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Abstract. Glueballs are predicted in various theoretical approaches of QCD (most no-

tably lattice QCD), but their experimental verification is still missing. In the low-energy

sector some promising candidates for the scalar glueball exist, and some (less clear) can-

didates for the tensor and pseudoscalar glueballs were also proposed. Yet, for heavier

gluonic states there is much work to be done both from the experimental and theoretical

points of view. In these proceedings, we briefly review the current status of research of

glueballs and discuss future developments.

1 Introduction

The fundamental particles of Quantum Chromodynamics (QCD) are quarks and gluons. Both are col-

ored: quarks in the fundamental representation of the color group S Uc(3) (red, green, blue), gluons in

the adjoint representation (color-anticolor, minus the white configuration). The fundamental principle

on which QCD is built is the invariance under local color transformations.

Color is not directly seen: confinement implies that the physical states emerging from QCD

are ‘white’. For instance all conventional quark-antiquark (q̄q) states have the white wave

function
√

1/3(R̄R+ B̄B+ ḠG). Such states constitute the majority of the mesonic resonances listed in

the PDG [1], see also the review papers [2] and the predictions of the quark model [3].

From the early days of QCD [4–6] it was clear that bound states made solely of gluons, called

glueballs, might exist. In fact, gluons interact strongly with themselves. The existence of glueballs

was also predicted by various methods, most notably by lattice QCD, e.g. Refs. [7–9], both in the

quenched and unquenched approximations. Yet, while their existence seems compelling from the

theoretical point of view, up to now no resonance was found which can be unambiguously recognized

as a predominantly glueball state. While in the low-energy sector (below 2.6 GeV) some candidates

exist, in the high-energy sector no candidate is known. Experimental searches at low energies in the

very soon upcoming experiments GlueX [10] and CLAS12 [11] at Jefferson Lab and at high energy at

the ongoing BESIII [12, 13] and at the future PANDA [14] experiments are expected to improve our

understanding.

The theoretical and experimental work on glueballs has been huge: up to now (status on

26/9/2015), there are 1404 papers which contain the world glueball in the title (for reviews, see Refs.

[15–17]). In these proceedings we present some recent developments on this fascinating and still

unsolved piece of QCD.
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Table 1. Central values of glueball masses from lattice (from [8])

JPC Value [GeV]

0++ 1.70

2++ 2.39

0−+ 2.55

1−+ 2.96

2−+ 3.04

3+− 3.60

3++ 3.66

1−− 3.81

2−− 4.0

3−− 4.19

2+− 4.22

0+− 4.77

2 Existence and masses of glueballs

Photons do not interact with each other at tree-level. (A quartic photon interaction emerges through a

fermionic loop, whose amplitude is suppressed by α2.) Gluons are completely different: they shine,

already at the leading order, in their own light. This fact, together with confinement, naturally leads

to the idea that bound states made of solely gluons should exist.

The early studies of glueballs were performed within bag models, e.g. Refs. [4–6]. In particular,

in Ref. [6] various microscopic currents were introduced and a glueball spectrum was shown. The

lightest states were the scalar and tensor glueballs (at about 1 GeV), followed by pseudoscalar and

pseudotensor ones.

The development of lattice QCD allowed to perform quantitative and model independent studies

of the QCD spectrum. Already in 1999 a complete spectrum of glueballs (in the quenched approxi-

mations, i.e. without quarks) was presented [7]. The lightest state is a scalar glueball with a mass of

about 1.7 GeV, followed by the tensor and the pseudoscalar states. This result has been confirmed by

numerous and more recent lattice calculations, see Ref. [8], which is currently cited in the PDG in the

review of the quark model [1]. The results are reported in Table 1.

Calculations within unquenched lattice QCD (i.e., with quark fluctuations) basically confirmed

the same trend [9], in turn meaning that the mixing and the decays of glueballs should not be too

large. This is indeed a very good information for model builders and experimental searchers.

While lattice QCD is the best theoretical proof of the existence of glueballs and the most reliable

calculation of masses, other approaches were also used by theoreticians: QCD sum rules [18], Hamil-

tonian QCD [19], flux-tube model [20], anti De-Sitter approaches [21], and Bethe-Salpeter equations

[22]. All of them find glueballs and the scalar state is the lightest.

In conclusion, there is nowadays a great confidence about the existence of glueballs and about the

qualitative form of the spectrum. Nevertheless, the identification of glueballs has still to come.



3 Decays of glueballs

In the following we describe some general decay properties of glueballs and then we study separately

some specific examples.

Large-Nc

According to the famous large-Nc limit [23] (simplifications occurs when the number of colors

Nc is artificially increased to large values), glueballs’ masses scale with N0
c , just as q̄q masses. The

decay of glueballs into mesons scales as N−2
c , which is even more suppressed than regular q̄q states

(that scale as N−1
c ). It is then expected that glueballs are narrow. This theoretical consideration is

particularly important for the future PANDA project [14], which will search for glueballs between

2.2-5 GeV. Namely, only if glueballs are sufficiently narrow, they can be discovered experimentally.

Flavour and chiral blindness

Glueballs are flavour-invariant, hence they should decay in a flavour-blind way. For instance,

for a glueball decaying into two pseudoscalar states and neglecting phase space, one obtains the

ratios ππ : KK : ηη : η′η′ : ηη′ = 3 : 4 : 1 : 1 : 0. In addition, the decays of a glueball are

also chirally invariant, since it couples with the same strength to all chiral partners (such as ρρ and

a1(1230)a1(1230)).

Scalar glueball

The ground-state scalar glueball is undoubtedly the most studied gluonium. In the literature, many

different scenarios concerning the identification of the scalar glueball in the realm of scalar states listed

in the PDG were proposed. In most cases, the result was that the largest gluonic amount is either in

f0(1500) or in f0(1710), e.g. Refs. [24–33]. A very short summary of the historical development

is the following: in the pioneering work of Amsler and Close [24], later on confirmed by Close and

Kirk [25], the largest gluonic amount sits in f0(1500). This conclusion was reached analyzing the

decays of the three resonances f0(1370), f0(1500), and f0(1710) into two pseudoscalar states using a
3P0 approach. On the other hand, Lee and Weingarten [26] used a lattice QCD approach to study the

mass of the scalar glueball and its couplings to pions and kaons: the outcome was that f0(1710) is

mostly gluonic. In Ref. [27], Giacosa et al. used an hadronic model inspired by ChPT in which also

the other members of the scalar nonet were included, K∗
0
(1430) and a0(1450). The fit to all decays

showed the existence of two solutions, one in which f0(1500) is predominantly a glueball, and on in

which f0(1710) is such. Shortly after, Cheng et al [28] also found a phenomenological solution in

which f0(1710) is predominantly a glueball. Various other studies were performed which involved

constituents quarks and gluons, e.g. Ref. [29], or which involved the decay of the j/ψ meson, e.g.

Ref. [30].

The scalar glueball is also linked to the anomalous breaking of dilatation symmetry (at the com-

posite level, a dilaton/glueball field is introduced [34, 35]). In Ref. [36] a peculiar fact was shown.

Using the dilaton potential from Refs. [34, 35], the decay of the glueball into pions turned out to be

about 4 GeV, hence definitely too large to be detected. The numerical value is obtained by assuming

that the dilaton saturates the gluon condensate [37]. If this were true, large-Nc would badly fail in the

scalar sector and one could never find such a broad glueball.

As discussed in Ref. [31], the determination of the parameters of the dilaton potential through

the gluon’s condensate is not necessarily true. More in detail, in Ref. [31] the glueball was studied

within the so-called extended Linear Sigma Model (eLSM). This is an hadronic model based on

chiral symmetry and dilatation invariance together with their explicit and spontaneous breaking. The

eLSM, first developed for two flavours [38], has shown to be capable to describe masses and decays

of mesons up to 1.7 GeV, as the three-flavour study of Ref. [39] shows. The glueball as a dilaton is

naturally included in this model. Quite remarkably, there is only a solution within the eLSM: f0(1710)

is mostly gluonic. This result is in agreement with the original claim of Ref. [26], but also with the



recent lattice study of Ref. [32], in which the decay j/ψ → γG is numerically evaluated. Moreover,

the very same conclusion has been reached in Ref. [33] by using an approach based on the AdS/QCD

correspondence. Future information from the GlueX experiment is expected [40].

In conclusion, while a final assignment cannot yet be done, there is mounting evidence from

different directions that f0(1710) is mostly gluonic.

Tensor glueball

According to lattice, the tensor glueball has a mass of about 2.2 GeV (it is second lightest). In Ref.

[41] it was pointed out that the resonance fJ(2220) does not lie on the Regge trajectories. Moreover,

the state is very narrow, the ππ/KK ratio is in agreement with flavour blindness [42], and no γγ decay

was seen. A necessary improvement would be the experimental assessment of this resonance. In

particular, it is not yet clear if J is 2 or 4. Nevertheless, this is a promising starting point for future

studies (for instance, employing the eLSM).

Pseudoscalar glueball

The pseudoscalar glueball has been also investigated in a variety of scenarios, see Ref. [43] for

a review. One has investigated the gluonic content of the resonance η′, e.g. Refs. [44] and [45].

In various other works, e.g. Ref. [46], the pseudoscalar glueball was assigned to the resonance

η(1405), while η(1295) and η(1475) are q̄q states. Such a scenario is controversial for two reasons:

(i) At present, it is not clear if η(1405) and η(1475) are two independent states. (ii) The mass of the

pseudoscalar glueball as predicted by lattice QCD is about 2.6 GeV, i.e. 1 GeV heavier.

In Ref. [47] the eLSM has been used to study the decays of an hypothetical pseudoscalar glueball

(linked to the chiral anomaly [48]) with a mass of about 2.6 GeV, in agreement with lattice. The

outcome was that the decay channels into KKπ and ηππ are dominant, while πππ should vanish. A

possible experimental candidate is the state X(2370) measured by BES [13], yet future measurements

on its decay rates are needed.

Other glueballs

The other glueballs listed in Table 1 need further studies. Very recently, two steps have been

performed: (i) in Ref. [49] the decays of a pseudotensor glueball has been studied in a flavour-

invariant hadronic model: sizable decay into K∗
2
(1430)K and a2(1320)π and a vanishing decay into

ρπ are predicted. (ii) The decays of a vector glueball in a fully chirally invariant approach (using

the eLSM) have been investigated in Ref. [50]: a sizable decay into ωππ (both direct and indirect

through b1π) and into πKK∗(892) are expected to be the main signal of a vector gluonium. Such

simple predictions may help future experimental searches.

4 Conclusions

Glueballs are expected to exist but were not yet found in experiments. While GlueX and CLAS12 can

help our understanding in the light sector, BESIII and, in the future, PANDA can search for glueballs

in the heavy sector. Definitely, more work is needed: predictions about the decay channels of glue-

balls might be particularly helpful in the process of identifications of possible candidates. The aim

is to close the gap between a basic theoretical expectation of QCD and the present experimental status.
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