

Light Meson Spectroscopy at BESIII

Tianjue Min

Institute of High Energy Physics, Chinese Academy of Sciences

On Behalf of the BESIII Collaboration

14th International Workshop on Meson Production, Properties and Interaction 2nd - 7th June 2016, KRAKÓW, POLAND

Outline

BEPCII and BESIII

• Light Meson Spectroscopy at BESIII

• Summary

BEPCII and **BESIII**

Beam energy: $1.0 \sim 2.3 \text{ GeV}$

Luminosity: 1.0×10³³ cm⁻²s⁻¹ (reached in April 5th, 2016)

2004: BEPCII upgrade, BEPCIII construction

2008: test run

2009 ~ now: physics run

Light Meson Spectroscopy at BESIII

BEPCII and **BESIII**

Super-Conducting Magnet 1.0 T (2009) 0.9 T(2012)

Electromagnetic Calorimeter (EMC)

CsI (Tl)

 σ_E/\sqrt{E} = 2.5% (1 GeV)

 $\sigma_{\mathrm{z},\varphi} = 0.5 - 0.7 \,\mathrm{cm}/\sqrt{\mathrm{E}}$

 μ Counter (MUC) 8 - 9 layers RPC $\delta_{R\Phi} = 1.4$ cm ~ 1.7 cm

Light Meson Spectroscopy at BESIII

BEPCII and **BESIII**

World largest J/ ψ , ψ (3686), ψ (3770), ... Produced directly from e⁺e⁻ collision

Light Meson Spectroscopy at BESIII

Light Meson Spectroscopy at BESIII

- Light meson spectroscopy plays an important role in testing the QCD theory
- J/ ψ decays is an ideal place to study light meson spectroscopy
- BESIII collected the largest J/ ψ sample (~1.3 billion events) in the world
 - 225 million in 2009
 - 1086 million in 2012
- Recent progress in light meson spectroscopy at BESIII
 - Observation of X(1835) in $J/\psi \rightarrow \gamma K_S K_S \eta$
 - Anomalous line shape of $\eta' \pi^+ \pi^-$ near $p\bar{p}$ mass threshold in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$
 - Model independent partial wave analysis of $J/\psi \rightarrow \gamma \pi^0 \pi^0$
 - Partial wave analysis of J/ψ→γφφ

X(1835) and $X(p\overline{p})$

- X(1835)
 - Discovered by BESII in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$
 - Confirmed by BESIII in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$
 - \checkmark M = 1836.5 \pm 3.0^{+5.6}_{-2.1} MeV/ c^2
 - $\checkmark \Gamma = 190 \pm 9^{+38}_{-36} \text{ MeV}/c^2$
 - ✓ Angular distribution is consistent with 0⁻¹

Light Meson Spectroscopy at BESIII

X(1835) and $X(p\overline{p})$

- X(p\overline{p})
 - Discovered by BESII in J/ψ→γp̄p̄
 - Confirmed by BESIII and CLEO-c in $\psi(3686) \rightarrow \pi^+\pi^- J/\psi$, $J/\psi \rightarrow \gamma p\bar{p}$
 - Confirmed by BESIII in J/ψ→γp̄p̄
 - **√** 0-+
 - ✓ Not from FSI
 - \checkmark M = $1832^{+19}_{-5}^{+18}_{-17} \pm 19 \text{ MeV}/c^2$
 - $\checkmark \Gamma = 13 \pm 19 \text{ MeV}/c^2 (< 76 \text{ MeV}/c^2 @ 90\% \text{ C.L.})$

X(1835) and $X(p\overline{p})$

X(1835)	$X(p\overline{p})$			
$M = 1836.5 \pm 3.0^{+5.6}_{-2.1} \text{ MeV}/c^2$	$M = 1832^{+19}_{-5} {}^{+18}_{-17} \pm 19 \text{ MeV}/c^2$			
$\Gamma = 190 \pm 9^{+38}_{-36} \text{ MeV}/c^2$	$\Gamma = 13 \pm 19 \text{ MeV}/c^2 (< 76 \text{ MeV}/c^2 @ 90\% \text{ C.L.})$			
Probably 0 ⁻⁺	0-+			
η' excitation? glueball?	pp̄ bound state? 			

SAME state?				

Observation of X(1835) in $J/\psi \rightarrow \gamma K_S K_S \eta$

- Use 1.3×10^9 J/ ψ events collected by BESIII in 2009 and 2012
- Clear structure on mass spectrum of $K_SK_S\eta$ around 1.85 GeV/ c^2
- Strongly correlated to $f_0(980)$
- PWA for $M(K_SK_S) < 1.1 \text{ GeV}/c^2$

PRL 115, 091803 (2015)

Observation of X(1835) in $J/\psi \rightarrow \gamma K_S K_S \eta$

- X(1560)
 - 0^{-+} ; $X(1560) \rightarrow K_S K_S \eta$ (> 8.9 σ)
 - $M = 1565 \pm 8^{+0}_{-63} \text{ MeV}/c^2$
 - $\Gamma = 45^{+14+21}_{-13-28} \text{ MeV}/c^2$
 - Consistent with $\eta(1405)/\eta(1475)$ within 2.0 σ
- X(1835)
 - 0^{-+} ; X(1835) \to K_SK_S η (> 12.9 σ), dominated by f₀(980) production
 - $M = 1844 \pm 9^{+16}_{-25} \text{ MeV}/c^2$
 - $\Gamma = 192^{+20+62}_{-17-43} \text{ MeV}/c^2$
 - Consistent with the values obtained from $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$
 - $\mathfrak{B}(J/\psi \to \gamma X(1835)) \cdot \mathfrak{B}(X(1835) \to K_S K_S \eta) = (3.31^{+0.33}_{-0.30} + 1.96_{-1.29}) \times 10^{-5}$

PRL 115, 091803 (2015)

Anomalous line shape of $\eta' \pi^+ \pi^-$ near pp mass threshold in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

- Use 1.09×10^9 J/ ψ events collected by BESIII in 2012
- Two decay modes of η'
 - $\eta' \rightarrow \gamma \pi^+ \pi^-$
 - $\eta' \rightarrow \eta \pi^+ \pi^-, \eta \rightarrow \gamma \gamma$
- Clear peaks of X(1835), X(2120), X(2370), η_c , and a structure near 2.6 GeV/ $\!\it c^2$
- A significant distortion of the $\eta'\pi^+\pi^-$ line shape near the $p\overline{p}$ mass threshold

arXiv:1603.09653v2

Anomalous line shape of $\eta' \pi^+ \pi^-$ near pp mass threshold in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

- Simultaneous fits to two η' decay modes
- Simple Breit-Wigner function fails in describing the $\eta'\pi^+\pi^-$ line shape near the $p\overline{p}$ mass threshold
- Two typical circumstances where an abrupt distortion of a resonance's line shape shows up
 - Threshold structure caused by the opening of an additional $p\overline{p}$ decay mode
 - Use the Flatté formula for the line shape
 - Interference between two resonances
 - Use coherent sum of two Breit-Wigner amplitudes for the line shape

 $\log \mathcal{L} = 630503.3$

Anomalous line shape of $\eta' \pi^+ \pi^-$ near $p \overline{p}$ mass threshold in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$ arXiv:1603.09653v2

• Use the Flatté formula for the line shape

•
$$T = \frac{\sqrt{\rho_{out}}}{\mathcal{M}^2 - s - i \sum_k g_k^2 \rho_k}$$

•
$$\sum_{k} g_{k}^{2} \rho_{k} \simeq g_{0}^{2} (\rho_{0} + \frac{g_{p\bar{p}}^{2}}{g_{0}^{2}} \rho_{p\bar{p}})$$

• $g_{p\bar{p}}^2/g_0^2$ is the ratio between the coupling strength to the $p\bar{p}$ channel and the summation of all other channels

The state around 1.85 GeV/ c^2			
\mathcal{M} (MeV/ c^2)	$1638.0^{+121.9+127.8}_{-121.9-254.3}$		
$g_0^2 ((\text{GeV}/c^2)^2)$	93.7 +35.4 +47.6		
$g_{par{p}}^2/g_0^2$	$2.31^{+0.37}_{-0.37}{}^{+0.83}_{-0.60}$		
$M_{pole} (MeV/c^2) *$	$1909.5^{+15.9}_{-15.9}{}^{+9.4}_{-27.5}$		
$\Gamma_{ m pole}$ (MeV/ c^2) *	273.5 +21.4 +6.1		
Branching Ratio	$(3.93^{+0.38+0.31}_{-0.38-0.84}) \times 10^{-4}$		

like state?

Branching Ra

A pp

molecule-

 $\log \mathcal{L} = 630549.5$

Significance of $g_{\mathrm{p}\overline{p}}^2/g_0^2$ being non-zero is larger than 7σ

X(1920) is needed with 5.7σ

^{*} The pole nearest to the $p\bar{p}$ mass threshold

Anomalous line shape of $\eta' \pi^+ \pi^-$ near pp mass threshold in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

• Use coherent sum of two Breit-Wigner amplitudes

•
$$T = \frac{\sqrt{\rho_{out}}}{M_1^2 - s - iM_1\Gamma_1} + \frac{\beta \cdot e^{i\theta} \cdot \sqrt{\rho_{out}}}{M_2^2 - s - iM_2\Gamma_2}$$

X(1835)	
$M (MeV/c^2)$	1825.3 +2.4 +17.3
$\Gamma ({ m MeV}/c^2)$	245.2 +14.2 +4.6
B.R. (constructive interference)	$(3.01^{+0.17}_{-0.17}{}^{+0.26}_{-0.28}) \times 10^{-4}$
B.R. (destructive interference)	$(3.72^{+0.21}_{-0.21}{}^{+0.18}_{-0.35}) \times 10^{-4}$
X(1870)	

A pp
bound state?

· · · · · · · · · · · · · · · · · · ·	(0.21 0.33)
X(1870)	
$M (MeV/c^2)$	1870.2 +2.2 +2.3
$\Gamma (\text{MeV}/c^2)$	$13.0_{-5.5-3.8}^{+7.1+2.1}$
B.R. (constructive interference)	$(2.03^{+0.12+0.43}_{-0.12-0.70}) \times 10^{-7}$
B.R. (destructive interference)	$(1.57^{+0.09}_{-0.09}{}^{+0.49}_{-0.86}) \times 10^{-5}$

 $\log \mathcal{L} = 630540.3$

Significance of X(1870) is larger than 7σ

X(1920) is not significant

Anomalous line shape of $\eta' \pi^+ \pi^-$ near $p \overline{p}$ mass threshold in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

- A significant distortion of the $\eta'\pi^+\pi^-$ line shape near the $p\bar{p}$ mass threshold is observed in $J/\psi \rightarrow \gamma \eta' \pi^+\pi^-$
 - Simple Breit-Wigner function fails in describing the line shape near the $p\bar{p}$ mass threshold
- Two models have been used
 - MODEL I: threshold structure due to the opening of the $p\bar{p}$ decay mode
 - Use the Flatté formula
 - Strong $p\bar{p}$ coupling, with significance larger than 7σ
 - $M_{\text{pole}} = 1909.5^{+15.9}_{-15.9}^{+9.4}_{-27.5} \text{ MeV}/c^2$
 - $\Gamma_{\text{pole}} = 273.5^{+21.4}_{-21.4}^{+6.1}_{-64.0} \text{ MeV}/c^2$
 - MODEL II: interference between two resonances
 - Use coherent sum of two Breit-Wigner amplitudes
 - A narrow resonance below the $p\bar{p}$ mass threshold, with significance larger than 7σ
 - $M = 1870.2^{+2.2}_{-2.3}^{+2.2}_{-0.7} \text{ MeV}/c^2$
 - $\Gamma = 13.0^{+7.1}_{-5.5}^{+2.1}_{-3.8} \text{ MeV}/c^2$

Anomalous line shape of $\eta' \pi^+ \pi^-$ near $p \overline{p}$ mass threshold in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

- Both models fit the data well with almost equally good quality
 - Cannot distinguish them with current data
 - Suggest the existence of a state, either a broad state with strong couplings to $p\overline{p}$, or a narrow state just below the $p\overline{p}$ mass threshold
 - Support the existence of a $p\bar{p}$ molecule-like state or bound state
- To elucidate further the nature of the state
 - More J/ψ data
 - Study line shapes in other decay modes
 - J/ψ→γp̄p̄
 - $J/\psi \rightarrow \gamma K_S K_S \eta$
 - ...

Structures around 1.8 GeV/c^2

Light Meson Spectroscopy at BESIII

Glueball

- Predicted by QCD
- Not established in experiment
- LQCD prediction
 - 0^{++} ground state: $1\sim 2 \text{ GeV}/c^2$
 - 2^{++} ground state: $2.3\sim2.4$ GeV/ c^2
 - 0⁻⁺ ground state: $2.3 \sim 2.6 \text{ GeV}/c^2$
- J/ψ→γPP, γVV, ...
 - $J/\psi \rightarrow \gamma \eta \eta$ Phys. Rev. D. 87, 092009 (2013)

Model Independent PWA of $J/\psi \rightarrow \gamma \pi^0 \pi^0$

- Use 1.3×10^9 J/ ψ events collected by BESIII in 2009 and 2012
- $\pi^0\pi^0$ system
 - Only significant 0⁺⁺ and 2⁺⁺ contributions
 - Very clean
 - Larger statistics and more open channels than the $\eta\eta$ system
 - Many broad and overlapping resonances (parameterization challenging)
 - Model independent PWA (MIPWA)

- ✓ More than 440,000 reconstructed events
- ✓ Background level ~ 1.8%

Phys. Rev. D 92, 052003 (2015)

Model Independent PWA of $J/\psi \rightarrow \gamma \pi^0 \pi^0$

a function of M(π⁰π⁰)
 ✓ Significant features of the scalar spectrum includes structures near

1.5, 1.7 and 2.0 GeV/ c^2

✓ A piecewise function

that describes the

dynamics of the $\pi^0\pi^0$

system is determined as

✓ Ambiguities present above $K\overline{K}$ threshold

- Nominal Solution
- Ambiguous Solution

Phys. Rev. D 92, 052003 (2015)

PWA of $J/\psi \rightarrow \gamma \phi \phi$

- Lattice QCD predictions:
 - Ground state of 2^{++} glueball in 2.3 ~2.4 GeV/ c^2
 - Ground state of 0⁻⁺ glueball in 2.3 \sim 2.6 GeV/ c^2
- Structures in φφ spectrum:
 - Pseudoscalar state $\eta(2225)$ was observed in $J/\psi \rightarrow \gamma \phi \phi$
 - For higher 0^{-+} mass states above 2 GeV/ c^2 , very little is known.
 - Broad 2^{++} structures decaying to $\varphi\varphi$ were reported around 2.3 GeV in π -N reactions and in $p\bar{p}$ central collisions

PWA of $J/\psi \rightarrow \gamma \phi \phi$

- Use 1.3×10^9 J/ ψ events collected by BESIII in 2009 and 2012
- PWA procedure
 - Covariant tensor formalism
 - Data-driven background subtraction
 - Resonances are parameterized by relativistic Breit-Wigner with constant width
 - Resonances with significance $> 5 \sigma$ are selected as components in solution

arXiv:1602.01523

Light Meson Spectroscopy at BESIII

PWA of J/ψ→γφφ

Pesudoscalar: $\eta(2225)$ confirmed $\eta(2100)$ and X(2500)

Dominant

Tensor: $f_2(2010)$, $f_2(2300)$, $f_2(2340)$: stated in π -p reaction; strong $f_2(2340)$ production.

Resonance	${\rm M}({\rm MeV}/c^2)$	$\Gamma({\rm MeV}/c^2)$	B.F. $(\times 10^{-4})$	Sig.
$\eta(2225)$	$2216^{+4}_{-5}{}^{+18}_{-11}$	$185^{+12}_{-14}{}^{+44}_{-17}$	$(2.40 \pm 0.10^{+2.47}_{-0.18})$	28.1σ
$\eta(2100)$	$2050^{+30}_{-24}{}^{+77}_{-26}$	$250^{+36}_{-30}{}^{+187}_{-164}$	$(3.30 \pm 0.09^{+0.18}_{-3.04})$	21.5σ
X(2500)	$2470^{+15}_{-19}{}^{+63}_{-23}$	$230^{+64}_{-35}{}^{+53}_{-33}$	$(0.17 \pm 0.02^{+0.02}_{-0.08})$	8.8σ
$f_0(2100)$	2102	211	$(0.43 \pm 0.04^{+0.24}_{-0.03})$	24.2σ
$f_2(2010)$	2011	202	$(0.35 \pm 0.05^{+0.28}_{-0.15})$	9.5σ
$f_2(2300)$	2297	149	$(0.44 \pm 0.07^{+0.09}_{-0.15})$	6.4σ
$f_2(2340)$	2339	319	$(1.91 \pm 0.07^{+0.72}_{-0.69})$	10.7σ
0^{-+} PHSP			$(2.74 \pm 0.15^{+0.16}_{-1.48})$	6.8σ

arXiv:1602.01523

- ✓ Well consistent with the results from Model-independent PWA
- ✓ Helpful for mapping out the pseudoscalar excitations and searching for a 0⁻⁺ glueball

Summary

- Many interesting results in light meson spectroscopy from BESIII
 - Observation of X(1835) in $J/\psi \rightarrow \gamma K_S K_S \eta$
 - J^{PC} of X(1835) is determined: 0⁻⁺
 - Observation of anomalous $\eta'\pi^+\pi^-$ line shape near $p\bar{p}$ mass threshold in $J/\psi \! \to \! \gamma \eta' \pi^+\pi^-$
 - Support the existence of a $p\bar{p}$ bound state or molecule-like state
 - Sophisticated model independent partial wave analysis of $J/\psi \rightarrow \gamma \pi^0 \pi^0$
 - Partial wave analysis of $J/\psi \rightarrow \gamma \phi \phi$
- More results are expected in the future!

