scheme: ϵ -expansion Hemmert et al. 1998

$$p = \mathcal{O}(\epsilon)$$
 $M_{\pi} = \mathcal{O}(\epsilon)$ $m_{\Delta} - m_N = \mathcal{O}(\epsilon)$

• alternative: δ counting

Pascalutsa, Phillips 2003

$$p = \mathcal{O}(\delta)$$
 $M_{\pi} = \mathcal{O}(\delta)$ $m_{\Delta} - m_N = \mathcal{O}(\delta^{1/2})$

 \longrightarrow loops with Δ shifted to higher orders

Recent chiral phase-shift analyses

- $\mathcal{O}(p^3)$ IR + unitarisation \measuredangle [KH, GW] Alarcón et al. 2011 • $\mathcal{O}(p^3)$ EOMS \oiint , $\mathcal{O}(\delta^3) \bigtriangleup$ [KH, GW, EM] Alarcón et al. 2013 $\rightarrow \sigma_{\pi N} = 59(7)$ MeV [GW, EM] (43(5) MeV [KH]) Alarcón et al. 2012 • $\mathcal{O}(p^4)$ EOMS (\oiint), $\mathcal{O}(p^4, \delta^3)$ (\oiint) [GW] Y.-H. Chen et al. 2013 $\rightarrow \sigma_{\pi N} = 52(7)$ MeV (\oiint), 45(6) MeV (\oiint) *) • $\mathcal{O}(p^4)$ EOMS, NN counting [KH, GW] Krebs et al. 2012 $\rightarrow \sigma_{\pi N}$ large [GW] or small [KH]
- πN + NN fits to observables using amplitudes by Krebs et al. $\longrightarrow \sigma_{\pi N}$ large Wendt et al. 2014
- $\mathcal{O}(p^3)$ N/D unitarisation, CDD-poles for Δ and N(1440) [KH, GW] $\longrightarrow \sigma_{\pi N} \approx 77 \text{ MeV}$ ("puzzle") Gasparyan, Lutz 2010
- *) including lattice information; Δ amplitude may violate positivity constraints inside the Mandelstam triangle Sanz-Cillero et al. 2014