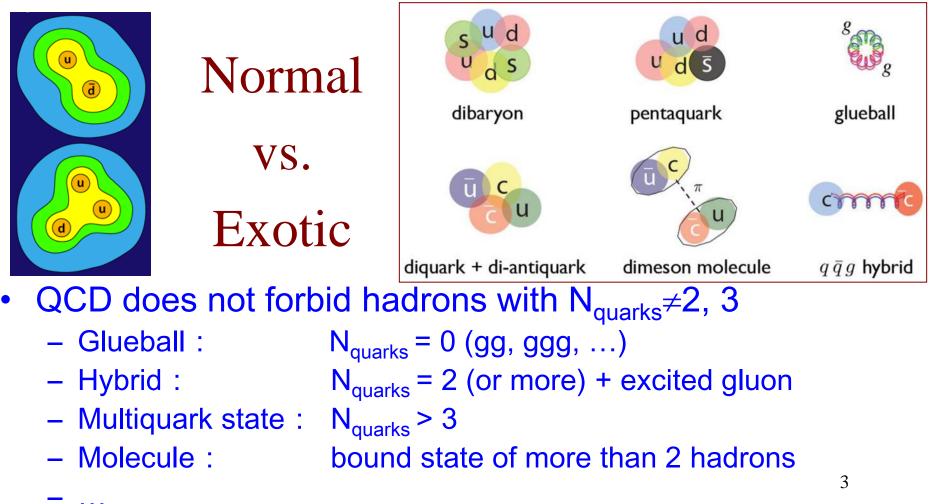
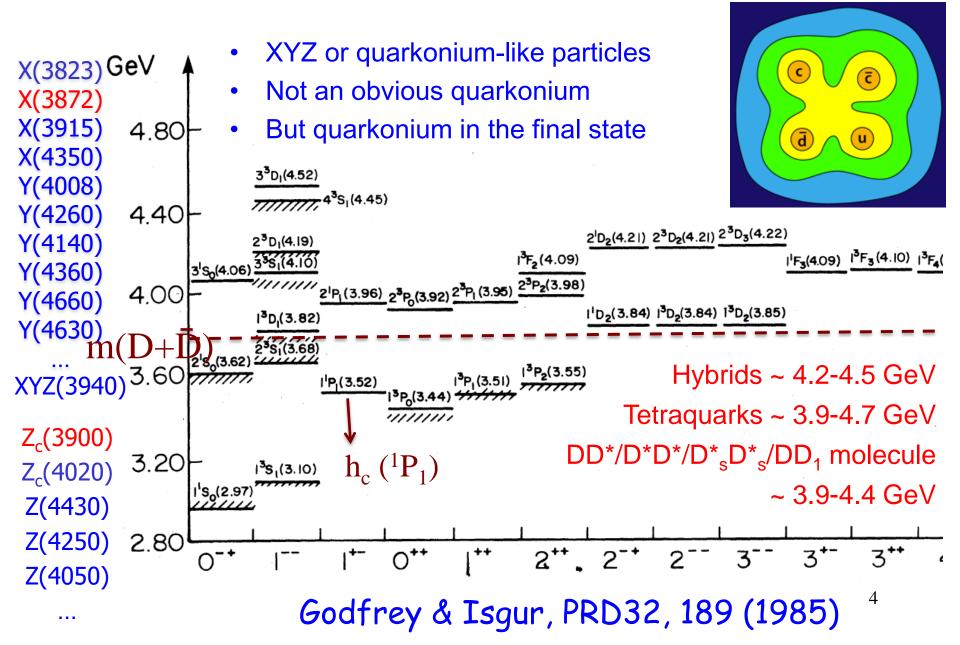
Overview of the recent status/results in

the exotics sector at Belle

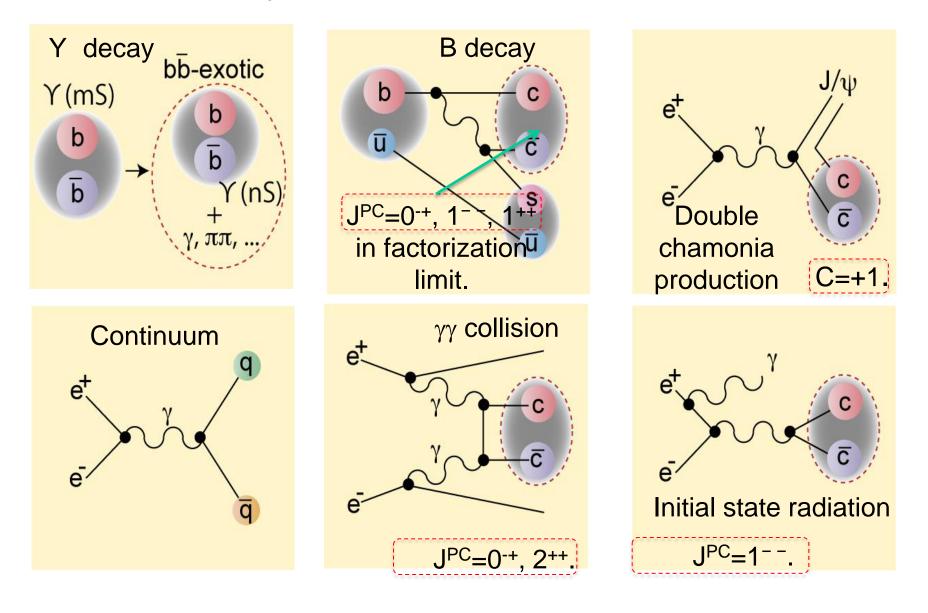
Chengping Shen Beihang University, Beijing


Meson 2016 June 2, 2016

Outline


- Introduction
- The X states
- The Y states
- The Z_c and Z_b states
- Other topics
- Summary & Outlook

Hadrons: normal & exotic

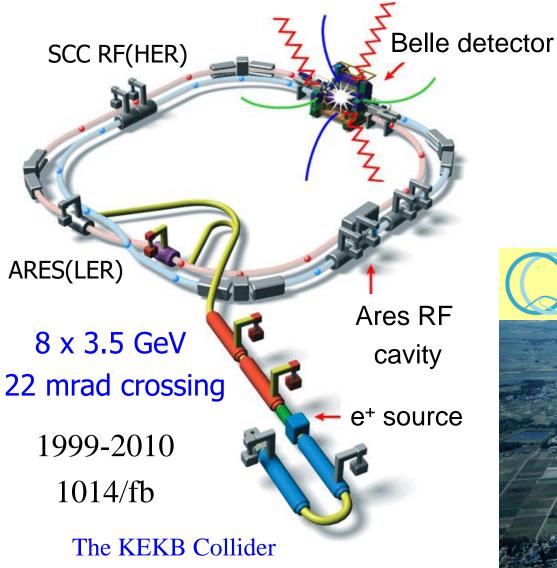

 Quark model: hadrons are composed from 2 (meson) quarks or 3 (baryon) quarks

XYZ particles

Variety of recorded reactions

Too many models !

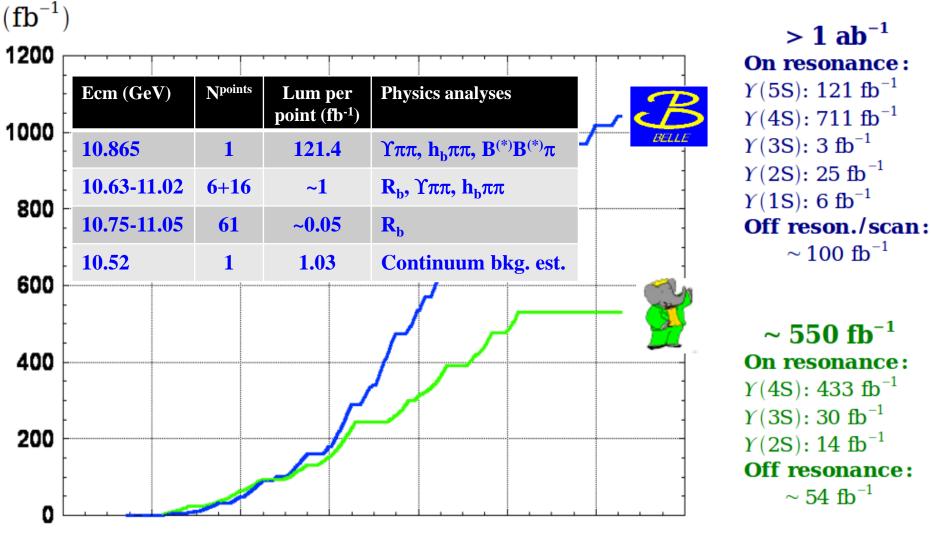
- Theory 1: screened potential
- Theory 2: hybrids with excited gluons
- Theory 3: tetraquark states
- Theory 4: meson molecules
- Theory 5: cusps effect
- Theory 6: final state interaction
- Theory 7: coupled-channel effect
- Theory 8: mixing of normal quarkonium and exotics
- Theory 9: mixture of all these effects
- Theories ...


QCD is another least understood part of the SM.

"The absence of exotics is one of the most obvious features of QCD" – R. L. Jaffe, 2005

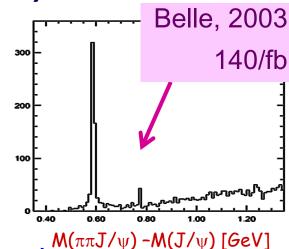
"The story of pentaquark shows how poorly we understand QCD" – F. Wilczek, 2005

The Belle experiment

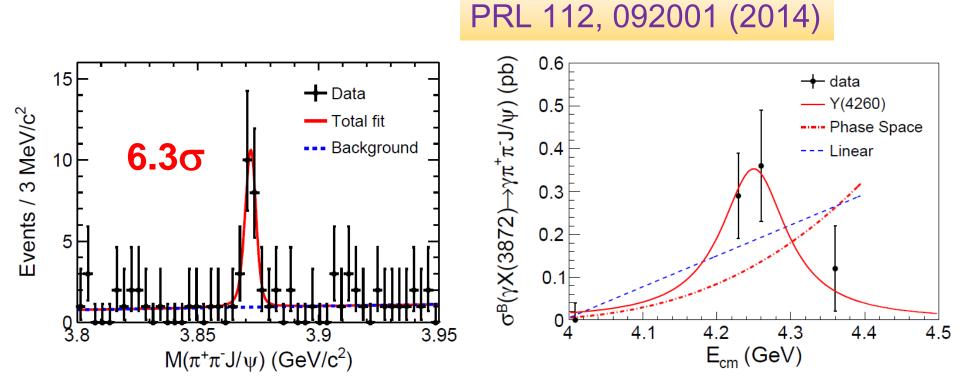

7

World record: L = 2.1 x 10³⁴/cm²/sec

Integrated luminosity of B factories



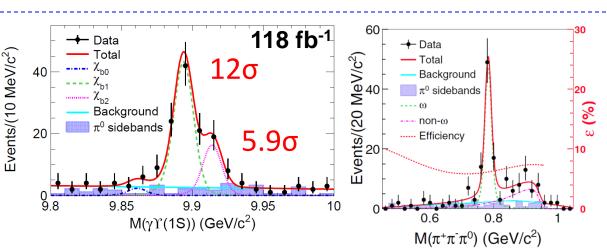
1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1


The X states

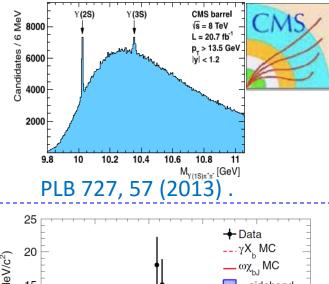
What is the X(3872)?

- Mass: Very close to D
 ⁰D^{*0} threshold
- Width: Very narrow, < 1.2 MeV
- J^{PC}=1⁺⁺
- Production
 - in pp/pp collison rate similar to charmonia
 - In B decays KX similar to $c\overline{c}$, K*X smaller than $c\overline{c}$
 - Y(4260)→γ+X(3872)
- Decay BR: open charm ~ 50%, charmonium~O(%)
- Nature (very likely exotic)
 - Loosely $\overline{D}^0 D^{*0}$ bound state (like deuteron?)?
 - Mixture of excited χ_{c1} and $\overline{D}{}^0D^{*0}$ bound state?
 - Many other possibilities (if it is not χ'_{c1} , where is χ'_{c1} ?) 10

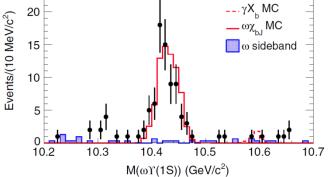
ESI Observation of **Y(4260)** $\rightarrow \gamma$ X(3872)


 $N(X(3872)) = 20.1\pm4.5$ $M(X(3872)) = 3871.9\pm0.7\pm0.2 \text{ MeV}$ A new Y(4260) decay mode A new X(3872) production mode

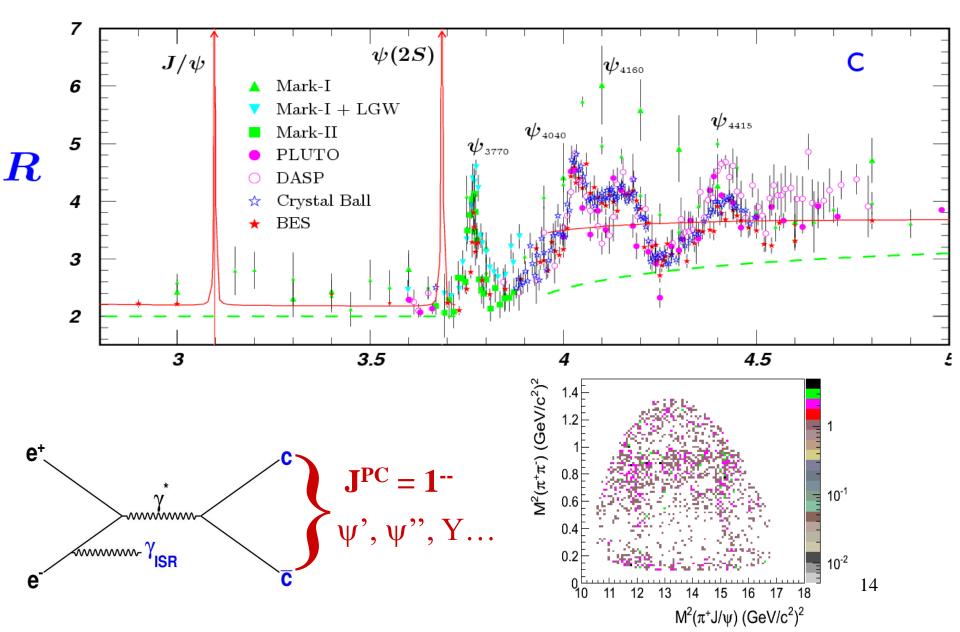
If we take $\mathcal{B}(X(3872) \rightarrow \pi^+\pi^- J/\psi) \sim 5\%$, (>2.6% in PDG) $\frac{\sigma(e^+e^- \rightarrow \gamma X(3872))}{\sigma(e^+e^- \rightarrow \pi^+\pi^- J/\psi)} \sim 10\%$ Large transition ratio !



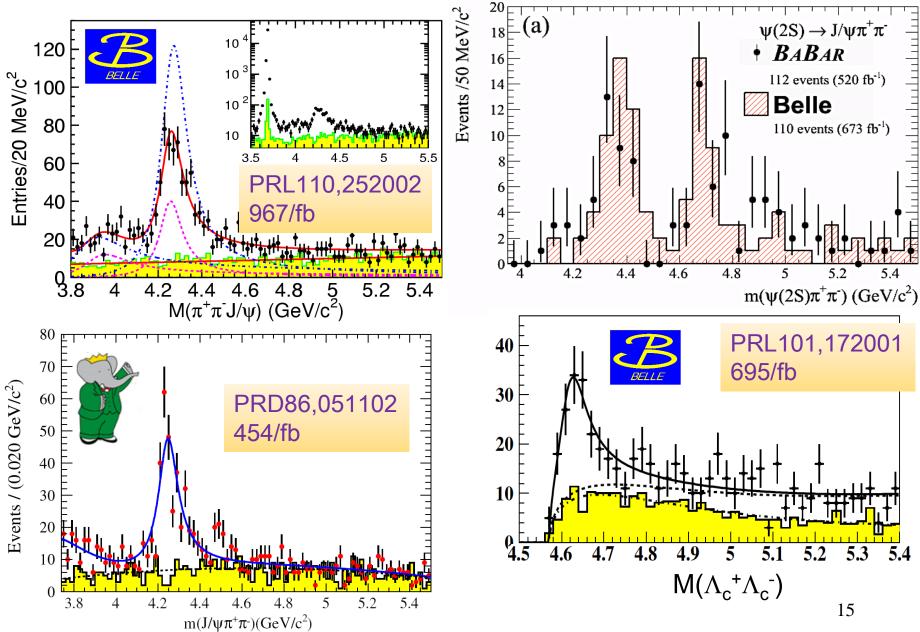
Search for X_b in $e^+e^- \rightarrow \gamma \pi^+\pi^-\pi^0 Y(1S)$ at 10.867 GeV

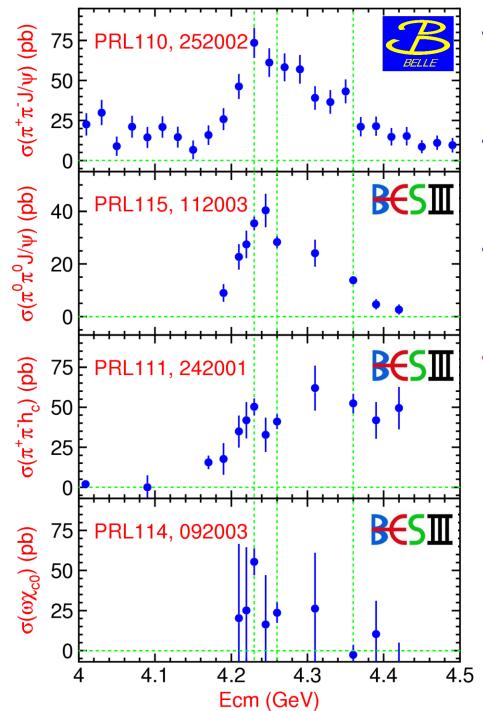

- The X(3872) counterpart in the bottomonium sector X_b , NOT observed decay channel $\pi^+\pi^-\Upsilon(1S)$.
- As X_b is above $\omega Y(1S)$ threshold, this Isospinconserving process should be a more promising decay mode. [PRD88, 054007].

•Large Brs of Y(5S) to $\pi^+\pi^-\pi^0\chi_{b1/b2}$, $\omega\chi_{b1/b2}$ are observed for the first time and their ratios are measured.


PRL 113, 142001 (2014)

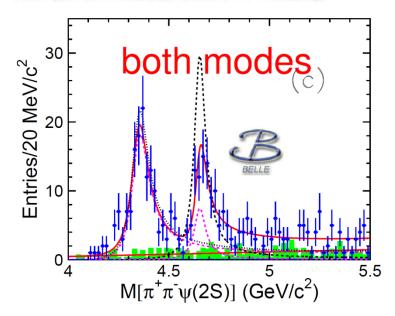
Assuming X_b is narrow, the upper limit on the product branching fraction was given.


The Y states (vectors)


ISR production of vector charmonia

The Y states

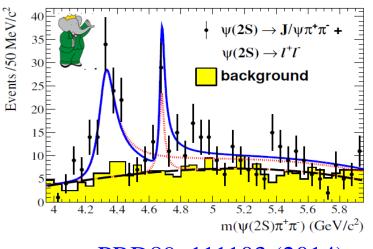
Belle: PRL99,142002, 670/fb BaBar: PRD89, 111103, 520/fb



- In ππJ/ψ, cross section peaks at lower than 4.26 GeV
- There is a narrow peak at 4.22 in ππh_c
- Possibly a narrow structure in $\omega \chi_{c0}$
- More updates from BESIII will come out very soon
 - simultaneous fit to all the modes?
 - Better model to parametrize the line shapes?

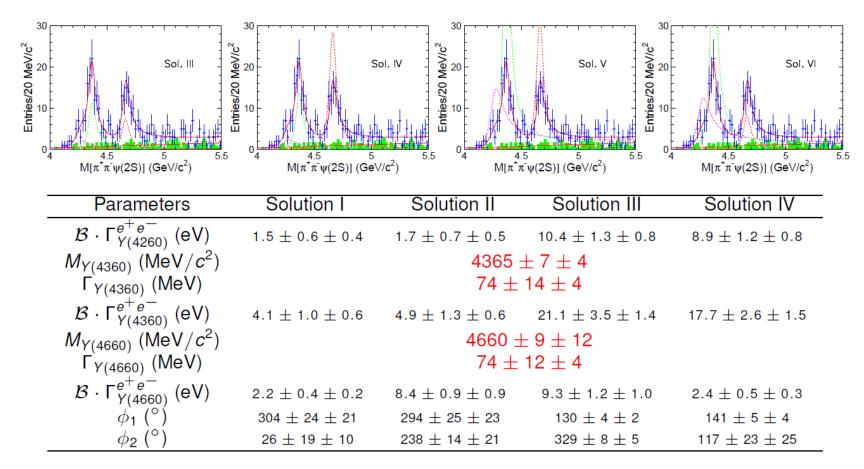
Updated $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$

PRD 91, 112007 (2015)


Unbinned simultaneous maximum likelihood fit for Y(4360) and Y(4660). $Amp = BW_1 + e^{i\phi} \cdot BW_2$

Parameters	Solution I	Solution II	
$M_{Y(4360)} ({\rm MeV}/c^2)$	$4347\pm 6\pm 3$		
Γ _{Y(4360)} (MeV)	$103\pm9\pm5$		
$\mathcal{B} \cdot \Gamma^{e^+e^-}_{Y(4360)}$ (eV)	$9.2\pm0.6\pm0.6$	$10.9 \pm 0.6 \pm 0.7$	
$M_{Y(4660)}$ (MeV/ c^2)	$4652\pm10\pm11$		
Γ _{Y(4660)} (MeV)	$68\pm11\pm5$		
$\mathcal{B}\cdot \Gamma^{e^+e^-}_{Y(4660)}$ (eV)	$2.0\pm0.3\pm0.2$	$8.1\pm1.1\pm1.0$	
$\dot{\phi}$ (°)	$32\pm18\pm20$	$272\pm8\pm7$	
$\chi^2/ndf = 18.7/21$.			

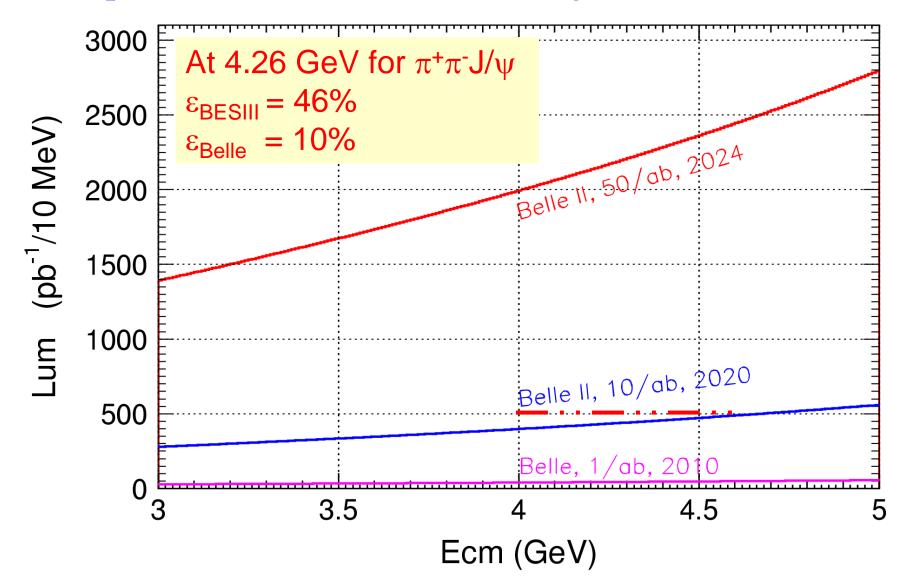
- Consistent with previous measurement
- No obvious signal above Y(4660).
- Some events accumulate at Y(4260), especially the $\pi^+\pi^- J/\psi$ mode.



PRD89, 111103 (2014)

M($\pi^+\pi^-\psi(2S)$) with Y(4260,4360,4660)

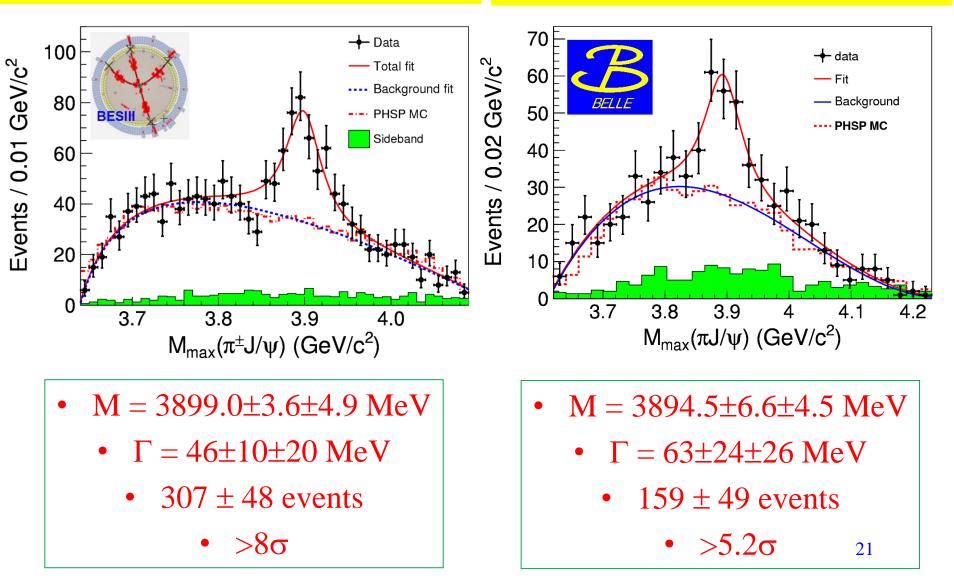
Unbinned simultaneous maximum likelihood fit for Y(4260), Y(4360) and Y(4660). $Amp = BW_1 + e^{i\phi_1} \cdot BW_2 + e^{i\phi_2} \cdot BW_3$.


Significance of Y(4260) is 2.4 σ —low, but affects Y(4360) and Y(4660) masses and widths.

FOUR solutions with equally good fit quality, which is $\chi^2/ndf = 14.8/19$.

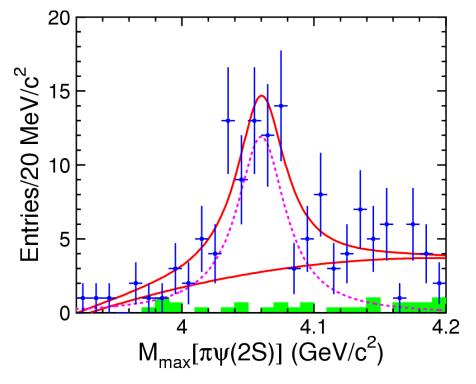
ISR at Belle II vs. BESIII

ISR produces events at all CM energies BESIII can reach



The Z_c and Z_b states

$Z_c(3900)$ observed in two experiments!


BES3 at 4.26 GeV: PRL110,252001

Belle with ISR: PRL110, 252002

 $Z_{c}(4050)^{\pm} \rightarrow \pi^{\pm} \psi'$

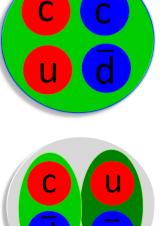
An unbinned maximum-likelihood fit is performed on the distribution of $M_{max}(\pi^{\pm}\psi(2S))$, the maximum of $M(\pi^{+}\psi(2S))$ and $M(\pi^{-}\psi(2S))$, simultaneously with both modes.

PRD91, 112007(2015)

- Y(4360) signal region
- $M(Z_c) = 4054 \pm 3 \pm 1 \text{ MeV/c}^2$
 - Γ = 45 ± 11 ± 6 MeV
 - Significance: >3.5σ

BESIII results on $e^+e^- \rightarrow \pi^+\pi^-\psi'$ will come out soon.

What's the nature of these Z_c states?


- At least 4 quarks, not a conventional mesor
- Tetraquark state?

Phys. Rev. D87,125018(2013); Phys. Rev. D88, 074506(2013); Phys. Rev. D89,054019(2014); Phys. Rev. D90,054009(2014); etc

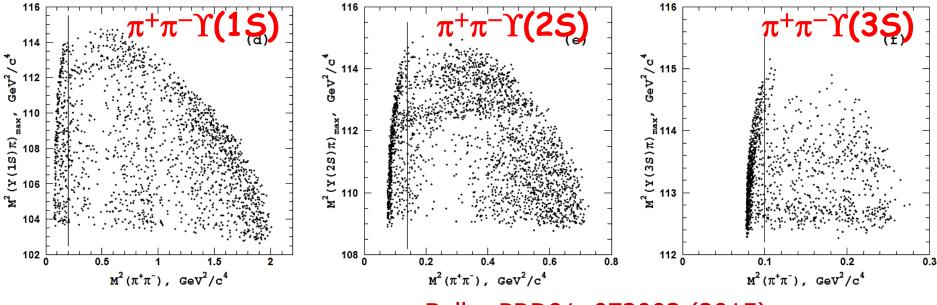
• D^(*) D^(*) molecule state?

Phys. Rev. Lett. 111, 132003 (2013); Phys. Rev. D 89, 094026 (2014) Phys. Rev. D 89, 074029 (2014); Phys. Rev. D 88, 074506 (2013); etc

- FSI?
- Cusp?

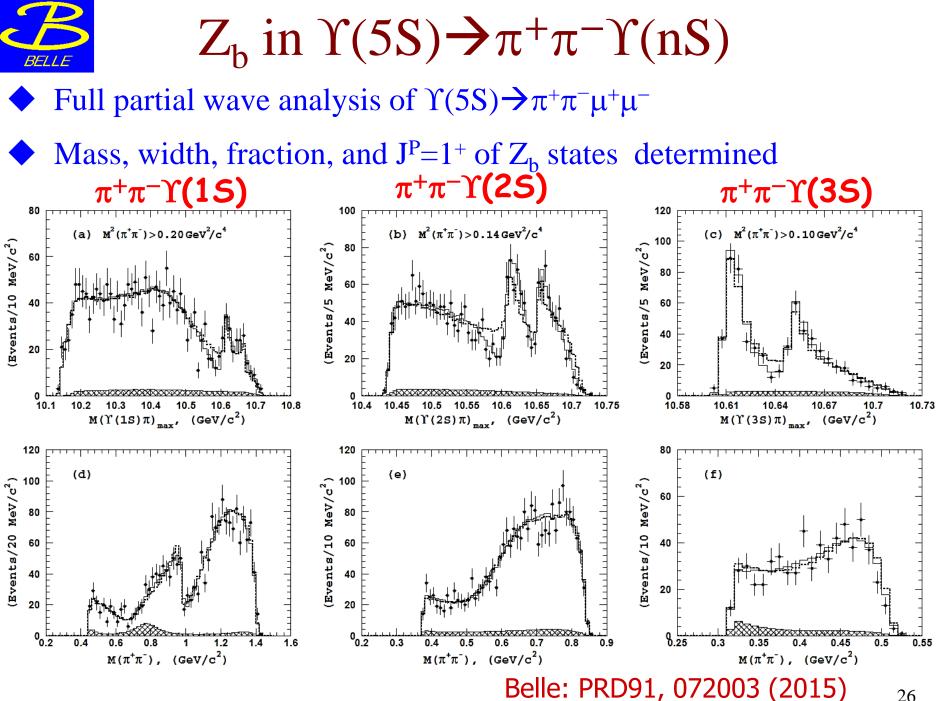
X, Y, Z particles are correlated!

What are they? Are they all molecules/tetraquarks/...?



 $Z_{\rm b}$ in $\Upsilon(5S) \rightarrow \pi^+ \pi^- \Upsilon(nS)$

121 fb⁻¹ data, tag $\Upsilon(nS) \rightarrow \mu^+ \mu^-$ and select $\pi^+ \pi^-$


Final state	$\Upsilon(1S)\pi^+\pi^-$	$\Upsilon(2S)\pi^+\pi^-$	$\Upsilon(3S)\pi^+\pi^-$
Signal yield	2090 ± 115	2476 ± 97	628 ± 41
Efficiency, $\%$	45.9	39.0	24.4
$\mathcal{B}_{\Upsilon(nS)\to\mu^+\mu^-}, \% [\underline{14}]$	2.48 ± 0.05	1.93 ± 0.17	2.18 ± 0.21
$\sigma_{e^+e^- \to \Upsilon(nS)\pi^+\pi^-}^{\text{vis}}$, pb	$1.51 \pm 0.08 \pm 0.09$	$2.71 \pm 0.11 \pm 0.30$	$0.97 \pm 0.06 \pm 0.11$
$\sigma_{e^+e^- \to \Upsilon(nS)\pi^+\pi^-}$, pb	$2.27 \pm 0.12 \pm 0.14$	$4.07 \pm 0.16 \pm 0.45$	$1.46 \pm 0.09 \pm 0.16$
$\sigma_{e^+e^- \to \Upsilon(nS)\pi^+\pi^-}^{\text{vis}}, \text{ pb } [\underline{1}]$	$1.61 \pm 0.10 \pm 0.12$	$2.35 \pm 0.19 \pm 0.32$	$1.44^{+0.55}_{-0.45} \pm 0.19$

Belle: PRD91, 072003 (2015)

Born cross

section

 Z_b in $\Upsilon(5S) \rightarrow \pi^+\pi^-\Upsilon(nS)$

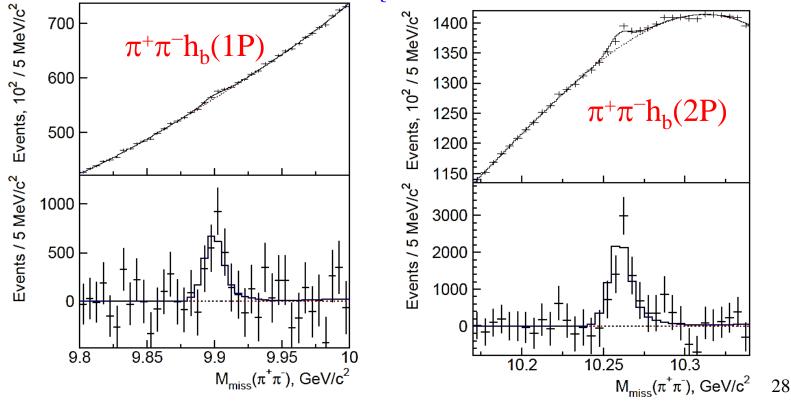
Parameter	$\Upsilon(1S)\pi^+\pi^-$	$\Upsilon(2S)\pi^+\pi^-$	$\Upsilon(3S)\pi^+\pi^-$
$f_{Z_{*}^{\mp}(10610)\pi^{\pm}},\%$	$4.8 \pm 1.2^{+1.5}_{-0.3}$	$18.1 \pm 3.1^{+4.2}_{-0.3}$	$30.0 \pm 6.3^{+5.4}_{-7.1}$
$Z_b(10610)$ mass, MeV/ c^2	$10608.5 \pm 3.4^{+3.7}_{-1.4}$	$10608.1 \pm 1.2^{+1.5}_{-0.2}$	$10607.4 \pm 1.5^{+0.8}_{-0.2}$
$Z_b(10610)$ width, MeV/c^2	$18.5 \pm 5.3^{+6.1}_{-2.3}$	$20.8 \pm 2.5^{+0.3}_{-2.1}$	$18.7 \pm 3.4^{+2.5}_{-1.3}$
$f_{Z_{\mathbf{k}}^{\mp}(10650)\pi^{\pm}},\%$	$0.87 \pm 0.32^{+0.16}_{-0.12}$	$4.05 \pm 1.2^{+0.95}_{-0.15}$	$13.3 \pm 3.6^{+2.6}_{-1.4}$
$Z_b(10650)$ mass, MeV/ c^2	$10656.7 \pm 5.0^{+1.1}_{-3.1}$	$10650.7 \pm 1.5^{+0.5}_{-0.2}$	$10651.2 \pm 1.0^{+0.4}_{-0.3}$
$Z_b(10650)$ width, MeV/ c^2	$12.1_{-4.8-0.6}^{+11.3+2.7}$	$14.2 \pm 3.7^{+0.9}_{-0.4}$	$9.3 \pm 2.2^{+0.3}_{-0.5}$
ϕ_Z , degrees	$67 \pm 36^{+24}_{-52}$	$-10 \pm 13^{+34}_{-12}$	$-5 \pm 22^{+15}_{-33}$
$c_{Z_b(10650)}/c_{Z_b(10610)}$	$0.40 \pm 0.12^{+0.05}_{-0.11}$	$0.53 \pm 0.07^{+0.32}_{-0.11}$	$0.69 \pm 0.09^{+0.18}_{-0.07}$
$f_{\Upsilon(nS)f_2(1270)}, \%$	$14.6 \pm 1.5^{+6.3}_{-0.7}$	$4.09 \pm 1.0^{+0.33}_{-1.0}$	—
$f_{\Upsilon(nS)(\pi^+\pi^-)_S},\%$	$86.5 \pm 3.2^{+3.3}_{-4.9}$	$101.0 \pm 4.2^{+6.5}_{-3.5}$	$44.0 \pm 6.2^{+1.8}_{-4.3}$
$f_{\Upsilon(nS)f_0(980)}, \%$	$6.9 \pm 1.6^{+0.8}_{-2.8}$	_	_

$$\begin{aligned} \sigma_{Z_{b}^{\pm}(10610)\pi^{\mp}} \times \mathcal{B}_{\Upsilon(1S)\pi^{\mp}} &= 109 \pm 27^{+35}_{-10} \quad \text{fb} \quad \sigma_{Z_{b}^{\pm}(10650)\pi^{\mp}} \times \mathcal{B}_{\Upsilon(1S)\pi^{\mp}} &= 20 \pm 7^{+4}_{-3} \quad \text{fb} \\ \sigma_{Z_{b}^{\pm}(10610)\pi^{\mp}} \times \mathcal{B}_{\Upsilon(2S)\pi^{\mp}} &= 737 \pm 126^{+188}_{-85} \quad \text{fb} \quad \sigma_{Z_{b}^{\pm}(10650)\pi^{\mp}} \times \mathcal{B}_{\Upsilon(2S)\pi^{\mp}} &= 165 \pm 49^{+43}_{-20} \quad \text{fb} \\ \sigma_{Z_{b}^{\pm}(10610)\pi^{\mp}} \times \mathcal{B}_{\Upsilon(3S)\pi^{\mp}} &= 438 \pm 92^{+92}_{-114} \quad \text{fb} \quad \sigma_{Z_{b}^{\pm}(10650)\pi^{\mp}} \times \mathcal{B}_{\Upsilon(3S)\pi^{\mp}} &= 194 \pm 53^{+43}_{-25} \quad \text{fb} \end{aligned}$$

Relative BR of Z_b decays

27

Belle: PRD91, 072003 (2015)

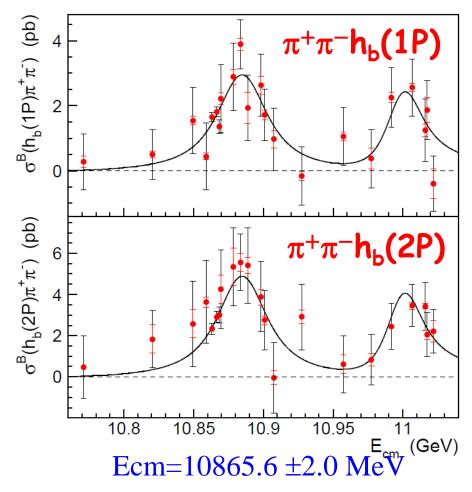

 $e^+e^- \rightarrow \pi^+\pi^-h_h(nP)$

arXiv:1508.06562

Using scan data between Y(5S) and Y(6S)

• Reconstruct $\pi^+\pi^-$, require π^+/π^- recoil mass in Z_b region: 10.59 < $M_{miss}(\pi) < 10.67 \text{ GeV/c}^2$

• check the $\pi^+\pi^-$ recoil mass for $h_b(nP)$

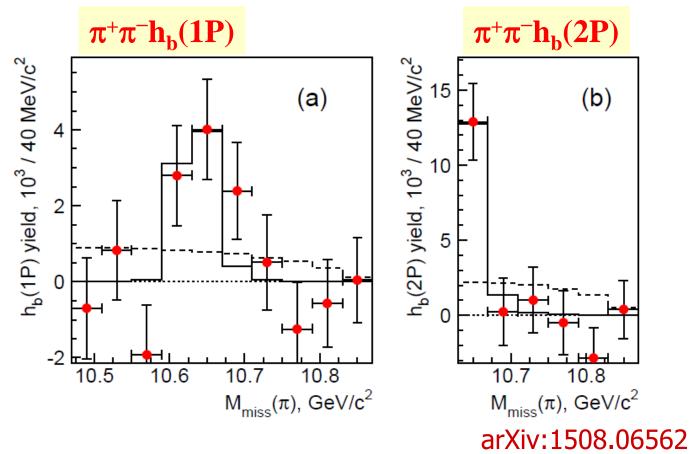


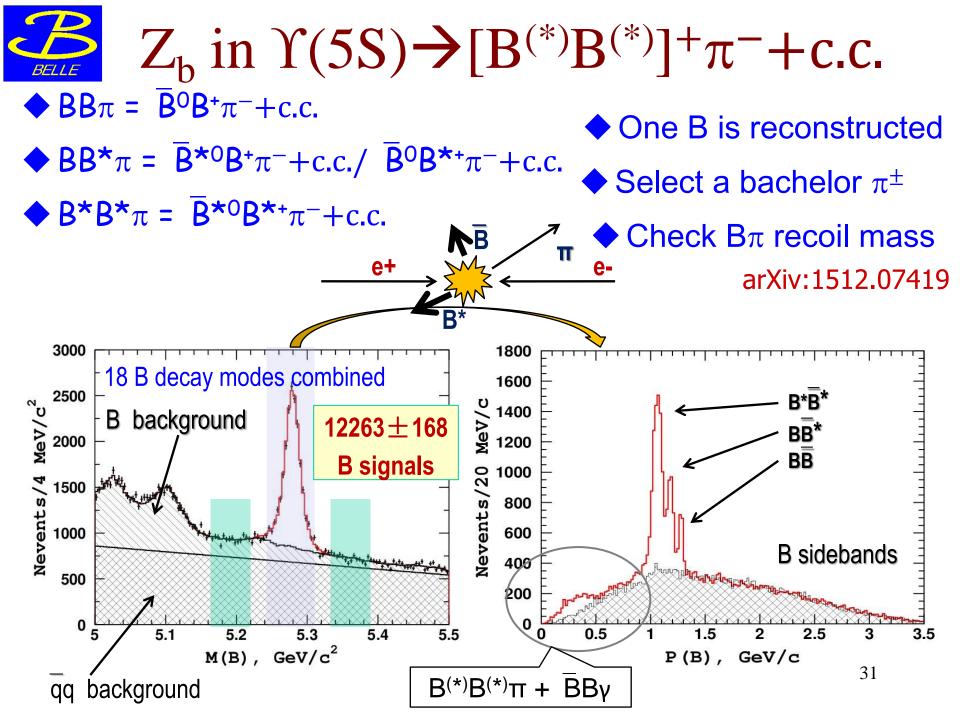
 $e^+e^- \rightarrow \pi^+\pi^- h_b(nP)$

Simultaneous fit:

Υ(5S):

- Mass = $(10884.7 \pm {}^{3.6}_{3.4} \pm {}^{8.9}_{1.0})$ MeV Width = $(40.6 \pm {}^{12.7}_{8.0} \pm {}^{1.1}_{19.1})$ MeV $\Upsilon(6S)$:
- Mass = $(10999.0 \pm^{7.3}_{7.8} \pm^{16.7}_{1.0})$ MeV Width = $(27 \pm^{27}_{11} \pm^{1}_{12})$ MeV $\Delta \phi = 0.1 \pm^{0.4}_{0.8} \pm^{0.1}_{0.3}$ rad
 - Resonant parameters agree with from $e^+e^- \rightarrow \pi^+\pi^-\Upsilon(nS)$
 - $e^+e^- \rightarrow \pi^+\pi^-h_b(nP)$ at the same level as $e^+e^- \rightarrow \pi^+\pi^-\Upsilon(nS)$; similar shape.
 - 1st obs. of $\Upsilon(6S) \rightarrow \pi^+ \pi^- h_b(nP)$ 3.6 σ for 1P, 5.4 σ for 2P.

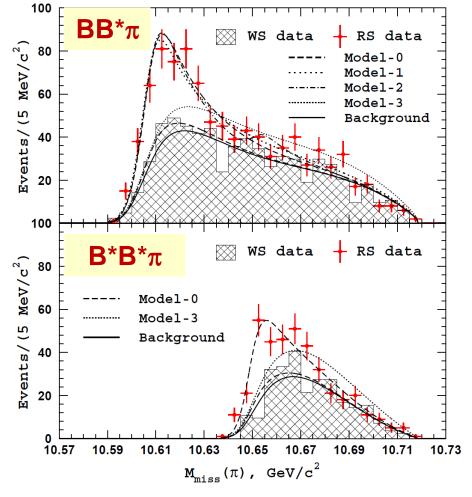

 $\sigma^B(e^+e^- \to h_b(1P)\pi^+\pi^-) = 1.66 \pm 0.09 \pm 0.10 \,\text{pb},$ $\sigma^B(e^+e^- \to h_b(2P)\pi^+\pi^-) = 2.70 \pm 0.17 \pm 0.19 \,\text{pb}.$


arXiv:1508.06562 ²⁹


Z_b in $\Upsilon(6S) \rightarrow \pi^+ \pi^- h_b(nP)$

• Fit $\pi^+\pi^-$ missing in each π missing mass spectra

• Events mainly from Z_b intermediate states: not clear if only one Z_b or both. Single $Z_b(10610)$ hypothesis is excluded at 3.4 σ in $\pi^+\pi^-$ h_b(1P); Single $Z_b(10650)$ hypothesis cannot excluded.


arXiv:1512.07419

$Z_b \text{ in } \Upsilon(5S) \rightarrow [B^{(*)}B^{(*)}]^+ \pi^- + \text{c.c.}$

Submitted to PRL - arXiv:1512.07419

Check recoil mass of bachelor π^{\pm}

- Simultaneous fit of right-sign (RS) and wrong-sign (WS) samples
- Contribution of signal events to the WS sample due to B₀ mixing (at 10% level)

Model-0 : $Z_{b}(10650)$ only Model-1: $Z_{b}(10610)$ + Non-res. Model-2: $Z_{b}(10610) + Z_{b}(10650)$ with interference Model-3: Non-resonance $Z_{\rm b}(10610)$ saturates BB^{*} π and $Z_{\rm b}(10650)$ saturates B*B* π

Submitted to PRL - arXiv:1512.07419

- Simultaneous fit of right-sign (RS) and wrong-sign (WS) samples
- Contribution of signal events to the WS sample due to B_0 mixing (at 10% level)

Summary of fit results to the $M_{miss}(\pi)$ distributions for the three-body $BB^*\pi$ and $B^*B^*\pi$ final states.

Mode	Parameter	Mod-0	Mod-1		Mod-2		Mod-3
			Sol 1	Sol 2	Sol 1	Sol 2	
$BB^*\pi$	$f_{Z_{b}(10610)}$	1.0	1.45 ± 0.24	0.64 ± 0.15	1.01 ± 0.13	1.18 ± 0.15	_
	$f_{Z_b(10650)}$	_	—	—	0.05 ± 0.04	0.24 ± 0.11	_
	$\phi_{Z_{h}(10650)}$, rad.	_	_	_	-0.26 ± 0.68	-1.63 ± 0.14	_
	$f_{\rm nr}$	_	0.48 ± 0.23	0.41 ± 0.17	_	_	1.0
	$\phi_{ m nr}$, rad.	_	-1.21 ± 0.19	0.95 ± 0.32	_	_	_
	$-2\log \mathcal{L}$	-304.7	-300.6	-300.5	-301.4	-301.4	-344.5
$B^*B^*\pi$	$f_{Z_{h}(10650)}$	1.0	1.04 ± 0.15	0.77 ± 0.22			_
	fnr	_	0.02 ± 0.04	0.24 ± 0.18			1.0
	$\phi_{ m nr}$, rad.	_	0.29 ± 1.01	1.10 ± 0.44			_
	$-2 \log \mathcal{L}$	-182.4	-182.4	-182.4			-209.7

• Intermediate $Z_b(10610)$ dominates in the $BB^*\pi$ final state, while intermediate $Z_b(10650)$ dominates in the $B^*B^*\pi$ final state

 $Z_{b}(10610)$ saturates BB* π and $Z_{b}(10650)$ saturates B*B* π

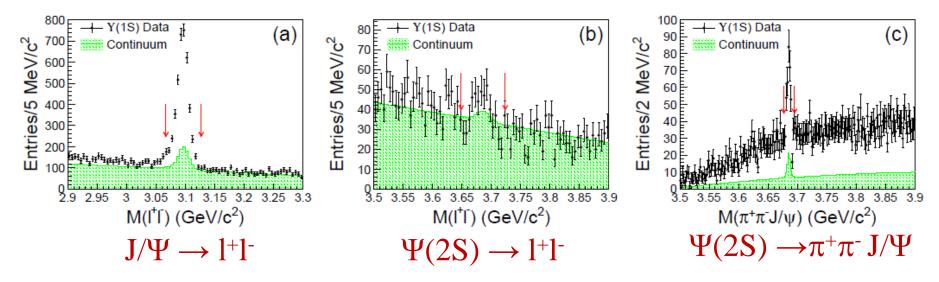
$\sum_{B \in LLE} Z_b \text{ in } \Upsilon(5S) \rightarrow [B^{(*)}B^{(*)}]^+ \pi^- + \text{c.c.}$

arXiv:1512.07419

Decay table of the Z_b states

• Assuming that the known decays saturate Z_b decay table =>

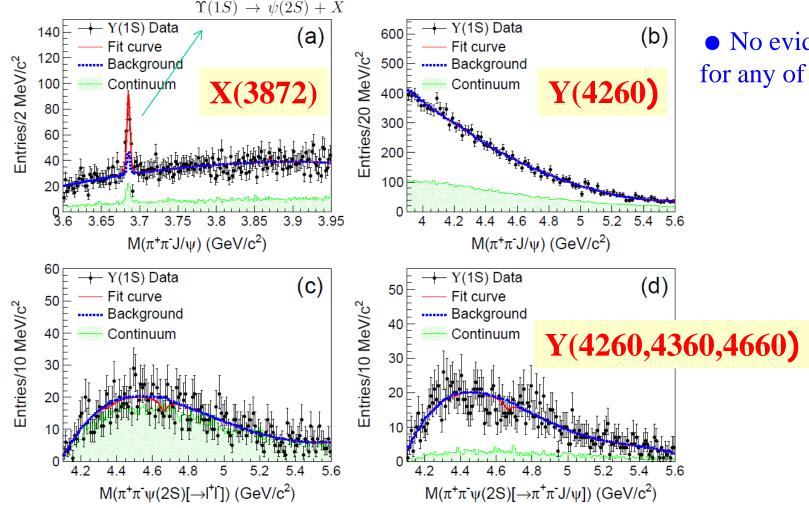
B branching fractions for the $Z_b^+(10610)$ and $Z_b^+(10650)$ decays. The first quoted uncertainty is statistical; the second is systematic.


Channel	Fractio	BRs of $Z_{\rm b}$ decays	
	$Z_b(10610)$	$Z_b(10650)$	
$\Upsilon(1S)\pi^+$	$0.60 \pm 0.17 \pm 0.07$	$0.17 \pm 0.06 \pm 0.02$	
$\Upsilon(2S)\pi^+$	$4.05 \pm 0.81 \pm 0.58$	$1.38 \pm 0.45 \pm 0.21$	
$\Upsilon(3S)\pi^+$	$2.40 \pm 0.58 \pm 0.36$	$1.62 \pm 0.50 \pm 0.24$	
$h_b(1P)\pi^+$	$4.26 \pm 1.28 \pm 1.10$	$9.23 \pm 2.88 \pm 2.28$	
$h_b(2P)\pi^+$	$6.08 \pm 2.15 \pm 1.63$	$17.0 \pm 3.74 \pm 4.1$	
$B^+ ar{B}^{*0} + ar{B}^0 B^{*+}$	$82.6 \pm 2.9 \pm 2.3$	_	
$B^{*+}\bar{B}^{*0}$	_	$70.6\pm4.9\pm4.4$	

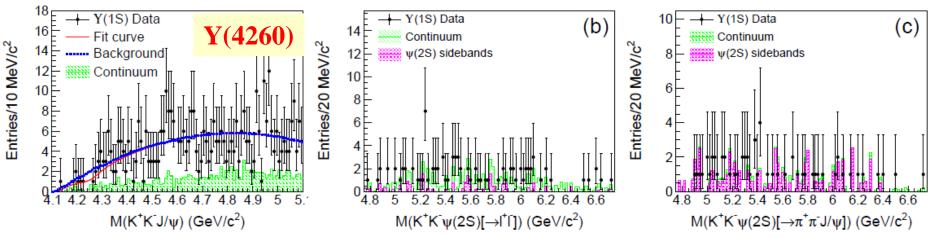
• $Z_b^+(10610)$ and $Z_b^+(10650)$ decays to BB^* and B^*B^* dominate

• Smoking gun of molecular structure

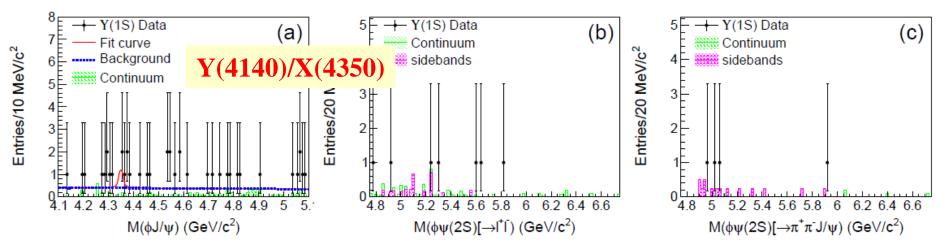
Other topics


- Very little available information on XYZ production in the decays of narrow Y states
- Υ (1S) inclusive to J/ Ψ and Ψ (2S) with large Brs [(6.5 \pm 0.7) \times 10⁻⁴ and (2.7 \pm 0.9) \times 10⁻⁴], some of the XYZ might have been produced
- Tag channels: $\Upsilon(1S) \rightarrow J/\Psi + anything and \Psi(2S) + anything$

- Dots with error bars: data
- Shaded histogram: normalized continuum

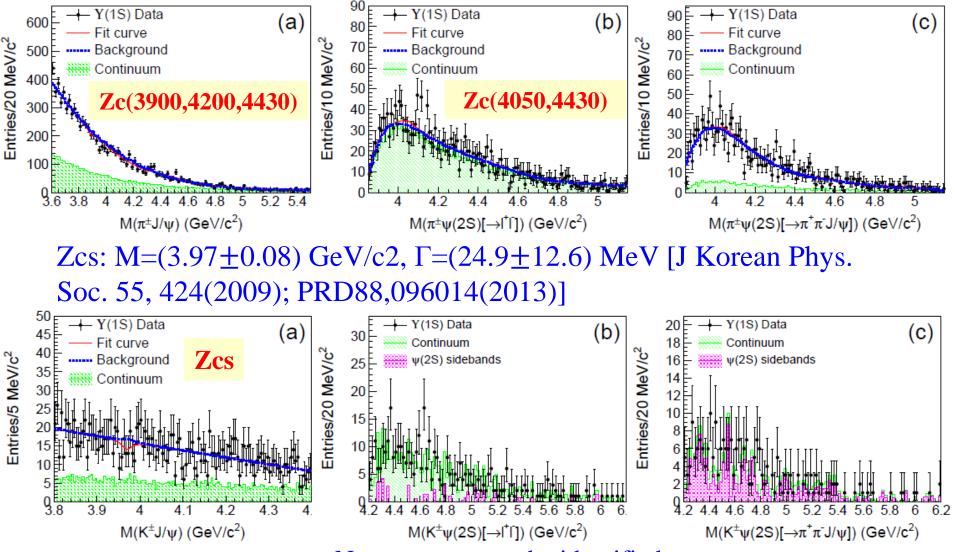

arXiv:1605.00990

Search for XYZ in $\Upsilon(1S)$ inclusive decays Search for XYZ states by combining the J/ Ψ or $\Psi(2S)$ with one or two K[±]/ π^{\pm} arXiv:1605.00990



• No evident signals for any of these states

Search for XYZ in $\Upsilon(1S)$ inclusive decays arXiv:1605.00990



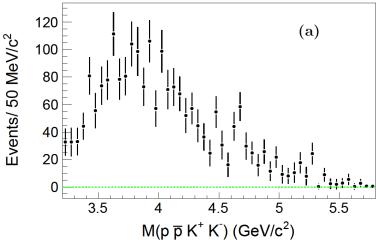
• No evidence is found for new structures or any of the known XYZ states.

No structures can be identified.

arXiv:1605.00990

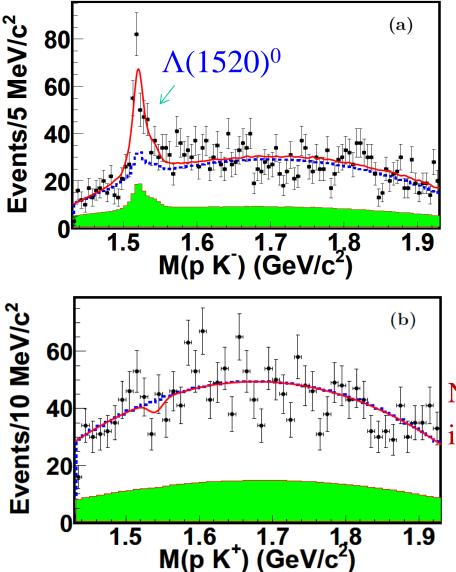
• No structures can be identified.

arXiv:1605.00990


State	N_{fit}	$N_{\rm up} \ \varepsilon(\%)$	$\sigma_{\rm syst}(\%)$	$\Sigma(\sigma)$	\mathcal{B}_R
$X(3872) \to \pi^+\pi^- J/\psi$	4.8 ± 15.4	31.4 3.26	18.7	0.3	$< 9.5 \times 10^{-6}$
$Y(4260) \to \pi^+ \pi^- J/\psi$	-31.1 ± 88.9	$134.6 \ 3.50$	35.6	_	$< 3.8 \times 10^{-5}$
$Y(4260) \to \pi^+ \pi^- \psi(2S)$	6.7 ± 29.4	$56.9 \ 0.71$	35.0	0.2	$< 7.9 \times 10^{-5}$
$Y(4360) \to \pi^+ \pi^- \psi(2S)$	-25.4 ± 30.1	$45.6 \ 0.86$	50.0	_	$< 5.2 \times 10^{-5}$
$Y(4660) \to \pi^+ \pi^- \psi(2S)$	-55.0 ± 26.2	$23.1 \ 1.06$	40.7	_	$< 2.2 \times 10^{-5}$
$Y(4260) \to K^+ K^- J/\psi$	-13.7 ± 10.9	$14.5 \ 1.91$	45.8	_	$< 7.5 \times 10^{-6}$
$Y(4140) \rightarrow \phi J/\psi$	-0.1 ± 1.2	$3.6 \ 0.69$	11.0	_	$< 5.2 \times 10^{-6}$
$X(4350) \rightarrow \phi J/\psi$	2.3 ± 2.5	$7.6 \ 0.92$	10.4	1.2	$< 8.1 \times 10^{-6}$
$Z_c(3900)^{\pm} \to \pi^{\pm} J/\psi$	-26.5 ± 39.1	$57.5 \ 4.39$	47.3	_	$< 1.3 \times 10^{-5}$
$Z_c(4200)^{\pm} \to \pi^{\pm} J/\psi$	$-238.6{\pm}154.2$	$235.1 \ \ 3.87$	48.4	_	$< 6.0 \times 10^{-5}$
$Z_c(4430)^{\pm} \to \pi^{\pm} J/\psi$	94.2 ± 71.4	$195.8 \ 3.97$	34.4	1.2	$< 4.9 \times 10^{-5}$
$Z_c(4050)^{\pm} \to \pi^{\pm}\psi(2S)$	37.0 ± 47.7	$112.7 \ 1.27$	46.2	0.4	$< 8.8 \times 10^{-5}$
$Z_c(4430)^{\pm} \to \pi^{\pm}\psi(2S)$	23.2 ± 42.4	$92.0 \ 1.35$	47.1	0.1	$< 6.7 \times 10^{-5}$
$Z_{cs}^{\pm} \to K^{\pm} J/\psi$	-22.2 ± 17.4	22.4 3.88	48.7	_	$< 5.7 \times 10^{-6}$

We searched for a variety of XYZ states in $\Upsilon(1S)$ inclusive decays for the first Time. No evident signal is found for any of them and 90% C.L. upper limits are set on the product branching fractions.

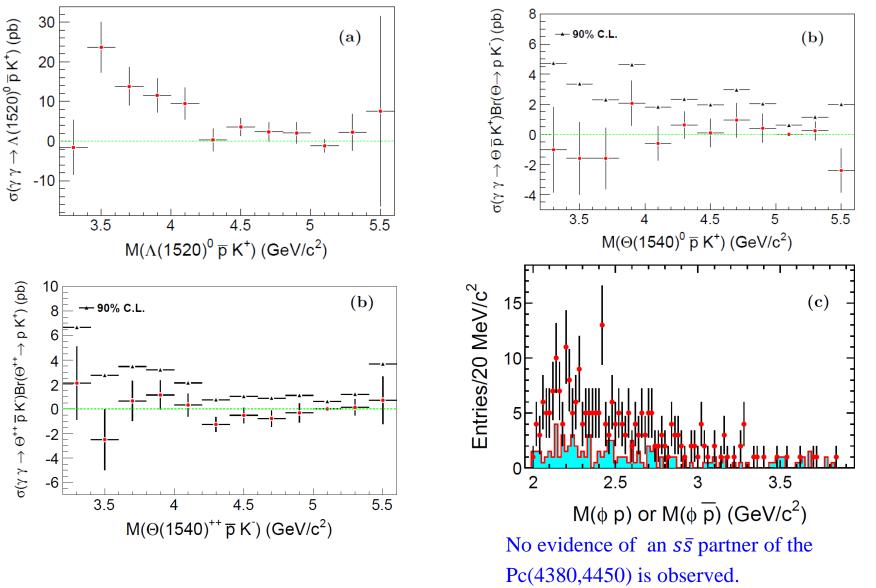
Search for exotic baryons in $\gamma\gamma \rightarrow p\bar{p}K^+K^-$


arXiv:1604.02525

- LHCb reported $Pc(4380)^+$ and $Pc(4450)^+$ in J/Ψ p system
- The first strong experimental evidence for a pentaquark state, $\Theta(1540)^+$, was reported in $\gamma n \rightarrow n K^+ K^-$ in the LEPS experiment
- The possibility of observing additional hypothetical exotic baryons in γγ collisions is discussed in [J. Phys. G30,1801 (2004)]
- We search for novel exotic baryons, denoted as $\Theta(1540)^0 \rightarrow pK^-$ and $\Theta(1540)^{++} \rightarrow pK^+$ which are similar to $\Theta(1540)^+$, in $\gamma\gamma \rightarrow p\bar{p}K^+K^-$.

$$\sigma_{\gamma\gamma\to p\bar{p}K^+K^-}(W_{\gamma\gamma}) = \frac{n^{\text{fit}}}{\frac{dL_{\gamma\gamma}}{dW_{\gamma\gamma}}\epsilon(W_{\gamma\gamma})\Delta W_{\gamma}}$$
$$\frac{dL_{\gamma\gamma}}{dW_{\gamma\gamma}} \text{ is the differential luminosity}$$

Search for exotic baryons in pK systems

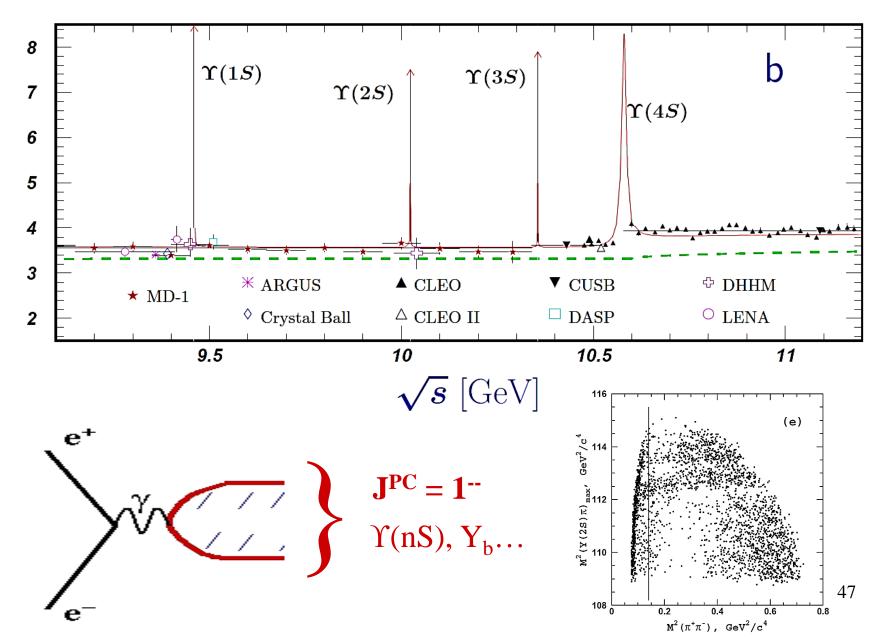

Simultaneous fit: $\Lambda(1520)^0$ and $\Theta(1540)^0$ signal are included. Solid line: the simultaneous fit The dotted curve: background estimate The shaded histogram: $\sum Pt$ * sideband $288 \pm 48 \Lambda(1520)^0$ events, 8.6σ $22 \pm 34 \Theta(1540)^0$ events, 1.4σ

arXiv:1604.02525

 $-16 \pm 34 \Theta(1540)^{++}$ events

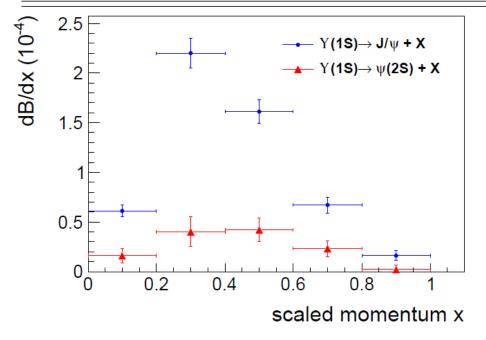
No evidence of $\Theta(1540)^0$ or $\Theta(1540)^{++}$ is seen in M(p K⁻) or M(pK⁺) .

Search for exotic baryons in pK systems arXiv:1604.02525


Summary & outlooks

- More studies on X(3872) and search for X_b
- Updates on some Y states
- Observation of some Z_c and Z_b states
- Searches for XYZ states in Y(1S) decays
- Searches for exotic states in pK systems in twophoton process
- Very exciting time ahead for Bellell with lots of (new)
 exotic states to follow from 2018 ! 45

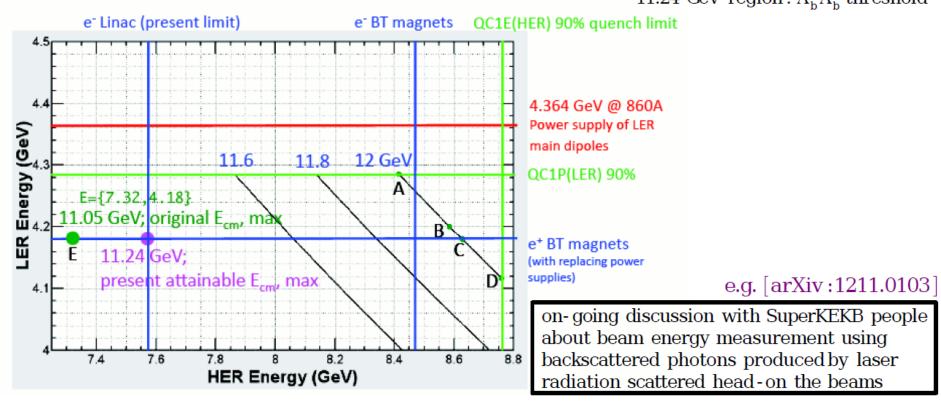
Thanks a lot!


谢谢!

e⁺e⁻ annihilation to vector bottomonia

Define the scaled momentum $x = p_{\psi}^* / (\frac{1}{2\sqrt{s}} \times (s - m_{\psi}^2))$ arXiv:1605.00990

	$\Upsilon(1S) \to J/\psi + X$			$\Upsilon(1S) \to \psi(2S) + X$				
x	N_{fit}	ε	$\sigma_{ m syst}$	$\mathcal{B}(\times 10^{-4})$	$N_{\rm fit}$	έ	$\sigma_{\rm syst}$	$\mathcal{B}(\times 10^{-4})$
(0.0, 0.2)	379.28 ± 28.05	6.06	4.3	$0.61 \pm 0.05 \pm 0.03$	30.14 ± 10.52	1.81	21.8	$0.16 \pm 0.06 \pm 0.04$
(0.2, 0.4)	1297.60 ± 48.60	5.78	5.4	$2.20 \pm 0.08 \pm 0.12$	71.25 ± 18.31	1.76	26.5	$0.40 \pm 0.10 \pm 0.11$
(0.4, 0.6)	904.56 ± 41.55	5.51	5.6	$1.61 \pm 0.07 \pm 0.09$	71.45 ± 15.37	1.68	18.6	$0.42 \pm 0.09 \pm 0.08$
(0.6, 0.8)	353.95 ± 29.27	5.15	6.8	$0.67 \pm 0.06 \pm 0.05$	39.52 ± 12.04	1.65	16.6	$0.23 \pm 0.07 \pm 0.04$
(0.8, 1.0)	54.23 ± 13.36	3.36	7.6	$0.16 \pm 0.04 \pm 0.02$	2.53 ± 5.65	1.40	78.4	$0.02 \pm 0.04 \pm 0.02$
sum	2989.62 ± 75.03	5.62	4.7	$5.25 \pm 0.13 \pm 0.25$	214.89 ± 29.31	1.71	8.9	$1.23 \pm 0.17 \pm 0.11$


• The use of x removes the beamenergy dependence from the comparison of the continuum data to that taken at the $\Upsilon(1S)$ resonance.

• An unbinned extended simultaneous likelihood fit is applied to the x-dependent Ψ spectra to extract the signal yields in the $\Upsilon(1S)$ and continuum data samples.

Ours have smaller central values and much better precision than the PDG averages

<u>Higher energy run</u>

- Design: original design maximum energy is 11.05 GeV at Y(6S)
- Possible higher energy run (11.5 GeV 12 GeV) ?
 - If any, higher energy run will be after several years running at $Y(4S) \sim Y(6S)$
 - present max E_{cm} is 11.24 GeV, limited by e⁻ Linac and e⁺ BT magnets
 - In order to inject the electron beam to HER at the required energy for 12 GeV operation, there must be huge reinforcement of Linac (replacement of S-band with C-band, 7.571 → 8.6 GeV
 11.24 GeV region : Λ_b Λ_b threshold

