MESON 2016 – Outlook

Avraham Gal, Hebrew University, Jerusalem

- Exotics: Remarks on Pentaquarks
- In-medium Mesons

Nanova (ω, η' ; ELSA) Mareš (η) Friedman (K^+) Tatsuno (K^- ; DA Φ NE) Scordo (K^- ; DA Φ NE) Itahashi (π^- ; RIKEN) Tanaka (η' ; GSI) Cieply, Hrtankova (\bar{K}) Iwasaki (\bar{K} ; J-PARC)

- Non-Strange Dibaryons NN (deuteron) N Δ (JLab) & $\Delta\Delta$ (COSY)
- Strange & Charmed Dibaryons Y*N (J-PARC), H, Ω^-N , Λ_cN

EXOTICS

Pentaquarks – old and new

Pentaquark Perspectives

- The first pentaquark, the $S = -1 \Lambda(1405)$ was predicted in 1959 by Dalitz and Tuan as a $\overline{K}N$ quasibound state, five years before the term 'quark' was transformed by Gell-Mann from Literature to Physics. It was identified around 1960 in a Berkeley hydrogen bubble chamber experiment. A recent LQCD calculation confirms its KN hadronic cluster structure, as opposed to a genuing pentaquark.
- A S = +1 Θ⁺(1530) pentaquark was claimed more than 10 years ago, but recent dedicated experimental searches have failed to confirm it. Its coupling to KN is very small.

Friedman and I suggested that it is formed copiously in absorption on two nucleons, $K^+(nN) \rightarrow \Theta^+N'$, thereby resolving the problem of too large K⁺ nuclear cross sections at low energies (Friedman).

• The recent LHCb discovery of hidden-charm structures has led to several serious attempts to interpret these in terms of pentaquark(s) (Ryan, Karliner, Shen, Oset...).

The next 3 slides are from Karliner's talk

Vision of heavy-quark wonderland new rich heavy flavor QCD spectroscopy

(a) bottomonium analogues of charmonium X, Y, Z states

(b) new exotics – doubly-heavy hadronic molecules meson-meson, baryon-meson, baryon-baryon the lightest one: LHCb "pentaquark" = $\Sigma_c \bar{D}^*$ ($\bar{c}cuud$)

(c) doubly heavy QQq baryons

MESON2016

2

LHCb hidden-charm pentaquark(s)

Decay of a tightly bound pentaquark vs. hadronic molecule to $J/\psi p$: narrow width is natural in molecular picture, unlikely for tight pentaquark

M. Karliner, Doubly heavy pentaquarks MESON2016 1
Preference of hadronic cluster structure

SUMMARY

• the new narrow exotic resonances are loosely bound states of $\overline{D}D^*$, \overline{D}^*D^* , \overline{B}^*B^* , $\Sigma_c\overline{D}^*$

predictions:

- $-\overline{D}^*D^*$ in I = 0 and I = 1 channels; I = 1 seen!
- new isosinglet $\overline{B}B^*$ and \overline{B}^*B^* states below threshold; $\chi_{1b}(3P) = X_b$?
- heavy deuterons: $\Sigma_c D^*$: LHCb $P_c(4450) \Longrightarrow$ photoproduction $\Sigma_c B^*$, $\Sigma_b \bar{D}^*$, $\Sigma_b B^*$, $\Sigma_Q \bar{\Lambda}_{Q'}$, $\Sigma_Q^+ \Sigma_Q^-$, ... η -mediated: $D_s \bar{D}_s^*$, $\Lambda_c \bar{D}_s^*$, ...
- doubly & triply heavy baryons QQq, QQQ @pp & e^+e^-
- exciting new spectroscopy in future e^+e^- high- \mathcal{L} high-E colliders

M. Karliner, Doubly heavy pentaquarks

MESON2016

In-medium mesons

A. Gal, E. Friedman, N. Barnea A. Cieplý, J. Mareš, D. Gazda

Acta Physica Polonica B 45 (2014) 673

Meson-nucleus optical potential (Nanova)

These are attractive potentials; energy dependence? Subthreshold extrapolation needed for bound states.

Two NLO chiral-model fits by Guo-Oller, PRC 87 (2013) 035202

- Fit I: meson-independent $f = 125.7 \pm 1.1$ MeV.
- Fit II: physical values for f_{π} , f_{K} , f_{η} . Will create problems when confronted with K^{-} -atom data.
- Amplitudes constrained at threshold by SIDDHARTA. $\bar{K}N$ pole robust, $\pi\Sigma$ pole correlated with fit.

Self-consistency imposed in K^- atom calculations [Cieplý-Friedman-Gal-Gazda-Mareš, PLB 702 (2011) 402]:

$$\sqrt{s_{K-N}} \to E_{\rm th} - B_N - B_K - \xi_N \frac{p_N^2}{2m_N} - \xi_K \frac{p_K^2}{2m_K}$$

$$\frac{p_K^2}{2m_K} \sim -V_{K^-} \approx 100 \text{ MeV}$$

 K^- is not at rest! From E. Friedman, A. Gal NPA 899 (2013) 60 K^-N subthreshold energy vs nuclear density in K^- atoms. A dominant in-medium effect

K⁻ atoms best-fit V_{K^-} for Ni & breakdown into in-medium 1N and phenomenological m(any)N contributions. Work by Friedman-Gal, NPA 899 (2013) 60. NLO30: A. Cieply, J. Smejkal, NPA 881 (2012) 115 (in-medium). IHW: Y. Ikeda, T. Hyodo, W. Weise, NPA 881 (2012) 98.

Gazda-Friedman-Gal-Mareš, PRC 77 (2008) 045206; 80 (2009) 035205 Saturation of $B_{\bar{K}}(\kappa)$ in RMF for multi- K^{-40} Ca nuclei. Vector-meson repulsion among \bar{K} mesons. $B_{\bar{K}}(\kappa \to \infty) << (m_K + M_N - M_\Lambda) \approx 320$ MeV, hence \bar{K} mesons do not replace hyperons in self-bound strange matter.

$\mathbf{F}_{\eta N}(\sqrt{s})$ in N(1535) models

- Model dependence of Re $a_{\eta N} \sim 0.3-1.0$ fm. Weaker attraction & absorption upon going subthreshold.
- Construct in-medium $\mathbf{F}_{\eta N}(\sqrt{s}; \rho)$ and hence $\mathbf{V}_{\eta}(\sqrt{s}; \rho)$, to apply self consistently.

η -nuclear spectra model predictions

Green-Wycech η N model PRC 71 (2005) 014001

Cieply-Smejkal η N model NPA 919 (2013) 46

- In these models the subthreshold Im $f_{\eta N}$ is sufficiently small to generate widths ~2–3 MeV for CS input.
- No ηd , η^{3} He bound states in few-body calculations by Barnea-Friedman-Gal, PLB 747 (2015) 345.

'Surprise' for D mesons in dense matter

- Naively, from mean-field considerations, one expects attraction for D⁺=cd̄, similar to K⁻=sū. Both D⁻=c̄d and K⁺=s̄u undergo repulsion (see Friedman's talk).

Non-strange dibaryons Long-range dynamics of dibaryons

A. Gal, H. Garcilazo, PRL 111 (2013) 172301 Nucl. Phys. A 928 (2014) 73-88

A. Gal, Meson Assisted Dibaryons Acta Physica Polonica B 47 (2016) 471–484

Nonstrange s-wave dibaryon SU(6) predictions F.J. Dyson, N.-H. Xuong, PRL 13 (1964) 815

dibaryon	Ι	S	SU(3)	legend	mass
\mathcal{D}_{01}	0	1	$\overline{10}$	deuteron	A
\mathcal{D}_{10}	1	0	27	nn	A
\mathcal{D}_{12}	1	2	27	$N\Delta$	A + 6B
\mathcal{D}_{21}	2	1	35	$N\Delta$	A + 6B
\mathcal{D}_{03}	0	3	$\overline{10}$	$\Delta\Delta$	A + 10B
\mathcal{D}_{30}	3	0	28	$\Delta\Delta$	A + 10B

Assuming 'lowest' SU(6) multiplet, 490, within 56 × 56. M=A+B[I(I+1)+S(S+1)-2], A=1878 MeV from $M(d)\approx M(v)$. B = 47 MeV from $M(\mathcal{D}_{12})\approx 2160$ MeV observed in $\pi^+d \rightarrow pp$. Hence, $M(\mathcal{D}_{03}) = M(\mathcal{D}_{30}) \approx 2350$ MeV $[2M(\Delta) \approx 2465$ MeV]. Kamae-Fujita, PRL 38 (1977) 468, 471: proton polarization in $\gamma d \rightarrow pn$ supports a dibaryon at $M \approx 2380$ MeV.

Evidence for $\mathcal{D}_{03}(2380)$, $B \sim 80$ & $\Gamma \sim 70$ MeV Adlarson et al. PRL 106 (2011) 242302 & 112 (2014) 202301

from $pd \to d\pi^0 \pi^0 + p_s$ also in $pd \to d\pi^+ \pi^- + p_s$ ${}^{3}D_{3} - {}^{3}G_{3} pn$ resonance *np* analyzing power

SAID NN fit requires a resonance pole WASA@COSY & SAID, PRC 90 (2014) 035204

Given $\Gamma(\Delta) \approx 120$ MeV, what makes \mathcal{D}_{03} that narrow?

$\mathcal{D}_{12} N\Delta$ dibaryon candidate

$\Delta N | (J^P) = 1(2^+)$ Dibaryon

 $NN \leftrightarrow \pi d$ reactions resonate near $N\Delta$ threshold Hoshizaki, PTP 89 (1993) 563: W=2144-i55 MeV Arndt et al. PRD 35 (1987) 128: W=2148-i63 MeV

$\mathcal{D}_{12}(2150) \ N\Delta \ \text{dibaryon}$ near threshold (2.17 GeV)

- Long ago established in coupled-channel pp(¹D₂) ↔ π⁺d(³P₂) scattering & reactions. Hoshizaki's & Arndt et al's analyses: M ≈ 2.15 GeV, Γ ≈ 110 - 130.
- Nonrelativistic πNN Faddeev calculation, Ueda (1982): M = 2.12 GeV, $\Gamma = 120$ MeV.
- Relativistic-kinematics πNN Faddeev gives
 W(D₁₂) ≈ 2153 i65, W(D₂₁) ≈ 2167 i67 (MeV),
 poles robust to variations of NN & πN input.
- CLAS $\gamma d \rightarrow d\pi^+\pi^-$ data [APS 04/2015] suggest $M_{BW} \approx 2.12$ GeV, $\Gamma_{BW} \approx 125$ MeV.

\mathcal{D}_{12} $N\Delta$ dibaryon search at JLab

 $M_{d\pi^+}$ vs. $M_{d\pi^-}$ in $\gamma d \rightarrow d\pi^+\pi^-$ (APS 04/2015). Acceptance-corrected CLAS (g13) data. Suggests $d\pi^{\pm}$ correlation below $N\Delta$ threshold.

Calculation of $\mathcal{D}_{03}(2380) \Delta \Delta$ dibaryon in terms of π 's, N's & Δ 's

- Approximate $\pi\pi NN$ problem by $\pi N\Delta'$ problem.
- Separable pair interactions: $\pi N \Delta$ -isobar form factor by fitting $\delta(P_{33})$; $N\Delta' \mathcal{D}_{12}(2150)$ -isobar form factor by fitting $NN(^1D_2)$ scattering.
- 3-body S-matrix pole equation reduces to effective $\Delta \Delta'$ diagram:

Results & Discussion

- Using 0.9 & 1.3 fm sized P_{33} form factors: $M(\mathcal{D}_{03})=2363\pm20, \Gamma(\mathcal{D}_{03})=65\pm17$ in good agreement with WASA@COSY.
- Although bound w.r.t. ΔΔ, D₀₃(2380) is resonating w.r.t. the π – D₁₂(2150) threshold. The subsequent decay D₁₂(2150) → πd is seen in the πd Dalitz plot projection.
- NN-decoupled dibaryon resonances D₂₁ & D₃₀ predicted 10-30 MeV higher, respectively; see also Bashkanov-Brodsky-Clement, Novel 6q Hidden-Color Dibaryons in QCD, PLB 727 (2013) 438. Width calculation?

Recent Quark Model Calculations

- Orbitally symmetric [6] I(JP)=0(3+) w.f. is $\sqrt{1/5}\Delta\Delta + \sqrt{4/5}CC$. How do CC hidden-color components affect the mass & width?
- H. Huang et al., PRC 89 (2014) 034001, use the Salamanca chiral quark model (CQM) to go from 1→4 ΔΔ channels, then to full 10: M = 2425 → 2413 → 2393 MeV Γ=177→175→150 MeV, so Γ is too big.
- Y. Dong et al., PRC 91 (2015) 064002, find in CQM: M=2380 MeV, Γ=70 MeV, with 67% CC that strongly suppresses the D₀₃(2380) width, since pion emission will hardly occur from CC components...

Quark-based model calculations of \mathcal{D}_{03} & \mathcal{D}_{12}									
$M({\rm GeV})$	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	$\exp/phen$
$\mathcal{D}_{03} (\Delta \Delta)$	2.35	2.36	2.44	2.38	≤ 2.26	2.40	2.46	2.36**	2.38
$\mathcal{D}_{12} (N\Delta)$	2.16^{*}	2.36	_	2.36		_	2.17	_	≈ 2.15

- 1. Dyson-Xuong, PRL 13 (1964) 815; *input **postdiction.
- 2. Mulders-Aerts-de Swart, PRD 21 (1980) 2653.
- 3. 1980: Oka-Yazaki, PLB 90, 41 (2.46) Cvetic et al. 93, 489 (2.42)
- 4. Mulders-Thomas, JPG 9 (1983) 1159.
- 5. Goldman-Maltman-Stephenson-Schmidt-Wang, PRC 39 (1989) 1889.
- 6. ...Zhang-Shen..., PRC 60 (1999) 045203; PRC 91 (2015) 064002.
- 7. Mota-Valcarce-Fernandez-Entem-Garcilazo, PRC 65 (2002) 034006.
- 8. Ping-Huang-Pang-Wang, PRC 79 (2009) 024001, 89 (2014) 034001. BOTH \mathcal{D}_{12} & \mathcal{D}_{03} related correctly only by [1].

Negative Quark Model Results

- A recent work by W. & A. Park & S.H. Lee, PRD 92 (2015) 014037, casts doubts on ANY low-lying compact non-strange 6q dibaryon.
- A nonrelativistic potential model is used, with $m_u = m_d = 340 \text{ MeV} \& m_s = 610 \text{ MeV}$, and with two versions of color confinement plus color-spin hyperfine interaction, fitted to the baryon octet and decuplet masses, assuming narrow-width baryons.

- A variational calculation finds "no compact bound states against strong decay".
- The I=0, S=3 compact dibaryon candidate is at least 150 MeV above the ΔΔ threshold. Worse for other candidates, e.g. Jaffe's H as (uuddss) [6] I=S=0, PRD 93 (2016) 074007.
- Hadronic-basis structure of non-strange dibaryons in terms of nucleons, ∆s & pions is implied for low-lying dibaryons.
- Physical thresholds & p-wave pion emission must be realistically incorporated in future dibaryon calculations.

Strange & charmed dibaryons

	, ,		-	- 0	
	$\Sigma\Sigma$	$\Lambda \Xi$	$\Sigma \Xi$	$\Sigma \Xi$	ΞΞ
	$(I = 2, {}^{1}S_{0})$	$(I = \frac{1}{2}, {}^1S_0)$	$(I = \frac{3}{2}, {}^1S_0)$	$(I = \frac{3}{2}, {}^3S_1)$	$(I = 1, {}^{1}S_{0})$
NSC97	+	—	+	+	+
EFT (LO)	—	+	+	—	+
EFT (NLO)	_	_	_	_	_

S = -2, -3, -4 deuteron-like $8_F \times 8_F$ dibaryons?

NSC97: V.G.J. Stoks, T.A. Rijken, Phys. Rev. C **59** (1999) 3009 EFT (LO): J. Haidenbauer, U.-G. Meißner, Phys. Lett. B **684** (2010) 275 EFT (NLO): JH, UGM, S. Petschauer, Eur. Phys. J. A **51** (2015) 17

- Based on $\approx 40 \Lambda p$, Σp , $\Xi^- p$ low-energy data points.
- Systematics of EFT (LO): The S = -3, -4 sectors require only the 5 LECs determined in the YN sector fit, independently of the 6th LEC required in the S = -2 sector (this LEC is consistent with zero). Hence get PREDICTIONS.
- ${}^{1}S_{0}$ in SU(3)_f **27** (as nn), ${}^{3}S_{1}$ in SU(3)_f **10** (as deuteron).
- Model dependence is assessed by varying a cutoff momentum in the range 550 - 700 MeV/c. SU(3) breaking aborts binding at NLO.

Color Magnetic (CM) gluon exchange interaction For orbitally symmetric L = 0 color-singlet *n*-quark cluster:

$$V_{CM} \approx \sum_{i < j} -(\lambda_i \cdot \lambda_j)(s_i \cdot s_j)\mathcal{M}_0 \to \left[-\frac{n(10-n)}{4} + \Delta \mathcal{P}_{\mathrm{f}} + \frac{S(S+1)}{3}\right]\mathcal{M}_0$$

where $\mathcal{M}_0 \sim 75$ MeV, $\mathcal{P}_f = \pm 1$ for any symmetric/antisymmetric flavor pair, $\Delta \mathcal{P}_f$ means with respect to the SU(3)_f 1 antisymmetric representation of *n* quarks, n = 3 for a baryon (B) and n = 6 for BB.

For n = 6, SU(3)_f 1 [2,2,2] is Jaffe's $\mathcal{H}(uuddss)$ [PRL 38 (1977) 195]:

$$\mathcal{H} \sim \mathcal{A}[\sqrt{1/8} \Lambda\Lambda + \sqrt{1/2} N\Xi - \sqrt{3/8} \Sigma\Sigma,]_{I=S=0}$$
$$< V_{CM} >_{\mathcal{H}} -2 < V_{CM} >_{\Lambda} = -2\mathcal{M}_0$$

where $4\mathcal{M}_0 = \langle V_{CM} \rangle_{\Delta} - \langle V_{CM} \rangle_N \sim M_{\Delta} - M_N \approx 300 \text{ MeV}$

Leading dibaryon candidates: Oka, PRD 38 (1988) 298

S	$\mathrm{SU}(3)_{\mathrm{f}}$	Ι	J^{π}	BB structure	$\Delta < V_{CM} >$
0	$[3,3,0] \ \overline{10}$	0	3^{+}	$\mathcal{D}_{03}~(\Delta\Delta)$	0
-1	[3,2,1] 8	1/2	2^{+}	$\sqrt{1/5} \ (N\Sigma^* + 2 \ \Delta\Sigma)$	$-\mathcal{M}_0$
-2	[2,2,2] 1	0	0^{+}	$\mathcal{H} = \sqrt{1/8} \ (\Lambda\Lambda + 2 \ N\Xi - \sqrt{3} \ \Sigma\Sigma)$	$-2\mathcal{M}_0$
-3	[3,2,1] 8	1/2	2^{+}	$\sqrt{1/5} \left[\sqrt{2} N\Omega - (\Lambda \Xi^* - \Sigma^* \Xi + \Sigma \Xi^*) \right]$	$-\mathcal{M}_0$

- A bound H overbinds ⁶_{ΛΛ}He [Gal, PRL 110 (2013) 179201].
 SU(3)_f breaking pushes it to ≈NΞ threshold, 26 MeV above ΛΛ threshold [HAL QCD, NPA 881 (2012) 28; Haidenbauer & Meißner, ibid. 44].
- $N\Omega$ dibaryon: HAL QCD, Nucl. Phys. A 928 (2014) 89.
- Let's focus on S = -1.

J-PARC E27 $d(\pi^+, K^+)$ missing-mass spectrum

Y^{*} quasi-free peak shifted by ≈ -22 MeV, indicating Y^{*}N attraction [Y^{*} = $\Sigma(1385)$ & $\Lambda(1405)$]. 2 dibaryons below K⁻pp? (i) deep Σ^*N , E27 (ii) shallow Λ^*N , E15 (Iwasaki).

$\Lambda(1405)N$ & $\Sigma(1385)N$ dibaryons?

- Λ(1405)N is a doorway to an I=1/2, J^P=0⁻ *K̄NN*, found quasibound in all calculations.
 Its lower components are πΛN and πΣN, but
 πΛN cannot support any strongly attractive
 meson-baryon s-wave interaction.
- The πΛN system can benefit from strong meson-baryon p-wave interactions fitted to Δ(1232) → πN and Σ(1385) → πΛ form factors. Maximize isospin and angular momentum couplings by full alignment: I=3/2, J^P=2⁺, Good example of a Pion Assisted Dibaryon, not Oka's I=1/2, J^P=2⁺ CM-based candidate. Gal-Garcilazo, NPA 897 (2013) 167 & Refs. therein.

- A $\pi\Lambda N \pi\Sigma N$ resonance about 10–20 MeV below the $\pi\Sigma N$ threshold is found by solving coupled-channel Faddeev equations. The resonance energy is sensitive to the pion-baryon *p*-wave form factors.
- Expect doorway states Σ(1385)N and Δ(1232)Y, the lower of which is Σ(1385)N with I=3/2, J^P=2⁺. These are different from I=1/2, J^P=0⁻ assigned to Λ(1405)N, viewed as a doorway to K̄NN.
- Adding a $\overline{K}NN$ channel does not help, because the leading ${}^{3}S_{1} NN$ configuration is Pauli forbidden.
- Search for this \mathcal{Y} dibaryon at GSI & J-PARC in: $p + p \rightarrow \mathcal{Y}^{++} + K^0, \quad \mathcal{Y}^{++} \rightarrow \Sigma^+ + p,$ or $\pi^+ + d \rightarrow \mathcal{Y}^{++} + K^0, \quad \mathcal{Y}^{++} \rightarrow \Sigma^+ + p.$
- A (π⁺, K⁺) reaction as in E27 would lead to YN decay states similar to those expected in searches of K⁻pp.
 Another possibility at J-PARC or GSI is:

 $\pi^- + d \rightarrow \mathcal{Y}^- + K^+, \quad \mathcal{Y}^- \rightarrow \Sigma^- + n.$

Summary

- The two experimentally established nonstrange dibaryons D₁₂(2150) & D₀₃(2380) are derived quantitatively with long-range hadronic physics guidelines using pions, nucleons & Δs input.
- Search for *NN*-decoupled \mathcal{D}_{21} & \mathcal{D}_{30} dibaryons.
- Develop EFT description for these dibaryons.
- Does $\Sigma(1385)$ play the role of $\Delta(1232)$ for strange dibaryon candidates? $\Sigma(1385)N$ $(I = \frac{3}{2}, 2^+)$ vs. $\Lambda(1405)N$ $(I = \frac{1}{2}, 0^-)$.
- Charmed dibaryons?

 $\pi \Lambda_c N \ (I = \frac{3}{2}, 2^+)$ Gal..., PRD 90 (2014) vs. DNN $(I = \frac{1}{2}, 0^-)$...Oset, PRC 86 (2012)].