Production and decay of baryonic resonances
in pion induced reactions

Witold Przygoda HADES Collaboration

$\frac{1}{2}$ How to study N^{*} and Δ ? **Experimental channels with**
 Experimental control in the peak located around a certain energy
 Experiments
 Experiments
 Experimental channels sections of scattering experiments

A resonance is characterized not **Example 2018** CONTROVED SUCTED TRESPARED SUGGED TRESORANCE IS the peak located around a certain energy for the strong experimental channels is complied by the various change is characterized not only by is complementated Resonance is the peak located around a certain energy **found in differential cross sections of scattering experiments**
Resonance **is the peak located around a certain energy
***Resonance* is related to a pole on the unphysical second Riemann sheet: M_{pole}
A resonance is c **HOW to study** N^* **and** Δ **?**
 Resonance is the peak located around a certain energy

found in differential cross sections of scattering experiments
 Resonance is related to a pole on the unphysical second Riemann sh + analysis methods (PWA), Example 1 and sheet: $M_{pole} + i\Gamma_{pole}/2$

e position but also by its

and allow one to define a
 exampled-channels models
 coupled-channels models

of quantum numbers

$$
\gamma N \rightarrow \pi N, \pi NN, ... \n\gamma^* N \rightarrow \pi N, \pi NN, ... \n\pi N \rightarrow \pi N, \pi NN, ... \npp \rightarrow pp\pi^0, pp\pi\pi, ... \nJ/\psi \rightarrow pp\pi^0, p\pi\pi^-, ...
$$
\n(1)

coupled-channels models

$πN \rightarrow πN$ elastic (new data)
dramatic improvement in statistics: $\Delta \theta_{CM} = \pm 1^{\circ}$

πN \rightarrow ππN status

- Manley et. al PRD30 (1984) 904
-
-
- very scarce data base for pion-nucleon reactions
-
- $\pi^+\pi^-$ in $\textbf{1.3} < \!\! \sqrt{\mathsf{s}} < \textbf{2}$ GeV re

Igor Strakovsky

RRTF Workshop, Darmstadt, Germany, Oct 2013

$\mathsf{manifest-}'' \mathsf{white} \ \mathsf{book}'' \ \mathsf{Hvisics}\ \mathsf{opproxiv}[{\sf ItB}] \ \mathsf{Bpos} \ \mathsf{in} \ \mathsf{Bpos} \ \$

THETHTEST WITH MESON BEAMS

William J. Briscoe^{4,1}, Michael Doring^{4,2}, Helmut Haberzettl^{4,3}, D. Mark Manley^{*h,4*},

Megumi Naruki^{2,2}, Igor I. Strakovsky^{4,0}, Eric S. Swanson^{4,7}

Over the past two decades, <u>meson</u> **PHYSICS OPPORTUNITIES WITH MESON BEAMS**

William J. Briscoc^{a,1}, Michael Doring^{a,2}, Helmut Haberzett^{ia,3}, D. Mark Manley^{*k*,4},

Megumi Naruki^{a,5}, Igor I. Strakovsky^{4,8}, Eric S. Swanson^{4,7}

the past two decad William J. Briscoe^{4,1}, Michael Doring^{4,2}, Helmut Haberzett^{19,3}, D. Mark Manley^{6,4},

Megumi Naruki^{6,3}, Igor I. Strakovsky^{4,6}, Eric S. Swanson^{4,7}

the past two decades, <u>meson photo- and electroproduction</u> dat Megumi Naruki⁶³, Igor I. Strakovsky^{26,9}, Erc S. Swanson^{2,7}

the past two decades, <u>meson photo- and electroproduction</u> data of unp

ty have been measured at electromagy etic facilities worldwide. By cont

or the sam From the same hadronic final states are mostly outdated and largely of poor quality, or even non-
and thus provide indequate input to help interpret, analyze, and exploit the full potential
we electromagnetic data.
Eur. P

Eur. Phys. J. A51 (2015) no.10, 129

on $\gamma p \to \pi N$ Multipoles

Bonn-Gatchina

- Jülich-Bonn
- MAID Mainz

SAID GWU

and with new data included: results get closer, the formulation of data.
 Eur. Phys. J. A51 (2015) no.10, 129
 Eur. Phys. J. A51 (2015) no.10, 129
 Eur. Phys. J. A51 (2015) no.10, 129
 EORIT CONTEXTENT CONTEXTENT C Nas been established a common agreement, that various efforts should converge in desctiption of data...

Triv: 1604.05704 (19 Apr 2016)
 DEM
 **EMPLEMENT BOND SECUTE ACTION BOND BOND, Mainz and Lefferson Laboratory
 n \gamma**

probes of vector meson in medium

but

ρ in-medium: hadronic models
 **baryons are the main players P in-medium: hadror

baryons are the mair**
 aryons are the mair
 baryons are the mair
 aryons are the mair
 aryons are th

$$
\Sigma_{\rho}(M) = -im_{\rho} \Gamma_{\pi\pi}(m)
$$

$$
m_{\rho} = 0.77 GeV
$$

EXPLANATION PRESERVENT -10 ImD_{ρ} [GeV⁻²] -6 -4 -2 Ω 0.0 0.2

R. Rapp, G. Chanfray, J. Wambach Nucl. Phys. A 617 (1997) 472

R. Rapp, J. Wambach

S. Leupold, V. Metag, U. Mosel Int. J. Mod. Phys. E 19 (2010) 147

**TONIC MOdels

THE PROPERTS**

S. Leupold, V. Metag, U. Mosel

Int. J. Mod. Phys. E 19 (2010) 147
 S. in-medium broadening »
 **in-medium spectral function

depends on** $pNN*$ **coupling** in-medium spectral function depends on ρNN^* coupling Comparison C $N(1520), \Delta(1620)$, $N(1720), \ldots$.

Coupling of ρ to baryonic resonances can be directly studied in NN and πN collisions at 1-2 GeV via $N^*(\Delta) \rightarrow Ne^+e^-$ decays

Resonances: description and Dalitz decays

sonance description: W -arbitrary resonance mass **Resonances: description and Dalitz decays**
Resonance description: W -arbitrary resonance mass
relativistic Breit-Wigner distribution $g_R(W) = A \frac{W^2 \Gamma_{tot}(W)}{(W^2 - M_R^2)^2 + W^2 \Gamma_{tot}^2(W)}$ **Resonances: description and Dalitz**
Resonance description:
relativistic Breit-Wigner distribution $g_R(W) = A \frac{W^2 \Gamma}{(W^2 - M_R^2)^2}$
with $\Gamma_{tot}(W) = \Gamma_{\pi N}(W) + \Gamma_{\gamma N}(W) + \Gamma_{e^+e^-N}(W)$ $2\Gamma_{\text{tot}}(W)$ $tot(VV)$ $(2 - M_2^2)^2 + W^2 \Gamma^2$, (W) R ^{τ} τ ^{ν} τ ^{τ} σ τ ^{$(\nu \nu)$} $^{2}_{2}$)² + W² Γ^{2} (W) $tot(VV)$ 2 (M) with $\Gamma_{tot}(W) = \Gamma_{\pi N}(W) + \Gamma_{\gamma N}(W) + \Gamma_{e^+e^-N}(W) + ...$ **Resonance description:** W-arbitrary resonance mass

relativistic Breit-Wigner distribution $g_R(W) = A \frac{W^2 \Gamma_{tot}(W)}{(W^2 - M_R^2)^2 + W^2 \Gamma_{tot}^2(W)}$

with $\Gamma_{tot}(W) = \Gamma_{\pi N}(W) + \Gamma_{\gamma N}(W) + \Gamma_e + e - N(W) + ...$

Dalitz decay requires a model for

HADES Spectrometer HADES Spectrometer

SIS18 beams: protons (1-4 GeV), nuclei (1-2 AGeV)

pions (0.4-2 GeV/c) – secondary beam

spectrometer with $\Delta M/M$ - 2% at ρ/ω **HADES Spectrometer**

SIS18 beams: protons (1-4 GeV), nuclei (1-2 AGeV)

pions (0.4-2 GeV/c) – secondary beam

spectrometer with $\Delta M/M$ - 2% at ρ/ω

detector for rare probes:

dielectrons: e+, e-**HADES Spectrometer**

sista beams: protons (1-4 GeV), nuclei (1-2 AGeV)

pions (0.4-2 GeV/c) – secondary beam

spectrometer with $\Delta M/M$ - 2% at ρ/ω

detector for rare probes:

dielectrons: e+, e-

strangeness: Δ , K **HADES Spectrom (1-4 GeV), nuclei (1-2 AGeV)**

sista beams: protons (1-4 GeV), nuclei (1-2 AGeV)

pions (0.4-2 GeV/c) – secondary beam

spectrometer with $\Delta M/M - 2\%$ at ρ/ω

detector for rare probes:

dielectrons: e+,

-
-
-

strangeness: Λ , K^{±,0}, Ξ^- , ϕ , φ , θ ,

- **SIS18 beams:** protons (1-4 GeV), nuclei (1-2 AGeV)
pions (0.4-2 GeV/c) secondary beam
spectrometer with $\Delta M/M$ 2% at ρ/ω
detector for rare probes:
dielectrons: e+, e-
strangeness: Λ , $K^{\pm,0}$, Ξ^- , φ
par SIS18 beams: protons (1-4 GeV), nuclei (1-2 AGeV)
pions (0.4-2 GeV/c) – secondary beam
spectrometer with $\Delta M/M$ - 2% at ρ/ω
detector for rare probes:
dielectrons: e+, e-
trangeness: Δ , $K^{\pm,0}$, Ξ , φ
particl electrons : RICH (hadron blind), TOF/Pre-Shower
-

-
- e^+e^- pair acceptance ≈ 0.35

HADES physics for pion beams (2014)

-
- **E** secondary π with I~3-4 \cdot 10⁵/spill @ 0.7 GeV/c |
	-
- pion momentum $\Delta p/p = 2.2\%$ (σ) and
-
- **on beams (2014)**
 **Expresenance excitation can be

controlled by the variation of

the projectile (pion) momentum

EXPLADES starts with compute 1 Section 1 1 beams (2014)**
 the project of a set of a set of a set of a set of the projectile (pion) momentum
 HADES starts with
 p = 0.656/0.69/0.748/0.8 GeV/c
 \sqrt{s} = 1.46-1.55 GeV: N(1520)
- **ON Deams (2014)**

 Example 3 starts with
 Example 3 starts with
 PERDES starts wit p = 0.656/0.69/0.748/0.8 GeV/c \sqrt{s} = 1.46-1.55 GeV: N(1520) **ON Deams (2014)**
 Example 1014)
 Example 2014
 Example 2014
 Example 2014
 Example 2014
 Example 2014
 EXADES starts with
 p = 0.656/0.69/0.748/0.8 GeV/c
 \sqrt{s} = 1.46-1.55 GeV: N(1520)
 EXADES 1.46-1.5 n beams (2014)
 resonance excitation can be
 controlled by the variation of

the projectile (pion) momentum

HADES starts with
 $p = 0.656/0.69/0.748/0.8 \text{ GeV/c}$
 $\sqrt{s} = 1.46$ -1.55 GeV: N(1520)
 π + π - production **Example 18 Alternation**
 Example 8 Alternation can be

controlled by the variation of

the projectile (pion) momentum
 EXADES starts with
 $p = 0.656/0.69/0.748/0.8 \text{ GeV/c}$
 $\sqrt{s} = 1.46{\text -}1.55 \text{ GeV}: N(1520)$
 EXALTER resonance excitation can be

controlled by the variation of

the projectile (pion) momentum

HADES starts with

p = 0.656/0.69/0.748/0.8 GeV/c
 \sqrt{s} = 1.46-1.55 GeV: N(1520)
 π + π - production:

coupling of ρ to **resonance excitation can be**

controlled by the variation of

the projectile (pion) momentum
 HADES starts with
 $p = 0.656/0.69/0.748/0.8 \text{ GeV/c}$
 $\sqrt{s} = 1.46-1.55 \text{ GeV}: N(1520)$
 T+ π - production:

coupling of ρ controlled by the variation of

the projectile (pion) momentum

HADES starts with

p = 0.656/0.69/0.748/0.8 GeV/c
 \sqrt{s} = 1.46-1.55 GeV: N(1520)
 π + π - production:

coupling of ρ to resonance

e+e- never measure **The projectile (pion) momentum**
 EXECUTE: HADES starts with
 $p = 0.656/0.69/0.748/0.8 \text{ GeV/c}$
 $\sqrt{s} = 1.46-1.55 \text{ GeV}: N(1520)$
 EXECUTE: $\pi+\pi$ - production:

coupling of ρ to resonance
 EXECUTE: coupling of ρ
-
- p = 0.656/0.69/0.748/0.8 GeV/c
 \sqrt{s} = 1.46-1.55 GeV: N(1520)

 n + π production:

coupling of ρ to resonance

e+e- never measured from pion

induced reactions

resonance Dalitz decays

R--Ne+e- (reference for
-
- $\mathsf{nucleus}\colon\mathsf{K}^\pm$, K^0 , ϕ , and the set of $\|\cdot\|$
- distributions needed

14

HADES physics for pion beams (2014)

D. M. Manley et al. Phys. Rev. D 30 (1984) 904
 Example: A Series And A Series A Series A
 Example: A Series A

 $\theta_{\rm CM}$

±10%

652, 685, 740, 790 MeV/c

-
- –, π⁰π−, e⁺e[–] αποτελείας του αποτελεί –

(n π⁺π⁻) events -

$(n \pi^{+}\pi^{-})$ – events) – events with signal extracted
 $\frac{1}{\sqrt{1-\frac{1}{1-\frac{$

- **with signal extracted**

 goal: separate signal $(\pi \cdot p)$

from background $(\pi \cdot C)$

based on PE events and C events \gcd : separate signal (πp) The Signal extracted
 goal: separate signal (π⁻p)

from background (π⁻C)

based on PE events and C events

relative normalization of PE events from background (πC) **ith Signal extracted

goal:** separate signal (π P)

from background (π C)

based on PE events and C events

relative normalization of PE events

and C events deduced from
- **with signal extracted**

 goal: separate signal $(\pi \cdot p)$

from background $(\pi \cdot C)$

based on PE events and C events

 relative normalization of PE events

and C events deduced from
 πp elastic scattering **The Signal extracted

goal:** separate signal (π p)

from background (π C)

based on PE events and C events

relative normalization of PE events

and C events deduced from
 π p elastic scattering
 ocedure: event f π p elastic scattering **th signal extracted

pal:** separate signal (π p)

com background (π C)

ased on PE events and C events

elative normalization of PE events

nd C events deduced from

Tp elastic scattering

edure: event from C corre

• relative normalization of PE events
and C events deduced from
 π **p** elastic scattering
procedure: event from C **correlated**
with event from PE based on χ^2
(miss. mass + momentum of π^+ , π^- , n)
(miss. mass and C events deduced from
 π p elastic scattering
 procedure: event from C correlated

with event from PE based on χ^2

(miss. mass + momentum of π^t , π , n)

(miss. mass + momentum of π^0 , π , p)
 PWA d n pelastic scattering
 procedure: event from C correlated

with event from PE based on χ^2

(miss. mass + momentum of π^t , π , n)

(miss. mass + momentum of π^0 , π , p)
 PWA done with:
 \checkmark four $\pi\pi$ procedure: event from C correlated **goal:** separate signal (**π⁻p**)
from background (**π⁻C**)
based on PE events and C events
relative normalization of PE events
and C events deduced from
π⁻p elastic scattering
ocedure: event from C **correlated**
wit • goal: separate signal (π⁻**p**)
from background (π⁻**C**)
based on PE events and C events
• relative normalization of PE events
and C events deduced from
 π **·p** elastic scattering
procedure: event from C correlated , π- , n) from background (π C)
based on PE events and C events
• relative normalization of PE events
and C events deduced from
 π **p** elastic scattering
procedure: event from C correlated
with event from PE based on χ^2
(m , π- , p)

green $\mathbb{F}_{\mathbb{F}_{\mathbb{F}_{\mathbb{Z}}}}$ $\mathbb{F}_{\mathbb{F}}$ our $\pi\pi$ data samples from HADES bg: from PE $\frac{1}{2}$ $\sqrt{\frac{1}{2}}$ photon- and pion-induced reactions

PWA coupled channel analysis

 $^{\rm o}$ are: $\Delta\pi$ and ${\rm\bf N}\sigma$ (2 $\pi^{\rm o}$ in I = 0) $^-$

PWA π⁺π⁻ inv. mass

INPUT: D_{13} (1520), P₁₁(1440)

OUTPUT: Δπ, Nσ, Nρ

PWA π⁺π⁻ inv. Mass

$^{+}$ π $)$ $-$ cross se

e⁺e⁻ inclusive

-
-

e⁺e⁻ cocktail

 $\frac{1}{\sqrt{2}}$ COCKtail ingredients "cookbook"
Jons from π p and π c added together (ratio 1 : 2 experimentally deduced)
J GeV/c (Vs=1.492 GeV) π C average Vs=1.461 GeV (mom. 0.65 GeV/c) **e⁺e** cocktail ingredients "

contributions from π p and π c added together (ratio is

c p mom. 0.69 GeV/c (Vs=1.492 GeV) π C average Vs=1.46

channel σ [mb] data source contributions from π ⁻p and π ⁻C added together (ratio 1 : 2 experimentally deduced) of the Californian of the Cadded together (ratio 1 : 2 experimentally deduced)

(c) added together (ratio 1 : 2 experimentally deduced)

eV) adta source Model

Andel betweed to Martin Martin Model π ·p mom. 0.69 GeV/c (Vs=1.492 GeV) π ·C average Vs=1.461 G

Towards better cross sections
 $\frac{1}{(2n-2\pi^2p), \mu b}$ detailed balance theorem

SS SECTIONS

detailed balance theorem

equilibrium, each elementary

cocess should be equilibrated

by its reverse process) OSS SECTIONS

detailed balance theorem

(at equilibrium, each elementary

process should be equilibrated

by its reverse process) process should be equilibrated by its reverse process)

$$
|\mathbf{p}_1| = |\mathbf{p}_2|
$$

=
$$
\frac{\left[(M^2 - (m_1 + m_2)^2) (M^2 - (m_1 - m_2)^2) \right]^{1/2}}{2M}
$$

COSS SCCCIOTIS

detailed balance theorem

(at equilibrium, each elementary

process should be equilibrated

by its reverse process)
 $|p_1| = |p_2|$
 $\frac{[(M^2 - (m_1 + m_2)^2) (M^2 - (m_1 - m_2)^2)]^{1/2}}{2M}$

Real photon reactions d $N(1535)S₁₁ + t-channel contribution$ $Δ(1232)P_{33}$ $N(1520)D_{13}$ $N(1440)P_{11}$ $|p_1| = |p_2|$
 $[(M^2 - (m_1 + m_2)^2) (M^2 - (m_1 - m_2)^2)]^{1/2}$
 Real photon reactions decomposed:
 NAMELA AND FOR THE CONSET CONSET ASSAURE ASSAURE ASSAUTED SAMALED CONSECTION
 NAMELA AND FOR SECTION FOR THE CONSET CONSET CO $|p_1| = |p_2|$
 $\frac{\left[(M^2 - (m_1 + m_2)^2) (M^2 - (m_1 - m_2)^2)\right]^{1/2}}{2M}$
 Real photon reactions decomposed:
 N(1535)S₁₁ + t-channel contribution
 Δ (1232)P₃₃
 **N(1520)D₁₃

N(1440)P₁₁

Cross section estimation for r** $\frac{\left[(M^2-(m_1+m_2)^2)\left(M^2-(m_1-m_2)^2\right)\right]^{1/2}}{2M}$
 Real photon reactions decomposed:
 N(1535)S₁₁ + t-channel contribution
 A(1232)P₃₃
 N(1520)D₁₃
 **N(1440)P₁₁

Cross section estimation for reverse

reaction** $\frac{\left[\left(M - (m_1 + m_2) \right) \left(M - (m_1 - m_2) \right)\right]}{2M}$

Real photon reactions decomposed:

N(1535)S₁₁ + **t-channel** contribution
 Δ (1232)P₃₃

N(1520)D₁₃

N(1440)P₁₁

Cross section estimation for reverse

reaction: about $\begin{array}{l} 2M \\ \underline{\textsf{Real photon reactions decomposed:}}\ \textsf{N(1535)}\textsf{S}_{11} \text{ + t-channel contribution}\\ \Delta(1232)\textsf{P}_{33} \\ \textsf{N(1520)}\textsf{D}_{13} \\ \textsf{N(1440)}\textsf{P}_{11} \\ \end{array}$
Cross section estimation for reverse reaction: about × 2 times more
,,at real photon photon point"
(n

 $\mathbf{1}$, and the set of the set భయళ 28

e⁺e⁻ simulate

Exclusive e⁺e⁻ cocktail

$ρ/ω$ production from microscopic models
Antivistic unitary coupled-channel approach
ALE.M. Lutz, Gy. Wolf, B. Friman ρ/ω production from microscopic monoderativistic unitary coupled-channel approach
 $\pi N \rightarrow \rho^0 N$ (here $I = \frac{1}{2}, \frac{3}{2}$ and $J = \frac{1}{2}, \frac{3}{2}$) Nucl. Phys. A 700 **nicroscopic models**
 PALCAL CONTROVER MARK AND SURVEY AT ANCHANGE SEFFECTIVE Lagrangian
 Effective Lagrangian

(vector meson-photon interaction terms)
 $\frac{f_{\rho}}{d\mu}$

ρ/ω production from microscopic motion			
Relativistic unitary coupled-channel approach	M.F.M. Lutz, Gy. Wolf,		
$\pi N \rightarrow \rho^0 N$ (here $I = \frac{1}{2}, \frac{3}{2}$ and $J = \frac{1}{2}, \frac{3}{2}$)	M.F.M. Lutz, Gy. Wolf,		
$\pi N \rightarrow \omega N$ (here $I = \frac{1}{2}$ and $J = \frac{1}{2}, \frac{3}{2}$)	Effective Lagrangian		
cross sections: amplitudes assuming VMD	effective		
r^+	r^+	r^+	r^+
r^+	r^+	r^+	
r^+	r^+	r^+	r^+
r^+	r^+	r^+	r^+
r^+	r^+	r^+	r^+
r^+	r^+	r^+	r^+
r^+	r^+	r^+	r^+
r^+	r^+	<math display="block</td>	

$$
\pi^- p \rightarrow e^+ e^- n
$$

$$
\pi^+ n \rightarrow e^+ e^- n
$$

M.F.M. Lutz, Gy. Wolf, B. Friman **Samille Company Compa** Nucl. Phys. A 706 (2002) 431

OM Microscopic models

\nel approach

\n

1.5	2
2.5	2
3.5	2
4.5	2
5.2	
7.2	2
8.2	2
9.2	3

\nEffective Lagrangian (vector meson-photon interaction terms)

\n
$$
\mathcal{L}_{\gamma V}^{int} = \frac{f_{\rho}}{2M_{\rho}^{2}} F^{\mu\nu} \rho_{\mu\nu}^{0} + \frac{f_{\omega}}{2M_{\omega}^{2}} F^{\mu\nu} \omega_{\mu\nu}
$$

\n•
$$
f_{\rho}, f_{\omega}
$$
 fixed by $\Gamma_{\rho/\omega \rightarrow e^{+}e^{-}}$

\n• relative sign fixed by the vector meson photoproduction amplitudes

\n• pion-nucleon resonances in S_{11} , S_{31} , D_{13} , D_{33} , partial waves generated dynamically

- f_{ρ} , f_{ω} fixed by $\Gamma_{\rho/\omega\to e^+e^-}$
-
- **Effective Lagrangian**

(vector meson-photon interaction terms)
 $\mathcal{L}_{\gamma V}^{int} = \frac{f_\rho}{2 M_\rho^2} F^{\mu\nu} \rho_{\mu\nu}^0 + \frac{f_\omega}{2 M_\omega^2} F^{\mu\nu} \omega_{\mu\nu}$
 f_ρ, f_ω fixed by $\Gamma_{\rho/\omega \to e^+ e^-}$

relative sign fixed by the vector meson **Effective Lagrangian**

(vector meson-photon interaction terms)
 $\mathcal{L}_{\gamma V}^{int} = \frac{f_{\rho}}{2M_{\rho}^2} F^{\mu\nu} \rho_{\mu\nu}^0 + \frac{f_{\omega}}{2M_{\omega}^2} F^{\mu\nu} \omega_{\mu\nu}$

• f_{ρ} , f_{ω} fixed by $\Gamma_{\rho/\omega \to e^+e^-}$

• relative sign fixed (vector meson-photon interaction terms)
 $\mathcal{L}_{\gamma V}^{int} = \frac{f_{\rho}}{2M_{\rho}^2} F^{\mu\nu} \rho_{\mu\nu}^0 + \frac{f_{\omega}}{2M_{\omega}^2} F^{\mu\nu} \omega_{\mu\nu}$
 f_{ρ}, f_{ω} fixed by $\Gamma_{\rho/\omega \to e^+e^-}$

relative sign fixed by the vector meson

photoproduc $\mathcal{L}_{\gamma V}^{int} = \frac{f_\rho}{2M_\rho^2} F^{\mu\nu} \rho_{\mu\nu}^0 + \frac{f_\omega}{2M_\omega^2} F^{\mu\nu} \omega_{\mu\nu}$
 f_ρ, f_ω fixed by $\Gamma_{\rho/\omega \to e^+e^-}$

relative sign fixed by the vector meson

photoproduction amplitudes

pion-nucleon resonances in S₁₁, S $\mathcal{L}_{\gamma V}^{int} = \frac{f_{\rho}}{2M_{\rho}^2} F^{\mu\nu} \rho_{\mu\nu}^0 + \frac{f_{\omega}}{2M_{\omega}^2} F^{\mu\nu} \omega_{\mu\nu}$

• f_{ρ} , f_{ω} fixed by $\Gamma_{\rho/\omega \to e^+e^-}$

• relative sign fixed by the vector meson

photoproduction amplitudes

• pion-nucleon r $\mathcal{L}_{\gamma V} = \frac{1}{2M_{\rho}^2} F^{\gamma}{}^{\rho} \rho_{\mu\nu} + \frac{1}{2M_{\omega}^2} F^{\gamma}{}^{\rho} \omega_{\mu\nu}$
 f_{ρ}, f_{ω} fixed by $\Gamma_{\rho/\omega \to e^+e^-}$

relative sign fixed by the vector meson

photoproduction amplitudes

pion-nucleon resonances in S₁₁
- $\pi^+ n \rightarrow e^+ e^- p$ by solving Bethe-Salpeter eq.
model valid below ρ/ω threshold

e⁺e⁻ productio Production from microscopic models

e⁺e⁻ productio Production from microscopic models

 $\begin{array}{rl} \mathsf{microscopic\ models} \ \ \frac{ \mathsf{a} \mathsf{a}}{ \mathsf{a} \mathsf{f} } \ \tau^{\pi^- p \to n e^+ e^-} \propto T^{\rm scalar} + T^{\rm vector} \ \tau^+ n \to n e^+ e^- \quad \text{rescalar} \quad T^{\rm vector} \end{array}$ **Croscopic models**

• valid interference patterns:

• valid just below p/w threshold

• valid just below p/w threshold

• valid just below p/w threshold

• 1.72 GeV (N, N*, A)

33

-
- $)$

e⁺e⁻ productio 34

Exclusive e⁺e⁻ - more c

SUMMARY

- **SUMMARY**

 HADES & **pion beam** is an unique tool

to understand in details baryon p couplings

 Significant off-shell o contribution originating from
- **SUMMARY**

HADES & **pion beam** is an unique tool

to understand in details baryon ρ couplings

Significant off-shell ρ contribution originating from

N(1520)D₄₃ shown by combined PWA and e⁺e⁻ data • HADES & **pion beam** is an unique tool
to understand in details baryon - ρ couplings
• Significant off-shell ρ contribution originating from
 $N(1520)D_{13}$ shown by combined PWA and e⁺e⁻ data
Future activity (n **SUMMARY**

HADES & **pion beam** is an unique tool

to understand in details baryon - ρ couplings

Significant off-shell ρ contribution originating from

N(1520)D₁₃ shown by combined PWA and e⁺e⁻ data

ture acti e - data **SUMMARY**
 • HADES & **pion beam** is an unique tool

to understand in details baryon - ρ couplings

• Significant off-shell ρ contribution originating fr
 $N(1520)D_{13}$ shown by combined PWA and e⁺e⁻ c

Future • HADES & **pion beam** is an unique tool

to understand in details baryon - ρ couplings

• Significant off-shell ρ contribution originating from
 $N(1520)D_{13}$ shown by combined PWA and e⁺e⁻ data

Future activit

-
- High statistics beam energy scan:

continuation and extension to third resonance region

- Hadronic final states, one-pion, two-pion, hyperon production to control resonance excitation Future activity (now and 2018+):

• Joint venture of PWA analysis (Bo-Ga) and dilepton channels

• High statistics beam energy scan:

• continuation and extension to third resonance region

• Hadronic final states, one-pi
-
- Di-electron measurements : pR couplings $S_{13}(1620)$, $D_{33}(1700)$, $P_{13}(1720)$

View details | Material v | Export v

 $16:05 - 16:25$

Room: Medium lecture hall (B) **Location:** Auditorium Maximum Presenter(s): Małgorzata GUMBERIDZE

Studying $\rho - N$ couplings with \boxtimes HADES in pion-induced reactions

inside Parallel Session A4

View details | Material \star Export +

 $18:20 - 18:40$

Room: Medium lecture hall (A) Location: Auditorium Maximum Presenter(s): Federico SCOZZI (TU collisions at $E_{kin} = 2.5$ GeV

inside Parallel Session B6

View details | Material v | Export v

$18:15 - 18:35$

Medium lecture hall (B) Room: Location: Auditorium Maximum Presenter(s): Jacek BIERNAT (UJ)

Investigation of di-electron pair production in quasi-free $n-p$ interactions using deuterium beams on proton target at kinetic energy of 1.25 GeV/u will be presented. Detection of spectator proton f...

BACKUP

Witold Przygoda (Baryons 2016)

bin

ρ contribution (off-shell)
 ρ contribution (off-shell)

• VDM predicts scaling $\sim 1/M^3$ resulting in

- **■** contribution from π ⁺π⁻ channel (PWA analys
- $\begin{array}{l} \textsf{ribution (off-shell)} \ \textsf{r} \textsf{channel (PWA analysis): cross section 1.54 mb} \ \textsf{r} \textsf{dicts scaling} \sim 1/M^3 \ \textsf{resulting in} \ \textsf{r} \textsf{BR as compared to the value at pole} \end{array}$ 9 CONtribution (off-shell)

on from π⁺π· channel (PWA analysis): cross section 1.54 m

■ VDM predicts scaling ~ 1/M³ resulting in

much higher BR as compared to the value at pole
 $M(\pi^+\pi^- \to \rho^0 \to e^+e^-) |^2 = \frac{m_\rho^2 \$

 $Line #1$ mass 3,26E-01 1,68E-02 12,66505858 2,12E-01 3,37E-01 2,10E-02 11,50844232 2,41E-01 3.48E-01 2.52E-02 10.41514376 2.62E-01 3,59E-01 3,14E-02 9,455788455 2,97E-01 3,68E-01 3,14E-02 8,842060636 2,78E-01 3,81E-01 3,77E-02 7,96530894 3,01E-01 3,90E-01 4,19E-02 7,382426161 3,10E-01 4,01E-01 5,03E-02 6,813086495 3,43E-01 4,11E-01 5,56E-02 6,301052508 3,50E-01 4,24E-01 6,18E-02 5,73892679 3,55E-01 4,34E-01 6,60E-02 5,360496552 3,54E-01 4,46E-01 8,07E-02 4,959360928 4,00E-01 4,57E-01 9,01E-02 4,597528169 4,14E-01 4,67E-01 1,01E-01 4,314782768 4,34E-01 4,78E-01 1,07E-01 4,013707862 4,29E-01 4,90E-01 1,15E-01 3,739926802 4,31E-01 5,00E-01 1,16E-01 3,50778875 4,08E-01 5,12E-01 1,19E-01 3,278724205 3,92E-01 5.21E-01 1.22E-01 3.098015318 3.77E-01 5,33E-01 1,22E-01 2,903650904 3,53E-01 5,43E-01 1,07E-01 2,73782466 2,93E-01 5,54E-01 9,75E-02 2,584269529 2,52E-01 5,66E-01 7,23E-02 2,42132848 1,75E-01 5,77E-01 2,94E-02 2,281757596 6,70E-02

SUM