

Zhiyong Wang (for the BESIII Collaboration)

14th International Workshop on Meson Production, Properties and Interaction, KRAKÓW, POLAND 2nd - 7th June 2016

Beijing Electron Positron Collider (BEPC)

Main entrance to IHEP

五福香火锅

BEPCII sketch

BEPC II: a double-ring machine

The BESIII Detector

CsI(Tl) calorimeter, 2.5 %@ 1 GeV₅

The BESIII Collaboration

11countries 58 institutes ~450 members

BESIII data samples

BESIII data samples for XYZ study (5/fb)

Outline

- Exotic states
- The X states
- The Y states
- The Z_c states
- Summary

What's exotic state?

• Conventional hadrons consist of 2 or 3 quarks:

QCD predicts the exotic state:

Multi-faces of QCD: Exotic hadrons

Evidence for QCD exotic states is a missing piece of knowledge about the Nature of strong QCD.

Charmonium Spectrum

New charmoniumlike states, i.e. "XYZ" states, are observed in experiment

The X states

X(1835) review

- Observed in $J/\psi \rightarrow \gamma \eta^{*} \pi^{+} \pi^{-}$ at BESII in 2005
- Nature unclear, interpretations include $p\bar{p}$ bound state, excited η ', glueball
- Confirmed in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$ at BESIII
- Angular distribution consists with pseudoscalar, but other spin-parity assignments not excluded

X(1835) review

- Simulated by $p\overline{p}$ threshold enhancement $X(p\overline{p})$ in $J/\psi \rightarrow \gamma p\overline{p}$
- Results in the observations of X(1870) in J/ $\psi \rightarrow \omega(\eta \pi^+ \pi^-)$ and X(1840) in J/ $\psi \rightarrow \gamma 3(\pi^+ \pi^-)$
- Are these states observed around 1.8 GeV/c² from the same origin?
- Further investigations on different production and decay mechanisms, precise physical parameters measurement are necessary

Observation of X(1835) in $J/\psi \rightarrow \gamma K_s K_s \eta$

- □ Why this channel?
 - Unlike $J/\psi \rightarrow \gamma K^+ K^- \eta$, no background from two potential but forbidden channels of $J/\psi \rightarrow K_S K_S \eta$ and $J/\psi \rightarrow K_S K_S \eta \pi^0$
- □ Clear structure on mass spectrum of $K_s K_s \eta$ around 1.85 GeV/c²
- □ Strong correlation with the enhancement near K_sK_s mass threshold (interpreted as f₀(980))
- □ Structure is enhanced for $M(K_SK_S) < 1.1 \text{ GeV/c}^2$

- $M = (3871.9 \pm 0.7 \pm 0.2) \text{ MeV}, \Gamma < 2.4 \text{ MeV}, \text{ Significance: } 6.3\sigma$
- production in Y(4260) decay suggestive, but not conclusive

$$\frac{\mathcal{B}[Y(4260) \to \gamma X(3872)]}{\mathcal{B}(Y(4260) \to \pi^+ \pi^- J/\psi)} = 0.1$$

Fit: M=3821.7 \pm 1.3 \pm 0.7 MeV; Significance: 6.7 σ , observation

Phys. Rev. Lett. 91, 112015 (2015)

- Whether from Y(4360) or y(4415) decay
- Favor the Y(4360) ? [M. B. Voloshin, PRD 91, 114029 (2015)]
- Y(4360)→π⁺π⁻X(3823)? New decay model of Y(4360)?

Good candidate for $\psi(1^3D_2)$

- Mass: D-wave ~3.810-3.840 GeV by potential model.
- X(3823) mass agree with $\psi(1^3D_2)$ prediction.
- Width: narrow
- X(3823) should be narrow (<16 MeV @ 90% C.L.).
- Production ratio:
- $R=B[X(3823) \rightarrow \gamma \chi_{c2}]/B[X(3823) \rightarrow \gamma \chi_{c1}] < 0.43 @ 90\% C.L.$
- Agree with prediction R~0.2.
- Exclusions: $1^{1}D_{2} \rightarrow \gamma \chi_{c1}$ forbidden; $1^{3}D_{3} \rightarrow \gamma \chi_{c1}$ amplitude=0.

The Y states (vectors)

Study of $J/\psi \rightarrow \eta \phi \pi^+ \pi^-$

based on 0.225 billion J/ ψ events

- Y(2175) was observed by BABAR, then confirmed by BESII, BELLE and BABAR;
- Different interpretations have been proposed: ss-gluon hybrid? excited \$\phi\$ state? tetraquark state? \Lambda\Lambda bound state? an ordinary \$\phi_0(980)\$ resonance produced by FSI?
- Confirmation and study of the Y(2175) with a large data sample is necessary for clarifying its nature.

Product branching fraction of

J/ ψ → η Y(2175), Y(2175)→ ϕ f_o(980), f_o(980)→ $\pi\pi$ is measured to be: (1.20 ± 0.14 ± 0.37)×10⁻⁴

Mass and width are in agreement with previous measurements

Collaboration	Process	$M ({\rm MeV}/c^2)$	Γ (MeV)
BABAR [2]	$e^+e^- \rightarrow \phi f_0$ (ISR)	$2175\pm10\pm15$	$58\pm16\pm20$
BESII [3]	$J/\psi \rightarrow \eta \phi f_0(980)$	$2186\pm10\pm6$	$65\pm23\pm17$
BELLE [4]	$e^+e^- \rightarrow \phi f_0$ (ISR)	$2079 \pm 13^{+79}_{-28}$	$192\pm23^{+25}_{-61}$
BABAR (updated) [5]	$e^+e^- \rightarrow \phi f_0$ (ISR)	$2172 \pm 10 \pm 8$	$96\pm19\pm12$
BESIII	$J/\psi \to \eta \phi f_0(980)$	$2200\pm6\pm5$	$104\pm15\pm15$

PRD 91,052017 (2015)

 $e^+e^- \rightarrow \omega \chi_{c0} [Y(4230)?]$

PRL114, 092003 (2015)

- Using scan data over 4.21 and 4.42 GeV, e+e-→ωχ_{c0} are significant @ E_{cm}=4.23 & 4.26 GeV.
- Cross section peak near 4.23 GeV, fit with BW yields Mass=(4230 \pm 8 \pm 6) MeV, Width=(38 \pm 12 \pm 2) MeV.
- A new structure? Tetraquark [PRD 91, 117501 (201₂5)]? Threshold effect?

- Clear χ_{c2}, χ_{c1} are observed at $\sqrt{s}=4.42$, 4.6 GeV, respectively
- The Born cross section have been measured for $e^+e^- \rightarrow \omega \chi_{c1,2}$
- σ(e⁺e⁻→ωχ_{c2}) is fitted with the coherent sum of the ψ(4415) BW function and a phase-space term. Two solutions are obtained: constructive, ____ destructive

Phys. Rev. D 93, 011102 (2016)

No significant $e^+e^- \rightarrow \gamma Y(4140)$

Upper limit at the 90% C.L. for $\sigma^B \cdot \mathcal{B} = \sigma^B (e^+e^- \rightarrow \gamma Y(4140)) \cdot \mathcal{B}(Y(4140) \rightarrow \phi J/\psi)$

(GeV/)	Luminosity (pb ⁻¹)	N ^{obs}	cross section (pb)
4.23	1094	0.840	< 0.35
4.26	827	0.847	<0.28
4.36	545	0.944	<0.33

Systematic uncertainty is considered.

Compared with X(3872) production. PRL 112, 092001

Compared with X(3872) production. PRL 112, 092001 $\sigma^{B}(e^{+}e^{-} \rightarrow \gamma X(3872)) \cdot \mathcal{B}(X(3872) \rightarrow \pi^{+}\pi^{-}J/\psi)$ $= 0.27 \pm 0.09 (\text{stat}) \pm 0.02 (\text{syst}) \text{ pb at } \sqrt{s} = 4.23 \text{ GeV},$ = 0.33 ± 0.12 (stat) ± 0.02 (syst) pb at \sqrt{s} = 4.26 GeV.

Take $\mathcal{B}(X(3872) \to \pi^+\pi^- I/\psi) = 5\%$. arXiv: 0910.3138 And $\mathcal{B}(Y(4140) \rightarrow \phi J/\psi) = 30\%$, molecular calculation, PRD 80, 054019.

 $\frac{\sigma^B(e^+e^- \to \gamma Y(4140)}{\sigma(e^+e^- \to \gamma X(3872))} \le 0.1 \text{ at } \sqrt{s} = 4.23 \text{ and } 4.26 \text{ GeV}.$ Phys. Rev. D91, 032002 (2015)

 $e^+e^- \rightarrow \pi^+\pi^-h_c$ line-shape

$$\sigma(m) = \left| B_1(m) \sqrt{\frac{P(m)}{P(M_1)}} + e^{i\phi} B_2(m) \sqrt{\frac{P(m)}{P(M_2)}} \right|^2$$

 $B_i(m)$: constant width Breit-Wigner function

P(m): 3-body phase space factor *f*: relative phase between two resonances

significance of two structures assumption over one structure

> 10.00

- Agree with previous results with improved precision
- The cross section peaks around 4.2 GeV
- Analysis of high energy points underway at BESIII

Observation of $e^+e^- \rightarrow \eta' J/\psi$

First observation, cannot tell the line shape due to statistics

Isospin violation $Y(4260) \rightarrow \pi^0 \eta J/\psi$

No significant signal observed with current BESIII data ! Can not provide effective constraint to models...

Phys. Rev. D92, 012008 (2015)

$\sqrt{s} \; (\text{GeV})$	$\mathcal{L} (pb^{-1})$	$(1+\delta^r)$	$(1+\delta^v)$	$(\epsilon^{ee}Br^{ee} + \epsilon^{\mu\mu}Br^{\mu\mu})$ (%)	N^{obs}	N^{bkg}	N^{up}	σ_{UL}^{Born} (pb)	
4.009	482	0.838	1.044	$2.1 \pm 0.1 (sys.)$	5	1	598.1	3.6	
4.230	1007	0.844	1.056	$2.2 \pm 0.1 (sys.)$	12	11	592.9	1.7	
4.260	804	0.847	1.054	$2.2\pm0.1(sys.)$	12	8	654.1	2.4	
4.360	523	0.942	1.051	$2.2\pm0.1(sys.)$	5	4	283.2	1.4	
4.420	1023	0.951	1.053	$2.3 \pm 0.1 (sys.)$	5	6	342.7	0.9	29
4.600	567	0.965	1.055	$2.4 \pm 0.1 (sys.)$	6	3	418.4	1.9	

What are the Y states?

- Between 4 and 4.7 GeV, at most 5 states expected (3S, 2D, 4S, 3D, 5S), 7 observed
- Hybrids are expected in this mass region
- Molecular states?
- Cannot rule out threshold effect/FSI/...
- The Ys are all narrow
 and similar
- π⁺π⁻h_c, ωχ_c, ... add
 complexity

The Z_c states

$$\frac{\sigma[e^+e^- \to \pi^\pm Z_c(3900)^\mp \to \pi^+\pi^- J/\psi]}{\sigma[e^+e^- \to \pi^+\pi^- J/\psi]} = (21.5 \pm 3.3 \pm 7.5)\% \text{ at } 4.26 \text{ GeV}$$

Belle with ISR data (PRL 110, 252002)

CLEOc data at 4.17 GeV (PLB 727, 366)

Neutral isospin partner: $Z_c(3900)^0$

 $e^+e^- \rightarrow \pi^0 \pi^0 J/\psi$

$e^+e^- \rightarrow (DD^*)^0 \pi^0 + c.c.$

$e^+e^- \rightarrow \pi^- (D^*D^*)^+ / \pi^0 (D^*D^*)^0 + c.c.$

 $Z_c(4025)$ and $Z_c(4020)$ have similar mass, but different width.

Summary Z_c states at BESIII

What's the nature of these Z states?

- At least 4 quarks, not a conventional meson
- Tetraquark state?

Phys. Rev. D87,125018(2013); Phys. Rev. D88, 074506(2013); Phys. Rev. D89,054019(2014); Phys. Rev. D90,054009(2014); etc

• D^(*) D^(*) molecule state?

Phys. Rev. Lett. 111, 132003 (2013); Phys. Rev. D 89, 094026 (2014) Phys. Rev. D 89, 074029 (2014); Phys. Rev. D 88, 074506 (2013); etc

- FSI?
- Cusp?

We found more questions to answer

- In the X sector
 - Where the X(3872) & X(3823) come from? Resonance decays or continuum production?
 - May other X states be produced and where?
- In the Y/ψ sector
 - Is the Y(4260) a single resonance?
 - What is hidden behind $\pi\pi h_c$? Large coupling to spin-singlet, is a hybrid state observed?
 - Correlation between charm production & charmonium transitions?
 - May we observe the charmonium $3^{3}D_{1}$ state at ~4.5 GeV?
- In the Z sector
 - Are the Z_c and Z_c ' from resonance decays or continuum prod.?
 - Are there excited Z_c states and Z_{cs} states $[D^*D_s \text{ or } DD_s^*]$?

Summary

- BESIII produces significant XYZ results...
- X & Y states are difficult to distinguish from normal meson, charged Z_c states provide solid evidence.
- Many neutral Z_c partners are observed, the corresponding isospin triplets are established.
- Quark composition for Z_c is still puzzling.
- More results are coming, we would finally understand them.

