

Introduction

Exotic Mesons and Baryons in Lattice QCD

Sinéad M. Ryan Trinity College Dublin

Meson 2016, 2nd June 2016

PLAN

- Introduction and background
- A consumers guide to Lattice QCD
 - compromises and consequences
- Discussion and selected results
 - new ideas in lattice for progress
 - exotic and hybrid mesons and baryons
 - excited, exotic and hybrid "single-hadron" states
 - scattering states eg X,Y, Z progress and challenges
- Summary

PLAN

- Introduction and background
- A consumers guide to Lattice QCD
 - compromises and consequences
- Discussion and selected results
 - new ideas in lattice for progress
 - exotic and hybrid mesons and baryons
 - excited, exotic and hybrid "single-hadron" states
 - scattering states eg X,Y, Z progress and challenges
- Summary

Many details and topics omitted for time constraints - APOLOGIES!

OBJECTS OF INTEREST

from M. Cleven thesis

Exotic?

- States **not** in the natural spin-parity series i.e. with $J^{PC} = 0^{+-}$, 1^{-+} , 2^{+-} , 3^{-+} , ...
- States **not** simple quark model $q\bar{q}$ or qqq.

Lattice QCD

- A systematically-improvable non-perturbative formulation of QCD
 - a well-defined theory with the lattice as a UV regulator
- Arbitrary precision is in principle possible
 - of course algorithm and theory "wrinkles" make this challenging!
- Starts from first principles i.e. from the QCD Lagrangian with inputs m_q , β .

Challenges

- Exotic states are generally above or close to decay thresholds
- States with quark-model JPC can mix and must be disentangled
- Typically requires significant precision especially glueballs!

A LATTICE **QCD** PRIMER

Start from the QCD Lagrangian:

$$\mathcal{L} = \bar{\Psi} \left(i \gamma^{\mu} D_{\mu} - m \right) \Psi - \frac{1}{4} G^{a}_{\mu\nu} G^{\mu\nu}_{a}$$

Gluon fields on links of a hypercube;

Quark fields on sites: approaches to fermion discretisation -

Wilson, Staggered, Overlap.;

Derivatives → finite differences.

Solve the QCD path integral on a finite lattice with spacing $a \neq 0$ estimated stochastically by Monte Carlo. Can only be done effectively in a Euclidean space-time metric (no useful importance sampling weight for the theory in Minkowski space).

Observables determined from (Euclidean) path integrals of the QCD action

$$\langle \mathcal{O} \rangle = 1/Z \int \mathcal{D}U \mathcal{D}\bar{\Psi} \mathcal{D}\Psi \mathcal{O}[U,\bar{\Psi},\Psi] e^{-S[U,\bar{\Psi},\Psi]}$$

Compromises and the Consequences

1. Working in a finite box at finite grid spacing

 Identify a "scaling window" where physics doesn't change with a or V. Recover continuum QCD by extrapolation.

A costly procedure but a regular feature in lattice calculations now

2. Simulating at physical quark masses

- Computational cost grows rapidly with decreasing quark mass $\rightarrow m_q = m_{u,d}$ costly. Care needed vis location of decay thresholds and identification of resonances.
- c-quark can be handled relativistically. b-quark with: NRQCD, FNAL etc.

Better algorithms for physical light quarks and/or chiral extrapolation. Relativistic m_b in reach

2. Breaking symmetry

Lorentz symmetry broken at a ≠ 0 so SO(4) rotation group broken to discrete rotation group of a hypercube.
Classify states by irreps of O_h and relate by subduction to J values of O₃. Lots of degeneracies in subduction for J ≥ 2 and physical near-degeneracies. Complicates spin identification.

Spin identification at finite lattice spacing: 0707.4162, 1204.5425

3. Working in Euclidean time.

• Scattering matrix elements not directly accessible from Euclidean QFT [Maiani-Testa theorem]. Scattering matrix elements: asymptotic $|\text{in}\rangle$, $|\text{out}\rangle$ states: $\langle \text{out}|e^{i\hat{H}t}|\text{in}\rangle \rightarrow \langle \text{out}|e^{-\hat{H}t}|\text{in}\rangle$. Euclidean metric: project onto ground state. Analytic continuation of numerical correlators an ill-posed problem.

Lüscher and generalisations of: method for indirect access.

4. Quenching

No longer an issue: Simulations done with $N_f = 2$, 2 + 1, 2 + 1 + 1.

NEW (AND NOT SO NEW) IDEAS FOR OLD PROBLEMS

- Anisotropic lattices
 - improving resolution for better measurement
- Distillation
 - breakthrough idea for quark propagation enabling precision spectroscopy including for isoscalars and exotics
- Operator construction & spin id
 - allows for robust spin assignment at finite lattice spacing and for high spins
- Extension of scattering methodology to coupled channels
 - Lüscher's idea from '90s extended to many scenarios enabling resonance/scattering parameters

NEW (AND NOT SO NEW) IDEAS FOR OLD PROBLEMS

- Anisotropic lattices
 - improving resolution for better measurement
- Distillation
 - breakthrough idea for quark propagation enabling precision spectroscopy including for isoscalars and exotics
- Operator construction & spin id
 - allows for robust spin assignment at finite lattice spacing and for high spins
- Extension of scattering methodology to coupled channels
 - Lüscher's idea from '90s extended to many scenarios enabling resonance/scattering parameters

Together these ideas have led to rapid recent progress

Lattice Hadron Spectroscopy precision & pioneering results

- (i) Precision spectroscopy of "single-hadron" states
- (ii) Exploratory studies of "exotic" and scattering states

A RECIPE FOR (MESON) SPECTROSCOPY

- Construct a basis of local and non-local operators $\bar{\Psi}(x) \Gamma D_i D_i \dots \Psi(x)$ from distilled fields [PRD80 (2009) 054506].
- Build a correlation matrix of two-point functions

$$C_{ij} = \langle 0 | \mathcal{O}_i \mathcal{O}_j^{\dagger} | 0 \rangle = \sum_n \frac{Z_i^n Z_j^{n \dagger}}{2E_n} e^{-E_n t}$$

- Ground state mass from fits to $e^{-E_n t}$
- Beyond ground state: Solve generalised eigenvalue problem $C_{ii}(t)v_i^{(n)} = \lambda^{(n)}(t)C_{ii}(t_0)v_i^{(n)}$
- eigenvalues: $\lambda^{(n)}(t) \sim e^{-E_n t} \left[1 + O(e^{-\Delta E t}) \right]$ principal correlator
- eigenvectors: related to overlaps $Z_i^{(n)} = \sqrt{2E_n}e^{E_nt_0/2}v_i^{(n)\dagger}C_{ji}(t_0)$

- operators of definite J^{PC} constructed in step 1 are subduced into the relevant irrep
- a subduced irrep carries a "memory" of continuum spin J from which it was subdduced - it overlaps predominantly with states of this J.

J	0	1	2	3	4
<i>A</i> ₁	1	0	0	0	1
A_2	0	0	0	1	0
E	0	0	1	0	1
<i>T</i> ₁	0	1	0	1	1
<i>T</i> ₂	0	0	1	1	1

- Using $Z = \langle 0|\Phi|k \rangle$, helps to identify continuum spins
- For high spins, can look for agreement between irreps
- Data below for T_1^{--} irrep, colour-coding is **Spin 1**, **Spin 3** and **Spin 4**.

SINGLE HADRON STATES: CHARMONIUM EXOTICS

Precision calculation of high spin $(J \ge 2)$ and exotic states is relatively new

Caveat Emptor

- Only single-hadron operators
- Physics of multi-hadron states appears to need relevant operators
- No continuum extrapolation
- $m_{\pi} \sim 400 \text{MeV} \leftarrow \text{already}$ changing

Charmonium

from HSC 2012

→ Expect improvements now methods established

SINGLE-HADRON STATES: LIGHT EXOTICS

from HSC 2010

Expect a large overlap with operators $\mathcal{O} \sim F_{\mu\nu}$

Lightest hybrid supermultiplet and excited hybrid supermultiplet same pattern and scale in meson and baryon, heavy and light [HadSpec:1106.5515] sectors.

ENERGY SCALE FOR HYBRIDS

 $m_0 = m_0$ for mesons and $m_0 = m_N$ for baryons.

EXPLORATORY STUDIES OF SCATTERING STATES

Needed for

• States, particularly exotics, close to or above thresholds

Characterised by

- New methods (developed/applied in last 5 years)
 - algorithmic: distillation allows access to all elements of propagators and construction of sophisticated basis of operators.
 - theoretical: spin-identification; construction of multi-hadron operators and mesons in flight; scattering below inelastic thresholds; coupled-channels (new in '14).
- Generally high statistics, improved actions etc results can be very precise.
- Systematic errors not all controlled in exploratory studies: e.g. no continuum extrapolation, relatively heavy pions ...

Rapid progress in the last 5 years!

Lose direct access to scattering in (Euclidean) lattice calculations

Lüscher found a way to extract scattering information in the elastic region from LQCD . [NPB354, 531-578 (1991)]

 related lattice energy levels in a finite volume to a decomposition of the scattering amplitude in partial waves in infinite volume

$$\det\left[\cot\boldsymbol{\delta}(\boldsymbol{E}_{n}^{*})+\cot\boldsymbol{\phi}(\boldsymbol{E}_{n},\vec{P},L)\right]=0$$

and $\cot \phi$ a known function (containing a generalised zeta function).

• The idea dates from the quenched era. To use it in a dynamical simulation need energy levels at extraordinary precision. This is why it has taken a while ...

Using Lüscher's idea

Now in use to determine resonance parameters

from Dudek, Edwards, Thomas in Phys. Rev. D87 (2013) 034505

X(3872) - A FIRST LOOK

Prelovsek & Leskovec 1307.5172

ground state: $\chi_{c1}(1P)$ $D\bar{D}^*$ scattering mx: pole just below thr. Threshold $\sim m_{u,d}$ and m_c discretisation? Padmanath, Lang, Prelovsek 1503.03257

X(3872) not found if $c\bar{c}$ not in basis.

Also results from Lee et al 1411.1389 Within 1MeV of $D^0\bar{D}^{0*}$, 8MeV of D^+D^* thresholds: isospin breaking effects important?

$$Z_c^+$$

An "exotic" hadron i.e. does not fit in the quark model picture.

There are a number of exploratory calculations on the lattice.

Challenges:

- The Z_c^+ (and most of the XYZ states) lies above several thresholds and so decay to several two-meson final states
- requires a coupled-channel analysis for a rigorous treatment
- on a lattice the number of relevant coupled-channels is large for high energies.

State of the art in coupled-channel analysis:

- Lüscher: $K\pi$, $K\eta$ [HSC 2014,2015]
- HALQCD: **Z**_c [preliminary results]

FIRST LOOK ON THE LATTICE

Prelovsek, Lang, Leskovec, Mohler: 1405.7615

- 13 expected 2-meson e'states found (black)
- no additional state below 4.2GeV
- no Z⁺ candidate below 4.2GeV

Similar conclusion from Lee et al [1411.1389] and Chen et al [1403.1318]

Why no eigenstate for Zc? Is Z_{+}^{+} a coupled channel effect? What can other groups say? Work needed!

Tetraquarks:

- Double charm tetraquarks ($I^P = 1^+$, I = 0) by HALQCD [PLB712 (2012)]
 - attractive potential, no bound tetraquark state
- Charm tetraquarks: variational method with DD*, D* D* and tetraquark operators finds no candidate.

Y(4140)

- Ozaki and Sasaki [1211.5512] no resonant Y(4140) structure found
- Padmanath, Lang, Prelovsek [1503.03257] considered operators: $c\bar{c}$, $(\bar{c}s)(\bar{s}c)$, $(\bar{c}c)(\bar{s}s)$, $[\bar{c}\bar{s}][c\bar{s}]$ in $J^P = 1^+$. Expected 2-particle states found and χ_{c1} , $\chi(3872)$ not Y(4140).

See Prelovsek @ Charm2015 for more

EXOTIC BARYONIC OBJECTS

H-dibaryons:

- A bound 6-quark state (udsuds) first proposed by Jaffe (1977) in MIT bag-model at 81MeV below $\Lambda\Lambda$ threshold.
- Lattice calculations [NPLQCD, HALQCD] find H-dibaryon bound but at quark masses larger than physical pion.
- Extracting resonance parameters from ΛΛ
- A linear chiral extrapolation does not discriminate between bound/unbound at the physical pion mass. Does suggest a state in I=0, J=0, s=-2 (ΛΛ) that is just bound/unbound.

More work to be done for good understanding

EVEN MORE RECENT PROGRESS

- Generalised for: moving frames; non-identical particles; multiple two-particle channels, particles with spin, by many authors.
- The precision and robustness of some numerical implementations is now very impressive. [See talks at Lattice 2015 & 2016]
- First coupled-channel resonance in a lattice calculation

 $\pi K \to \eta K$ by D. Wilson et al 1406.4158 and 1507.02599

A0

Is a_0 a $q\bar{q}$ state or dominated by a $K\bar{K}$ molecular configuration?

HSC, Wilson et al 1602.05122

- Phase shifts, inelasticity and amplitudes (for $m_{\pi} \sim 400 \text{MeV}$)
- Find an S-wave resonance in a two-coupled channel region $\pi\eta$, $K\bar{K}$, includes limited 3-channel scattering $(\pi\eta, K\bar{K}, \pi\eta')$. Resonance pole has large coupling to $K\bar{K}$.

SUMMARY & OUTLOOK

- Precision lattice calculations of excited and exotic hadron states available
 - includes hybrids and other exotics treated as "single-hadron" states.
- Studies of resonances, including multiple two-particle channels underway
 - Expect significant progress in next few years in e.g X,Y,Z simulations
 - Numerically precise but control of other systematics is a challenge
- Many challenges remain e.g. no general framework for extracting scattering amplitudes involving more than two hadrons. Clever ideas needed!

SUMMARY & OUTLOOK

- Precision lattice calculations of excited and exotic hadron states available
 - includes hybrids and other exotics treated as "single-hadron" states.
- Studies of resonances, including multiple two-particle channels underway
 - Expect significant progress in next few years in e.g X,Y,Z simulations
 - Numerically precise but control of other systematics is a challenge
- Many challenges remain e.g. no general framework for extracting scattering amplitudes involving more than two hadrons. Clever ideas needed!

Thanks for listening!